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A Stochastic Podel of Investment, T'arginal q and

the Parket Value of the Pius

Andrew !. Abel1

1. Introduction

In this paper we develop a stochastic model of the production and invest-

ment behavior of a competitive fiat and use this model to examine the effects

of uncertainty on the optimal rate of investment. ihe framework for this
analysis is a stochastic version of the q theory of investment. Following a

line of argument presented by !iynes (19361, Tobin (1969] defined (average) q

as the ratio of the market value of a fiat to the replacement cost of its cap-

ital and then argued that investment is an increasing function of q. A more

rigorous foundation for the q theory of investment is based on the adjustment

cost literature developed by Eisner and Strots (1963]. Lucas (19671. Gould

(1968] • and Treadway (19691. It has been shown by flussa (19771 • Abel (1979.

19821 and Yoshikawa [19801 that in the presence of convex adjustment costs.

investment is an increasing funotion of the shadow price of installed capital

(marginal q). ibre recently, ffayashi (1982] has shown that under certain
linear homogeneity and price-taking assumptions, the shadow price of installed

capital is equal to the market value of the fiat divided by the replacement

cost of its capital; that is, marginal q equals average q. In situations in

which marginal q and average q are not equal, it is marginal q which is

relevant for investment.

The literature cited above has developed the q theory in a deterministic

frariavork with adjustment costs. tttothastic models of inveatnent in the



preserce of adjustieut costs have beer develoue1 by Lucas and 'rescott f1971] ,

artman [1972), finriyck [l92] , and Abel I93} . !Jsin a discrete—tine sto-

chastic model, Fartmar showed that for a conretitive firm with constant

returns to scale, increased uncertainty about future output prices or factor

prices leads to increased current investment. Thre recently, Pindyck [i92]

and Abel [1983] have analyzed investment behavior in continuous time models in

which the price of output evolves according to an Ito process, and Abel demon-

strated that artman's results carry over to continuous time. This paper

extends Abel [19831 by incorporating several variable factors of production,

with stochastic prices, and analyzes the effects of increased uncertainty. Py

extending the model to include several stochastic prices, we are led to exam-

ine different types of increases in uncertainty. A payoff to this extension

is that we find that different types of (mean—preserving) increases in uncer-

tainty can have qualitatively different effects on the rate of investment.

In analyzing the effects of increased uncertainty about prices, we exam-

ine two types of increase in uncertainty: (1) a mean—preserving spread, and

(2) an increase in scale. Althoug. an increase h! scale is a mean—preserving

spread for a scalar random variable, we show that for a raultivariate random

variable, an increase in scale is not, in general, a mean—preserving spread.

More importantly, we show that these two types of increase in uncertainty

about prices have different effects on investment. As shown by rartman

[1972], a mean-preserving spread tends to increase investtnent; however, an

increase in the scale of the random component of a single price will raise,

lower, or not affect the rate of investment depending on whether the covari—

ance of this price with a weighted average of all prices is positive, nega-

tive, or zero.
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Section 2 develops the model of the competitive firm and. discusses the

stochastic processes for the output price and the factor prices. The strategy
of the paper is to restrict the specification of technology enough (constant

elasticity) so that we can obtain explicit solutions for investment, i'arginal

q and the market value of the firm. We present these solutions and provide an

economic interpretation for them in Section 3. In Section 4 we define and

analyze the effects of two alternative types of increase in uncertainty. The

effects of increased uncertainty on the required rate of return are discussed
in Section 5. Concluding remarks are presented in Section 6.

