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Abstract

The consistency and the asymptotic normality of the
maximum likelihood estimator in the general nonlinear
simultaneous equation model are proved. It is shown that
the proof depends on the assumption of normality unlike in
the linear simultaneous equation model. It is proved that
the maximum likelihood estimator is asymptotically more
efficient than the nonlinear three-stage least squares
estimator if the specification is correct, However, the
latter has the advantage of being consistent even when the
normality assumption is removed. Hausman's instrumental-variable-
interpretation of the maximum likelihood estimator is extended to

the general nonlinear simultaneous equation model.
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1. Introduction

In this paper we obtain the asymptotic properties of the maximum
likelihood estimator in the general nonlinear simultaneous equation
model and compares them with those of the nonlinear three-stage least
squares estimator. The main results of the paper are the following:

1) The proof of the consistency and the asymptotic normality

of the maximum likelihood estimator in the general nonlinear
simultaneous equation model crucially depends on the
assumption of normality of the error term unlike in the
linear case.

2) All the third-order derivatives can be asymptotically
ignored either in the iterative method for obtaining
the maximum likelihood estimator or in the computation
of the asymptotic variance-covariance matrix.

3) The maximum likelihood estimator is asymptotically more
efficient than the nonlinear three-stage least squares
estimator.

4) Hausman's iteration method for the computation of the
maximum likelihood estimator in the linear case
(see Hausman [1975]) is generalized to the nonlinear case,
Unlike in the linear case, it does not produce an asymptotically
efficient second-round estimator even if the initial estimator
is consistent, but, like in the linear case, it illustrates
the similarity and the difference between the maximum 1likelihood

and the nonlinear three-stage least squares estimator.




2. Model
We will consider the nonlinear simultaneous equation model defined

by the following system of n equations:

fi(yt,xt,ai) T Ups i=1,2,...,n (2.1)

where is a n-dimensional vector of endogenous variables, x, is a
t t

vector of exogenous variables, and o is a vector of unknown parameters.
Not all of the elements of vectors Yt and X, may actually appear in the

)’

arguments of each fit' Define a n-dimensional vector u, as (ult’u2t""’unt
Then we assume'{ht} is independently and identically distributed as
multivariate N(0,R2). We assume that there are no constraints among ais, but
the results we subsequently obtain are not affected by the removal of

this assumption as we will show at the end of Section 5. We assume either
that fi defines a one-to-one mapping between Yt and u, or that the researcher

can apriori specify a particular root of . for a given value of u, so
that the density of Yy can be obtained by the usual way as the product
of the Jacobian and the density of Uy Finally we assume that all the partial

derivatives of f; with respect to a; and Yy that appear in equation (3.5)

of T
in Section 3 exist and are continuocus and that + and  f_£f!,
oYy t=1 ° T
where ft:(flt""’fnt)ﬁ’ are nonsingular, These assumptions enable us to

define the maximum likelihood estimator. The other conditions needed
for the consistency and asymptotic normality of the maximum likelihood

estimator are given in Section 3.




3. Maximum Likelihood Estimator
Because of the basic assumptions of Section 2, we can write the

logarithmic likelihood function as

T

T T -1 |
L* = - >1log [2] + I log || || > I flaTf (3.1)
t=1 t=l
e - ' 3 . . .
where we defined ft'(flt’f2t""’fnt) . Equating the partial derivatives
of L* with respect to @ to zero, we obtain
Q=% If, f! (3.2)
T t 7t
T
where we will abbreviate I as I from now on. Putting (3.2) into
t=1
(3.1) we obtain the concentrated likelihood funcfion
L =% log ||ay'|| log |T Lf, f%l . (3.3)
Eit A
We define a vector 8¢ © axi and a matrix gljt 5&;5&;

We will write the partial derivatives of L using these symbols below.
To avoid the excessive subscripts, we will omit the subscript t from f,

Yy, U, and g whenever they appear inside the summation. We have

og.
oL _ —L ' ry~L
o= L e Trg £ (3.4)
og. og.. q-1
where we used —= = —r -QET and wrote ( )"l for the ith colum
auj oy oy 43 q

of the inverse of the matrix within the bracket. We have




2 0g.
o°L - l! [} [} -1
so.dal - Eau. -~ T Iggy £IEEN
i7 i
dg. og. _
2 ATyt gl g
3U.. au- . 1 j
J 1 1]
(3.5)
1 1 -1 1 -1' 1
+ Tz g. £'(2ff")." (Zff") L fg
1yl ' 1yl t
+ T(sEEN)TT $ g, £1EIFENTT 1 fg!
ij i ]
9g.. 9g.. -1
where we used == = ——%ﬂ- @ﬁ} and wrote ( )T% for the i, jth
Bui 3y ay‘”i by
element of the inverse of the matrix within the bracket.
We define the maximum likelihood estimator of o as a root of
equation géL- = 0. Given assumptions A through E in the appendix,
i
one of the roots is consistent and if we denote the consistent root by
0 , we have
2 -1
/T (-0 »nf0, - plim | & 2L (3.6)
(o) > T dado’ ’
o
o

The proof is given in the appendix. The above result is of course not
a surprising one. Our main reason for writing down the assumptions
explicitly is that checking some of these conditions, especially B and
E, is instructive in our model: It will show that the consistency proof
depends crucially on the normaility assumption and that the terms

involving gij in (4.5) can asymptotically be ignored. Also, it will aid




us later when we compare the maximum likelihood estimator with the nonlinear
three-stage least squares estimator.

We will consider each of the assumptions in the appendix and
indicate what conditicns on the function f are implied by each., We
will not make a great effort to find the minimum set of assumptions needed
on f since that is not likely to be a useful exercise. As it was stated
earlier, assumptions B and E are most interesting to verify and we
will devote most of our time on their verification, But since assumption
C requires the greatest number of conditions on f, we will state a sweeping
set of conditions on f to make assumption C satisfied. After this is done,
only a small number of additional conditions is needed to satisfy the
remaining four assumptions. Thus we assume
Condition 1. The probability limit of T times every summation that
occurs in the right-hand side of (3.5) is finite and is equal to the limit

1

of T~ times its expectation. Moreover, the convergence is uniform in

a neighborhood of a . In addition, plim 7L 2t is nonsingular,

Note that the uniform boundedness of the third-order derivatives may
be substituted for assumption C.

Before proceeding further, we will prove the following important lemma
which will be frequently used.

Lemma. Suppose Ups Uys...u are jointly normal with mean 0 and h(ul,uz,...un)

22" n
dh

n
N are finite. Then, Ehu, =.z, E

ol =.7 — 0
Bui 1 121 aui

is such that E h and E 112

where 0y 5 is the covariance between uy and U .




o,
Proof. Replace u; in h with —%l- up o for i=2,...,n and treat h as
%
a function of Ups Wy Waseees Woe Then, Fhu., = EwEulhgl where
2,...,wn). But using integration by parts we have

1

w = (w

E hu, = [ hu, ¢ du
w1l D, T1f
(3.7)
2. _ 2 » dh
oy (hel  + oy T du, ) dul
where ¢ is the density of N(O,oi). But the first term of the right-hand
n o
side of (3.7) is zero because Eh is finite. Note %%—~= z EE—-;gg.
1 i=1 % oy
Therefore, taking the expectation of both sides of (3.7) with
respect to w, we get the desired result.
Now we will consider assumption B. Using (3.4) we have
1 oL | . 1 o8; i
~ a. | = = &YW O
vV T i g YT i
© (3.8)

‘ -1
_ 1 ; uu' 4
T z g; U /I <jq7 ;>i o]

th colum of @5, Ve immediately see that the mean

where ob is the i
of the first term of the right-hand side of (3.8) is zero since g;
satisfies the condition of the lemma because of condition 1., Also

using the lemma we have




9g.
plim £Zg u' =limgzfE =+9 | (3.9)
since {git ujt} satisfies the conditions for a law of large numbers

because of conditon 1. Therefore, denoting the equivalence of the limit

distribution by the symbol 1D, we have

1 aL
— = 1D p.. + p. (3.10)
o0, . = 1] 12
vy T 1ol
where
%g. .
pil = —;— T |\au—]: - gi U' Ol} (3.11)
v i
and
og. .
.1 i 1 1
P., = 1limZ I E — - z (w' - Qo™ . (3.12)
i2 T Ju ST
T

Written thus, it is clear that a certain essential boundedness of g;

og
and 55% is sufficient to let (3.10) follow a central limit theorem.
i

For example, the following condition is certainly sufficient:

3

9g .

ault are uniformly bounded for all t,
it ’

3
Condition 2. E|git| and E

98
where it and 5553- are evaluated at oy -
it




Next we will verify assumption E, Taking the probability limit

of T1 times (3.5) evaluated at a_, we have

2 9g. .
. "laL - 1 1 ] 1
plim T Bai3d§' N =plim T ~ L [-52;1 - glj u o:}
o -
og. agf .
_ 1y i 29 Al 1 r
plim T ~ X auj 5 o7 plim T © L 8:8
(3.13)

- ] 1! - !