2. The Model of the Firm

Consider a competitive firm with a neoclassical production function

F(Xi,... E) where X., i = ?,...,n, is the amount of the ith variable
factor used at time t and is the amount of capital used at time t. Let Pt

denote the price of output at time t and let w, i = i,...,n, denote the

price of the ith variable factor at time t. The firm can accumulate capital

by undertaking gross investment I at a cost w
+1 C(T ), where w +1 is at n ,t t n ,t

multiplicative shock to the adjustment cost function. Polloving the adjust-

ment cost literature, we assume that C(I) is an increasing convex function

(C' > 0, C" > 0) and that C(Q) = 0. The accumulation of capital is given by

(1) dV = — 5T)dt

where S is the constant proportional rate of depreciation.

The price of output, the prices of the variable factors, and the multi-

plicative adjustment cost shock are generated by Ito processes. To econor'ize

on notation, we let w0 denote the price of output Pt and specify the evolu—
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tion of w., i = O,...,n+1 as

dw

(2) = r.dt + .dZ. i = 0,1,2,..., +1
1 1 1it

where dZ. are Tierer processes with near zero an unit variance such that

(3) F(dZ dZ ) = p dt
i j ij

The correlation coefficients satisfy —1 j .. < 1 and p.. = 1.

There are several properties of these stochastic processes for w. which

should be noted.2 The expected growth rate of w., Et(w.t) is equal to .

and the instant a tie ous variance of w. is w a. The insta ntane ous coy an anceit it 1

of w. and w. is w. . Finally, rote that conditional on w. , the
it Jt 13 1 3 it jt it

future value of w., say w., s > t, is log—normally distributed with mean

n.(s-t) c(s-t) 2t.(s-t)
i i i 23

w. e and variance [e —lie w. . Thus,it it

rr. (s—t)

(4) F (w. ) = w. e S > t
t is it

where Et( ) denotes the expectation conditional on information at time t.

Observe in (4) that the conditional expected value of w., s > t, is indepen—

dent of the variance of the process generating w•

The value of a risk—neutral firm at time t is the maximized expected

pre sent v al te of net cash £1 ow from time t onw ard. As stmi ing that the di scount

rate r is constant, the value of the firm can be expressed as a time—invariant

function of w., i = 0,..., n+1, and the capital stock

V ) —
wot, . . . , w+lt, —

axF fEw F(X ,...,X , K) — w. X. — w C(I )]e5t)dst Os is ns s is is n+i,s st i=1
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where the naximization in (5) is over the deci sion variables I and

X , . , and is suhi ect to the constraints in (1) and (2) . Opt imal itv1

requires that

6) rV dt = max .1tit — w+i,t T)Jdt + T}

Fquation (6) has a simple economic interpretation. The term in square brack-

ets on the right hand side of (6) is the net cash flow over a small interval

dt of time and the term dV is the change in the value of the firm. Equation

(6) simply states that the expected. rate of return on the firm (net cash flow

plus capital gain divided by the value of the firm) must be equal to the
discount rate r.

To calculate dV we use Ito's Lemma to obtain

n+1 n-fl n+l 2
(7) dV = —dw. + ---d + (dw. )(dw. )Rw. it t . w. w. it jti=O it t 1=0 j=O it jt

n-fl. 2
+ . Awttwit +

The expected value of dV is easily calculated using (1) and (2) and the fact

that P (dZ,) = 0 = dt = F (dt)(d!.) to obtain
t 1 t 1

(8) F(dV) =

n-f-i 1n±1 n±i
TT.W. ÷----(T —)+----. , cr.r.w.i}dtj=i 'it 1 t t t 2 i 1 it jt

'17uhstitutin () into (Pc) and definine. V. = , V, = and V. =
1 i rw w•it t it jt



we obtain

(9) rV = 'ax otFt, ' wjjt' it' 'nt 1—

n+i n+i fl+l
+ V..w. + (I — )V, + I V..p...a.w. w.

1=0
1 1 1t t t ! 21=0 13 1.1 1 3 it jt

The noni inear partial differential equation in (9) is the Deliman equation.

Tn general, the ellran equation cannot be solved explicitly. The strategy in

this paper is to restrict the specification of technology enough to obtain a

closed form solution to the neilman equation.

2.1 Constant Masticity Technology

In order to make the Deilman equation easily solvable we assine that' the

production function is Cobb—Douglas and that the adjustment cost function

C(I) has a constant elasticity. Specifically

(10) F(X1, . . . , X, K) = x1x2...
aq

(lOa) where a. > 0 i = 1,. ..,n and Q = 1 — I a. > 0
1 . 1

1=1

and

(11) C(I) = I , > 1.

Given this specification of technology we can row maximize the right hand

side of (9) with respect to . . , X. Since Xj, 1,..., n, affect

only current output and current variab -- cost, they are chosen to iiximize

current cash flow. it is straightforward to show that with the Cobb—Douglas
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production function in (10),

—a.
n n

(12) max woF(Xi . . , X, ) — = yll w.
'ant

i=1

I

(12a) where
a0 —I, [ II

j=1

The optimal rate of investment is found by differentiating (9) with

respect to I and setting the derivative equal to zero. Using the fact that

C'(I) = f3Ir the optimal rate of investment satisfies = from

which it follows that

(13) It =
and

(14) _w+i,C(1t) + IVv =
1)Wri+i,tC(It)

Substituting (12) and (14) into (9), letting pFv denote the marginal revenue

product of capital, observing that C(I) = I, and using (13), we obtain

(15) rV = PtFRt + (3_1)w+1,C(J)
—

n+1 n+1 n+1
+ I V.i.w. I I w.

i=O
1 1

i=0 j=0 13 lj 1 3 it jt

—a.
n

(15a) where = y't j=0

(15b) C(I) =

The solution to the noni inear artia1 cifferential equation in (15) is derived
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in Anpendix A and is discussed in the next section.

3 . Investment, g, and the Valuation of the irm

In this section we present and analyze explicit solutions for the value

of the firm, marginal q and the optimal rate of investment. As shn in the

Appendix, the value of the firm can be wri tten as

(16a) V(w(tJ • ,w+lt, ) = 1IPtFV ht +

or (equivalently)

fl y fl+1 — a . /
(1Gb) V(Wo, . . . , w1 = 1y t + 2' ft w.

j=0

where a
n+ 1

w her e

n c. a. a.
1 1' 1— i_i —1

(16c) = [r+&+ (n. — u) — I
10 i—0 j=O

n+1 fla. n+1 n+1 fla.
(16d) = (r +

=° (1;11 — —

2=

Equations (16a) and (16b) are equivalent to each other; equations (16c) and

(16d) give the values of the constants and Equation (16b) expresses

the value of the firm in terms of the state variables • • ' w1 and

Equation (16a) expresses the value of the firm in terms of more easily

interpretable economic variables. Examination of the equations in (16) leads
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to several results.

Result : The value of the fin at tine t is a 1 inearly hanogeveous function

of w0, w1, •••

To derive this result observe that the san of the exponents of
Wit

in the

first tern in (16b) is I and the sun of the exponents of w11 in the
iso V

nil —a
second term in (lfl) is . Recalling that a ——1, a a fla and

n
(7 a 1 — I a1, it is clear that each of the suns of coefficients is equal to

i—i J

one. Therefore, we obtain Result 1.

Result a: The value of the firm at time t is a linear function of Kt.

The slope of the value function with respect to P, i.e., V, is equal to

aa w1" , which, as we will show, is equal tc the expectedt ja4)
'

present value of the marginal revenue products of capital. Since the firm is

a price—taker and the production function is linearly hanogeneous, the margi-

nal revenue product of capital is independent of the level of the capital

stock. Rence, the expected present value of marginal revenue products is

itdependent of and the slope of the value function is independent of

In order to show that is equal to the expected present value of the

marginal revenue products of capital, we first present the following lermia

which permits easy calculation of the expected present value of the marginal

products of capital.