+ plim T 1 z g; uieod ot - plim T 1’2 ug.

J

+odplimt ™t r g u - @7 plim T 2 ug%

Because of condition 1, we can replace plim in the right-hand side of
(3.13) with 1im E. But, then, the first term drops out provided 8.5
satisfies the condition of the lemma. So we impose

Condition 3. E gijt is finite, where gijt is evaluated at -

Thus, either in performing Newton's iteration to obtain the maximum likelihood
estimator or in obtaining its asymptotic variance-covariance matrix

one need not compute gij' Also we can apply the result of the lemma to

each term involving the product of u and g; - Thus we have




We must compare the above with lim 771 E[

We impose

Condition 4.

2 og. 9dg!
. -1 9L _ . -1 Ci 7y
plim T ™ 55557 =-1mT™2E = 5,
175 log 3 i
i3 . -1 '
o lmT " IEg; e (3.14)
_ g og!
FUMT LTS E % - 1imT L 5 E L
ou. ou.
] 1
. _ og. _ og!
+ o) mT I E—Z.Q-LUm T LE 2
au au

oL,
Boci

* T
o Bocj

o
O

98+

aui + Buj +

E g! is finite,

o
O

Then, by the repeated application of the lemma, we have

g - . og! .

1 1 4t ot gt ]

El: ou. g; 4 o } [au. gj u o
1 ]

og ag.
- - i i, i i3
E[au Tl gl]g] (3.15)
og Bg'
e N R !
Poa w0 BB ,

Therefore, fram (3.11) and (3.15) we have




~ 10 -

dg. og-
. 1 i ]
lim E p 1 Ps1 1lim T~ L E —Gg- aul
(3.16)
iy 4. 1
+ 0- 1imT "I E g4 gj
We have
E(u' - Q) o" od (' - Q=0 o+ 25 N (3.17)

where zj is a n-dimensional vector with 1 in the jth place and

0 elsewhere. Therefore, from (3.12) and (3.17) we have

[Continued on page 111
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. og. og.
. R iy RN -1 i, R -1 ]
lim E Psi» pj2 =0 - 1limT " LE o7 +1limT~LE =
(3.18)
_ og. _ Bg!
+Un T I E 2. UmTL § E 0
ou. ou.
j i
By the application of the lemma we have
og. I
1 _ s ] "
E s -8 u' o J o-  (uw Q)
* (3.19)
. og. 0g.
S &y B § - F 2+ ¢!
O Egy U-E
]
Therefore from (3.11), (3.12), and (3.19) we have
. dg. dg.
S Ky R -1 e — -1 sl
limE p 1 pj2 =~-0-1limT ™~ XL E L Q«1imT ™~ ZE 3u
(3.20)
0 og!
~Um Tl E~L - UmT LI E L
0 Bui
Similarly we have
i 0g. .
Ew' - Q) o S g. u' ol
ou. |
]
‘s og.! dg.
= - o™ QEl- 2, B3 : (3.21)
u ] ou.

1
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Therefore we have

Lim E p;, p5y = 1im E py) Py, (3.22)

Finally, assumption E follows from (3.10), (3,14), (3.16), (3.18), (3.20),
and (3.22).
This leaves assumptions A and D. Assumption A requires only one

additional condition:

1

Condition 5. plim T~ I log ||%§T|[ exists in a neighborhood of

OLO.

As we will show in Section 5, assumption D is implied by

1 afi afi
Condition 6. 1im T = L E gaz- E 5&1

is finite and nonsingular

for every 1i.
To sum up, conditions 1 through 6 imply assumptions A through E in the
appendix.

Note that the proof of both consistency and asymptotic normality
crucially depends on the normality assumption unlike in the linear case
where the maximum likelihood estimator can be easily shown to be consistent
for general specifications on the error term, This fact increases the
usefulness of such an estimator as the nonlinear two-stage or three-stage
least squares estimator which has been shown to be consistent for general

specifications on the error term.
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4, Tterative Methods

Consider the class of gradient methods of iteration defined by

- (4.1)

WheT® Oy i¢ an initial estimator and A is some matrix which may be stochastic.