n+1
LernajSupposeq afl(w. . . . , if w, , wherec2 are knownt at pt so Sjpt £
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constants and w. evolve according to (2) and (3). Then the present1, L

value of 1 s > t discounted at rate X is
S —

(17a) =t S fl+l n+ln+1
X + c.(n. - -i=l i i 2 i. 2 i=O j=0 1 3 1.1 1 3

+ in — var(d in

Proof. See Appendix 13,

If we let the discoixt rate ?. be r+& and let be the marginal revenue

n —a./
product of capital at time t, y IIwj' , so that c. = —a.f, i=, . . . ,n

i =0

and = 0, then it follows immediately from (16c) and Lemma 1 that 11PF.

is the expected present value of marginal revenue products accruing to capital

from time t onward. The discomit factor A reflects both the rate of interest

r as well as physical depreciation at rate '. Thus 1ptFF is the expected
t

present value of marginal revenue products accruing to the unclepreciated por-

tion of a unit of capital which is in place at time t.

It is convenient to define as the marginal valuation of capital

divided by w (the shock to the adjustment cost function). Therefore,
ri+l,t

from (13) we obtain

1 1

1—(% P—i(18a) I =
(18b) where = t,n+i,t
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Inspection of (18) leads to

Result 3: The optimal rate of investment is an increasing function of with

elasticity where is the (constant) elasticity of C(J) with respect

to I. Also, and are homogeneous of degree zero in

wot, , wn+lt,

The relation between the valuation of the firm and the rate of investment

can be interpreted with the use of Figure 1.

V

itFtgure 1

The optimal rate of investment is chosen to equate the marginal valuation of

capital, VK with the marginal adjustment cost w+i as shn in Fig-

ure 1. Thus the optimal rate of investment is related to the slope (with

respect to of the valuation of the firm, The constant term in the valua-
tion equation is related to the shaded area in Pigure I. This shaded area is

equal to it V — w C(T ). which is the exuected uresent value of rentalst n+l,t t

accruing to infra—marginal units of investment at date t; it is the amount by
which the valuation of current investment, , exceed.s the cost of current

investment w+,C(I). According to (14) this present value of infra—

Wn+i,t C(I
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rarginal rerts is equal to (Pi)wr+itC(Tt Therefore, the constant term in

the valuation equation (16a) is equal to the area of the shaded region in Fig-

ure 1 rultiplied by 2 Since (!—l)w+iC(I) is equal to

n±1 —a/v
(9—I) [ II w. ]' , it follows from (l6d) and Lemma 1 that the constant

.—, 3
i—a

term in the valuation equation is equal to the expected present value of

infra—marginal rents to current and future investment (To apply Lemma 1, let
—Ba.

1= r and c. = ('l—1d for 1=0,1, ..., n+1).

To summarize, the value of the finn at time t is a linear function of

The linear term in represents the expected present value of marginal reve-

nue products accruing to capital currently in place at time t. The constant

term represents the expected present value of rents to infra—marginal units of

current and future investment.

4. The F.ffects of jjn tincertainty

In this section we examine the effects of increased uncertainty on the

optimal rate of investment and on the market value of the firm. In a

discrete—time model, flartman [1972] has shown that if wj, i=0,..., n+1,

undergoes a mean preserving spread, then there is an increase in the rate of

investment. In a continuous time model with a single variable factor of pro-

duction, Abel [1983] has shown that Hartman's result continues to hold.

In. this section we extend the results of Abel [1983] to a model with

several (n+2) random variables. The extension is non—trivial as explained

below. ¶ie consider two types of increases in uncertainty: (1) a mean

preserving spread (MPS); and (2) an increase in the scale of one of the random
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variables (IS). In the case of a single random variable, an increase in scale

is a mean preserving spread. ITowever, with several random variables, an

increase in the scale of one variable is a mean preserving spread if and only

if that variable is uncorrelated with all other random variables; if the vari-

able whose scale is increased has a nonzero covariance with aw other random

variable, then an increase in scale is S a mean preserving spread.

The effects of an lIPS increase in uncertainty differ fran the effects of

an IS increase in uncertainty. We will show that, consistent with Fartman's

findings, an PPS increase in uncertainty will increase investment. However,

the effects on investment of an IS increase in the uncertainty associated with
n a1

w2 depends on the covariance of lnw2 with I (wiFwfl. DependingJ. 4, iso 4

on whether this covariance is positive, negative, or zero, an IS increase in

uncertainty will increase, decrease or leave unchanged the rate of investment.

We will examine the effects on investment of increasing uncertainty hold-

ing constant the current values of wi,. Since investment is an increasing
function of we can focus on the effects of uncertainty on For given
values of wi, i a 0,..., n, the effects on and investment can be deter-

mined simply by determining the effects on pa1: the effects on and invest—

nent are in the same direction as the effects on
pa1.

We will first compare optimal investment under certainty and under uncer-

tainty. In all cases we will examine changes in uncertainty which leave

a . t, uncharged. Observe from (4) that !tt(wi5) is independent of

all and all Therefore, the certainty case relevant for comparison to

ax uncertainty case is obtained simply by setting all ai equal to zero. Fran

(lEe) it follows that (and hence and is greater wader uncertainty
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that under certainty if and only if

(19) + 31 > 071i=0 i=0 =O
can prove that (19) iolds by using

Lemra 2. Suppose x. > 0 for i = 1,2,..., m and that . x. = —1. 1)efine
1=0

m m
S(x ,...,x ) x. + 31 31 x.x.p..c.o. where o.. = cov(dZ.,d.).0 m

1=0
1 1

1=Oj =0
1 3 13 1 3 13 1 3

Then S(x0, . . . ,x) > 0, with strict inequality unless

Var(o.dZ. — dZ ) = 0 for all i.ii 00
Proof. See Appendix C.

If we let x. = and m = n, then (19) follows immediately fran Lemma 2

(provided that there is not perfect correlation among all dZ.). Hence, as

shown by Hartman [1972] and Abel [19831 the optimal rate of investment is

higher under uncertainty than under certainty.

4.1 r1ean Preserving Spread

We follow Vartman's extension to several random variables of the

Pothschild—Stiglitz [19701 definition of a mean preserving spread. Specifi-

cally, if x is a random vector and if u is a random vector (with the same

dimension as x) such that H(ux) = 0, then the distribution of the random vec-

tor y = x+u is a mean preserving spread of the distribution of x. Observe

that the covariance matrix of y exceeds the covariance matrix of x by a nonne-

gative definite matrix (we all ow some elements of u to be nonstochastic)
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We now consider the effects of a mean preserving spread on the di stribu—

tion of the Wiener process dZ .. In particul ar, we add an uncorrel ated process
dw

to the Ito process for — to obtain
wit

dw.
(2O) = rr.dt ÷ + y*Z

1, t

where F (dZ.)(dZ.*) = 0 and F (dZ.)(d7.*) p..*dt. The exnected growth ratet 1 J t 1 3 13
dv.

of ( it) is equal to a. as before, JYowever, the instantaneousit dt t w. Iit
variance of w. is now w ( + a.*2) and instantaneous covariance of w. andit it i 1 it
w. is now w. w. (p..a.. + p..*.*o.*), The effect of performing this PS onjt it jt 13 1 3 13 1 3

dZ. is to reduce L by A* L j2 ÷ k5 it fol—1 1 2
i=0 q 2. = q 13 1 3

1 s immedi ately fron Lemm a 2 that A* > 0 and hence that a PS incr ease s in

uncertainty leads to an increase in , o and investment.