Using a Taylor expansion of %%-A around Oy the true value, we have
a

1

fram (4.1)

~ 2 ~
-_ =, oL 8°L —_ 0

l/ T ((12-(10) - - T A —3_& . + [I - A m, " T (ocl (Xo) (4.2)
O &

LS
o

~

* ~, . .
where o lies between 0y and O Suppose that o 1s a consistent estimator

of o, such that /ﬁf'(al—ao) has a proper limit distribution. It is apparent
from (4.2) that the asymptotic distribution of the second-round estimator
does not depend upon the asymptotic distribution of the first-round estimator
if and only if
I
plimT ~ A = plim T (4.3)
Moreover, it is apparent fram (4.2) that in this case the limit distribution

of /T (a2-ao) is the same as that of the maximum likelihood estimator. We

will call the gradient method satisfying (4.3) the efficient Newton iteration.
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Next consider the iteration that can be derived from the equation
obtained by putting (3.4) equal to zero. We can rewrite the equation as

-1 agi

1z cFr g | Fert F'F)El = 0

ou' i

where F' is the nxT matrix whose i, tth element is fi(yt,xt,ui) and Gi

of . (v, %, ,0.)
is the matrix whose tth column is 1 ga t 1 Define
i
~ 9g.
-1 1
' = Q! - _* . P
6] =G -T " L~ F
and
i -
Gi 0 . . 0
1)
. 0 &
G' =
}
0 Gn

Also define f as the (nxT)-dimensional vector obtained by stacking the
colums of F. Then, all the n equations in (4.4) for i=1,2,...,n

can be combined as

G RI®D £ =0

(4.4)

(4.5)

(4.6)

(4.7)
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1

where we have written @ for T"F'F. Expanding f(al) in a Taylor series

—-cand o we finally obtain the iteration

a, = o - [6'@TQD It e @t@D £ (4.8)
where
Gl 0 0
0 62
G = ‘ ° (4.9)
0 G
n
L -

and every variable in the right-hand side of (4.8) is evaluated at
&1. Equation (4.8) is the generalization of the formula expounded by
Hausman [1975] for the linear case. Note that (4.8) belongs to the
class of iteration defined by (4.1) with A = [é'(ﬁ‘l(:)l)gl‘l

By the application of the lemma we can easily show

. -1 5,,5-1 S iy [ -1 1
plim T 612" @D G = -0 LimT™ L E 13
' (4.10)
- 9g. og.
+od lm Tl IE T 0 Un T IE 5t
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By comparing (3.14) with (4.10) we see that condition (4.3) is violated.

Thus we conclude that the asymptotic distribution of the second-round

estimator in this iteration depends on the asymptottic distribution of the

initial estimator and is not asymptotically efficient. Note that the

result is not changed if [éi(ﬁ_l(:)l)aj] is used instead because its

probability limit can be shown to be equal to (4.10), Note also that in

the linear case the sum of the first term and the third term of the

right-hand side of (3.14) is zero so that conditon (4.3) gets satisfied.
Although (4.8) may not be a good method of iteration, it does serve

a useful pedagogical purpose as Hausman's linear case does, for it demonstrates

a certain similarity between the maximum likelihood estimator and the nonlinear

three-stage least squares estimator.
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5. Nonlinear Three-Stage Least Squares Estimator

Jorgenson and Laffont [1974] defined the nonlinear three-stage
least squares estimator (henceforth to be abbreviated as NL3S) and proved
its consistency and asymptotitc normality, extending the result of Amemiya
[1974] obtained for the nonlinear two-stage least squares estimator.

They defined the NL3S as the value of o that minimizes

() ' [0 ® xx'0 ™ X1
where 5 is some consistent estimate of Q and X is a matrix of exogerious
variables which may not coincide with the exogenous variables that appear
originally in the arguments of f. Its asymptotic variance-covariance
matrix is given by
-1

3f ! 3f
: -1 1,4 %
= am @ x0T x5 .