4.2 Increase in Scale

Consider a scalar random variable Z with mean Z. We will say that the
scalar random variable y represents an increase in scale for the random vari-

able Z, if y—Z = (1+b)(Z—Z) for some constant h > 0. Thus from (2) an IS

dv.
increase in uncertainty of

it corresponds to an increase in , but has no
wit I

effect on the distribution of dZ. . Thus, in a multivariate context, an IS[C

dv.
increase in the uncertainty of has no effect on (d . ) (d ) arid hence

wit it 31

does not affect the correl ati-y -ix n () ot,
t w wot

has p.. as the (i+1,j+i) element, The effect on the covaripce matrix of

() is to miii tiply row (i+I) and ccl ( i+1) by some constant greater than 1.wt
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This effect on the covariance r'atrix is to be contrasted (see Lemma 3 below)

with the effect of a increase in uncertainty which adds a positive semi—

dwdefinite matrix to the covariance matrix of —.
w

e examine the effects of an IS increase in uncertainty by differentiat-

ing with respect to a, holding constant all p. and a., ji. Differentiat-

ing (16c) with respect to a. we obtain

a. fl a.l2_.L2 '-" 'ao. i q, ' •- qjij'1 i j=0
fl a.

Tecalling that = —1, equation (21) may be rewritten as

j =0

a. n a.
(22)

1 = . .a .a. -
• q 1313 1

1 ij=0
2

Now observe that Cov(ln(w./w.), in w.) = p..a.a. — a. so that (22) can be
3 1 1 1313 1

expressed as

2
3i a.t n a.

(23) = — Cov[ ln(w./w.), In w.]
aa. a. . q 3 1 1

1 1

a
1Fran equation (23), is positive, negative, or zero depending on whether

n a.
the covariance of ln(wiw.) and In w1 is positive, negative, or zero.

j=0

Thus an IS increase in uncertainty will increase, decrease or have no effect

on the optimal rate of investment depending on whether

Cov[ I ' ln(wjw.), mw.] is positive, negative or zero. Observe fr (21)
j=0 31

2 a. a.

that in the special case in which p.. = 0, i j, j = > 0 so

that an I increase on uncertainty leads to an increase in the rate of invest-

ment.
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At first glance it may appear inconsistent that the effect on investment

of an ?'PS increase in uncertainty is unambiguously positive, whereas the

effect on investment of an IS increase in uncertainty can be positive, nega-
tive, or zero. These two findings are reconciled by the fact that, in gen-

eral, an IS increase in uncertainty is not an T'PS increase in uncertainty.
Only if is uncorrelated with all O, j I, is it the case that an IS

dw
increase in uncertainty of is an ?fl increase in uncertainty.wi

To show that an IS increase in uncertainty of is not, in general, a
Mi'S, we will use the following leans:

Ltms j. Let k1, . . . 3 be the eigenvalnes of

'1 '2%
'2 OO

A— . .
. . .
a O°Oa

wherea1)Oandmj2. Then12n—IajO,)1+42sa1)oand, if
i—2

a 3, 5 — — —

Proof. See ppendixD.

Using the fact that all eigenvalues of a symetric nonnegative definite matrix
are we obtain the following

Corollary. The matrix A in Lctmna 3 is nonnegative definite if and only if

a2 — — a, = 0.
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Using the corollary above we c now prove the following

Pronosition. Ar. TS increase in uncertainty of d'. is not an increase in
1

uncertainty unless dCC. has zero correlation with all d., j

proof. 'ithout loss of generality, we examine an IS increase in uncertainty

dw0of which increases the covariance matrix from I to

+ T) where

[

b2a bp011 • • •

bp010r1 0 0

bp 0 .•OnOn

From the Corollary to Lemma 3, D is nonnegative definite if and only if

oi.
= C) for i = i,...,n, Since an MPS increase in uncertainty causes the

covariance matrix to increase by a nonnegative definite matrix, the IS

increase in uncertainty cannot be a PS if 0 for any i �. 1. On the

other hand, if = 0, i 1,... ,n, then the IS increase in uncertainty

is equivalent to the following iCPS: In (20) let = b and let

= 0, i = 1,..., n. q.e.d.