()
0} (e}

plim T ™1

In this paper we will define the NL3S more generally as the value of
o that minimizes f' A f where A could take any one of the following three

forms:

] -1 o 3%
Al = A Sl(SiSl) Si A R

>
"

~ -1 t
!
2 82(82 A 82) 82

(5.1)

(5.2)

(5.3)

(5.4)
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and

s.)"L g1 a7t (5.5)

where Sl’ 82, and 83 are matrices of at least asymptotically
nonstochastic variables and A = @ (:) I. The asymptotic variance-covariance

matrix is given by

L '] of -1
plim T 3 |, A 5 (5.6)
o o)
All the three formulations are equivalent in the sense that
Al’ A2, and A3 can be made equal by appropriately choosing
Sl’ 82, and 83. If we take
0
Sl = 82 = 83 = s
0 X
- -

all the three are reduced to the Jorgenson-Laffont NL3S. It is apparent
from (5.6) that for all Ai’ i=1l, 2, 3, its lower bound is equal to
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A 3f -1
LUm T E o= [ (R @I)E%-,
a a
o o
g O ~q  Of
The lower-bound is attained when S, = A * E+—, , S, = A " E =, ,
1 oa. 2 90,
of
and S = E 3&1 ,» where we are implicitly assuming that the o

of
that appears in E 5=, must be estimated consistently. We will call the

resulting NL3S estimator where any of these optimal S's is used as the
best nonlinear three-stage least squares estimator (abbreviated as BNL3S).
This is often not a practical estimator because E ;g, is usually difficult
to obtain in explicit form, but the consideration of BNL3S is theoretically
useful as it provides something to aim at.

One can also attain the lower bound (5.7) using the Jorgenson-Laffont
NL3S, but that is possible if and only if the space spanned by the column

vectors of X contains the union of the spaces spanned by the column

of .
vectors of E sa%- fori=1, 2,...,n. This necessitates including many
ila
o)

columns in X, which is likely to increase the finite sample variance of
the estimator although it has no affect asymptotically. This is the
disadvantage of the Jorgenson-laffont definition campared to the definition
of this paper.

We will next show that the BNL3S is asymptotically less efficient

than the maximum likelihood estimator. Using the lemma, we have

(5.7)
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2g. .

T _ ' J
E l‘_au. g; W o }0

i
Similarly we have
3 3g.
- —J

EYE g ~u ov 50 -8y

We have

21

E(E g, = u ot o uE g;) =

We obviously have

C ey
E[(w' - Q)0 o7 u E gi]

end

uk gt

A
ELE g; *u' or o3 (w' - )] =0

- -odEg Eg . (5.8
i
=-0gJEg Eg' . (5.9)
175
' 1
B (5.10)
(5.11)
(5.12)

Therefore, from (3.10), (3.11), (3.12), and (5.8) through (5.12) we have

. — l e 1 i 1 1
1lim E(pil + Pip ;;ﬁ% E g; *u'o )(pjl + pj2
= 1lim T—l E oL . L - o 1im T
30, da!
1o J|a
o) o)

1

]!

- = ukg.)
/T ]

I E g; E gé

(5.13)
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The first term of the right-hand side of (5.13) is the i-jt® block

of the inverse of the asymptotic variance-covariance matrix of the maximum
likelihood estimator and the second term is that of the BNL3S as it is
evident from (5.7). But the matrix whose i-jth block is given in the
left-hand side of (5.13) is clearly nonnegative definite. Moreover,

since the matrix is nonzero with probability one.in gerieral, we conclude
that the BNL3S is asymptotically less efficient than the maximum
likelihood estimator.

Although the NL3S is asymptotically less efficient than the maximum
likelihood estimator, it is more robust against non-normality because it is
consistent provided the error term has mean zero and certain higher-order
finite moments whereas the concistency of the maximum likelihood estimator
in the nonlinear model depends crucially on the normality assumption as
we have seen in Section 3 above.

A necessary and sufficient condition for the matrix to be inverted
in (5.7) to be nonsingular is easily seen to be condition 6
of Section 3. In the linear case this condition implies the usual rank
condition of identifiability for each equation. However in the nonlinear
case the above condition is likely to be met even if all the exogenous
variables appear in each fi provided £, is sufficiently nonlinear.

Because of (5.13), condition 6 implies assumption D of the appendix.