In this section we have examined two different concepts of increasing

uncertainty in a multivariate context: an PS increase in uncertainty and an

IS increase in uncertainty. Ue have shown that an PS increase in r.neertainty

unambiguously raises the rate of investment whereas an IS increase in
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uncertainty will raise, lower or leave unchanged the rate of investment

depending on whether a certain covariance is positive, negative, or zero.

As a final comment on the effects of uncertainty, it should be emphasized

that it is uncertainty of relative prices which has an effect on investment.

If all w are perfectly (positively) correlated and have the sane propor-

tional variance, then all relative prices are non—stochastic. In this

case, the rate of investment under uncertainty is the same as under certainty.

5. The Required Rate of Return6

Up to this point our analysis of the firm's behavior has been conducted

under the assumption of ri sk—neutral ity. In particul ar, we have assumed that

the required rate of return on the firm's equity, r, remains unchanged when

the uncertainty of output price and factor prices is changed. It should be
noted that risk—neutrality se is not required for the invariance of r with

respect to changes in uncertainty. r!ore generally, in the traditional capital

asset pricing model, the required rate of return on a firm is independent of

the variance of its own prices (output prices and factor prices) if the rate

of return on the firm is uncorrel ated with the return on the market portfol io.

In the context of more recent asset pricing models of Lucas (197) and Breeden

(1979), the required rate of return on a firm will be independent of the vari-

ances of prices if the rate of return on the firm is uncorrelated with the

marginal utility of consunpti.on. Thus, risk—neutral itv se is not

required for the results in this parer to hold.

If we drop the assumption that the return on the finn is uncorrelated

with the market portfolio (or with the narginal utility of consiniption), then
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the required rate of return on the firm is an increasing function of the
covariance of the firm's return with the return on the market portfol io. If

the increase in price uncertainty causes this covariance to inc-:ase, then the

requi red rite of return, also increases which tends to decrease both and

investment. Alternatively, if the increase in price uncertainty leads to a

decrease in the relevant covariance, then the required rate of return

decreases so that and investment each tend to increase.

It is clear that to reach any conclusions about the effect of uncertainty

on the required rate of return we would have to impose some structure on the

covariance of the rate of return on the firm and the rate of return on the
market portfolio (or the marginal utility of consinption). The results in

earlier sections can be used to calculate the random component of the rate of

return on the firm. Powever, without developing a complete general equili—

briwn dynamic stochastic model, we have tremendous latitude in specifying a

stochastic process for the rate of return on the market portfolio and thus

could "derive" results which show the required rate of return increasing or

decreasing in response to an increase in uncertainty.

The analysis of this paper is explicitly partial equilibrium in nature.
We have argued above that to reach any conclusions about the effect of

increased uncertainty on the required rate of return (without, in effect,
being free to assume the conclusion by strategically specifying the stochastic

process for the rate of return on the market portfol io) would require a gelt—

eral equilibrium model. Of course, in a general equilibrium framework, the

analysis of uncertainty should focus not on the effects of price uncertainty

but rather on the effects of uncertainty about preferences and technology.

Such analysis is beyond the scope of this raper.
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6. roncludjnr remarks

Ye have analyzed the optimal rroduct ion and invest'ient behav ior of a corn—

netitive firm facing random prices for outtut and factors of vroduction. Py

restricting the production function to be Cobb—)ouglas and the adjustment

technology to have constant elasticity, we were able to obtain closed—form

solutions for investment, marginal q and the market Value of the firm. In

particular, the market value of the firm is a linear function of the firm's

capital stock; investment is an increasing function of the slope of this value

function.

Using the closed—form solution for the optimal rate of investment, we

examined the effects on investment of two alternative types of increase in

uncertainty about the random vector of prices. The effect of a mean—

preserving spread is to increase investment, Uowever, the effect of an

increase in the scale of the random component of a single price is to

increase, decrease, or leave unchanged the rate of investment depending on

whether the covariance of this price with a (geometric) weighted, average of

all prices is positive, negative, or zero.