The Gauss-Newton iteration to obtain the BNL3S can be written as

~ -

~ "1 -1 3, o1
a, = a) - [G' (@ ® nelte @'® Dt

(5.15)
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where
G' 0 0
l —
& = o 6 (5.16)
0 G!
n
L. o
and
G! = EG! (5.17)
1 1

Equation (5.15) differs from (4.8) only in the respective "instrumental
variables" used defined by (5.17) and (4.5) respectively. Intuitively
speaking, Gi catches more of the essentially nonstochastic part of Gi

than éi does. Note that by a Taylor expansion we have

%8; ¢
git (ut) = git (Q) + Tué— . ut . (5.18)
But (4.5) can be written as
- og.
! _ -1 it |
it (ut) =gyt T I gaz—- u, . (5.19)

The similarity between (5.18) and (5.19) provides some justification of
git(O) as the alternative instrumental variable. The o; that appears

in git(O) must be consistently estimated. The resulting NL3S is




S
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asymptotically less efficient than the BNL3S but is much more practical.
An even more practical choice of the instrument is to use git(;t’xt’&i)
where ;t is calculated simply as the predictor of Yt obtained by the
linear least squares regression of Y on all the exogenous variables.

A definite comparison between this choice and the use of git(O) can not
be easily made.

So far in this paper we have assumed that there are no constraints
among uis. The removal of this assumption, however, causes no difficult
problem. If there are constraints among als, we can express each oy
parametically as ui(B) where the number of elements in B is fewer than

those in u=(ai,u',...,aﬁ)'. Thus, one can simply premultiply the inverse

of the asymptotic variance-covariance matrix of the maximum likelihood

1
estimator or the NL3S by g%- and postmultiply by %%3 . Hence, all the

results of the paper hold.
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6. Conclusions

We have proved that the maximum likelihood estimator is asymptotically

more efficient than the nonlinear three-stage least squares estimator.

However we have also shown that the consistency of the maximum likelihood

estimator depends on the assumption of normality whereas that of the

nonlinear three-stage least squares is not. This fact increase the

attractiveness of the latter. The following are some important topics

for further research:

1)

2)

3)

Evaluate the degree of the relative inefficiency of the best
nonlinear three-stage least squares estimator as compared to
the maximum likelihood in specific models.

Evaluate the degree of the realtive inefficiency of several versions
of the computationally practical nonlinear three-stage least
squares estimator as compared to the best nonlinear three-stage
least squares estimator in specific models.

Is there an estimator, possibly even better than the best
nonlinear three-stage least squares estimator, which is
computationally simpler than the maximum likelihhod estimator?
Can that estimator remain consistent when the normality

assumption is removed?
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APPENDIX

Assumpitons
We make the following assumptions in additon to the basic assumptions

of the model stated in Section 2.

“A.  plim % Ly (o) exists in a neighborhood of a-

0 0 0
B. L_LT + N 0,limT-lE _.L.T_. ._LT'_
ST a0, a0, a0, .
o o
o o o)
52
N . . . :
C. plimT ’W exists in a neighborhood of O
and the convergence is uniform in the neighborhood.
52
-1 . . -
D. plim T adar 1s negative definite.
%
I 2
BLT BLT 0 L,
N | _ N f
B UmTTE 5| “ar| | T T PHMT T gager
a o o
o o o

Theorem. Under the basic assumptions of the model stated in Section 2 and

assumptions A through E above, a root of the equation % =0 is consistent

-1
52L

and the consistent root o satisfies V' T (oc—oco)—> N{0, - plim T SadaT
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Proof. Expanding T--1 LT(a) in a Taylor series around the true value

0y, We have

1 9bp

1 LT(a) =t LT(aO) + T A (o - ao)
)

o
9 (A1)
d
1oy o]
* 3 (o ao) T~ 5557 ’ (o - )
%1
where a? lies between o and O Taking the probability limit of both sides
of (A.1l) and using assumptions A, B, and C, we have
S I |
plim T~ Lp(a) = plim T Lp(a)
)2 (A.2)
1 1 . —1 (
+7(OL—OCO) plim T moc"—* OC_"OCO) ¢
a2
Since Saao" is continuous by a basic assumption stated in Section 2,
a2

1

assumption C implies that plim T° FTrTR is continuous in a neighborhood of

o - Therefore, by (D), the second term of the right-hand side of (A.1l)

is negative for all a in a neighborhood of o - Therefore, plim T_1 LT(a)

attains a local maximum at o This implies that a root of equation

%% = 0 is consistent. The asymptotic normality follows easily from
i

assumptions B through E using the Taylor expansion
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2
P} 3 3 ~ _
e —L—T - o) (A.3)
aa o ao. 20,90, sk o}
o O
where o is the consistent root and a;* lies between o and %

and noting the left-hand side of (A.3) is zero by the definition

A

of a.