Parvard University

and

rational T'ureap of conornic mesearch
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i; T than!; 'trnst '1erndt, Stanley !'ischer, "abort "c'tonald, Peter "errill and

"obert Pindycit for helpful discussions on oarlier drafts of this paper.

I also t¼ark the participants in workshops at rbln,bia University, par—

vant University a'ui ".T.T. and two anonymous referees for their helpful

connents. "esearch support fran the epartent of 1nergy and the

Pational Science Podation is gratefully acknowledged.

2. Por good discussions of stochastic calculus set in an economic context,

the reader is referred to rock, fltow (1981], Pischer (1975], and ?'erton

(1971].

3. The solution to the stochastic differential equation in (2) is

(*1 wis = wit exp((ni — 4a'tflst) + °i
(See, for example, Pischer (1975]. equation (13A)). The solution nay be

rewritten as

(.**l ln wis a ln wit + (n1
— uj)(s_t) + a'i {i

from which it follows that In wis is normally distributed with mean

ln wj + (nj — o'j)(s—t) and variance cPj(s—t). Using the facts that if

ln x is normally distributed with mean p andvariance or2, then

E(x) a exp(p + u2] and Var(x) a (exp(cr2) — 1] . (exp(2p + 2)], we find

it (s—t) 2ni(s—t) t4(st)that Et(wi) a wite and 'lart(wi) a wje (e — 1].

4. fltoosing 11. . . . ,! to maximize . . . 'n !P.) — IwX1 where
inl

PC ) is the Cobb—Iou;las nroduction function in (10) yields



w . X.11(4.1) = pF i=l,.. .,n

which reflects the fact that a. is the (constant) share of variable fac—
1

tor i Using (44) for X. and X. yields

w.X. a.
(4.2) x =

3 U. W.
1 3

Substituting (42) into the production function for j1,...,n yields

n
a.

w.X. . j n a.

(43) F = 1)3_i [ 11 (a./w.)
j=l

n
Combining (44) and (4,3) and recalling that = 1 — . a. yields

j=1

w.X. n a.
(4.4 = p[ H (a./w.)

a. . 3 3

so that

(4.5) w.X. =

Frcu (4.1) the maximized value of pF — wX. is equal to pF which
i=1

using (4.1) and (45) is equal to

(4.6) (a./w)J]l
j=1

Equation (4.6) is equivalent to equation (12) in the text.

5. ussa 1974} shved that for a linearly hiogeneous production function,

the value of the firm under certainty is linear in

6. I thank an anonymous referee far suggesting that I consider the effects of

uncertainty on the required rate of return.
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Anpendi '

We solve the T cilnan equation in (l ising the tho of unetrn inca cgeffj—

cients. We hypothesize that the sol ution takes the forn

(A]-) V(w0, . . ,w11fl = 17U)( + V(2)(W0,

fl
(11a) where = 1ipF =

t1-y •II

(2) rn4-l —a./'-(Aib) V = i2(—1)w1C(T) 1(i)() fl w.

(k) ____ (it) 2v(k)Letting V. denote and V denote , we can differentiate (Ala)
1 1 aww.1 13

and (Aib) to obtain

(1'
(A2) V =

—a.
(A3)

) = .___ir( 1)

l) a1 a.
(A4) w.V. (l + )V

1 11

(A5) = j1(l)
1 3 13

(7) a.
(A6) =

—- ——-7'

(A7) = T ...]-(1 +

'T' 1
(AS) v'-, = (—v)1 3 1(i (7) (1
ecogn1z that = - t = - c s ', tntp

1 1 1 1 11

(A? )—(A) into (l) to okt7tin



A- 2

+ = + — + + L
7 q 1

1=0

+
I

1
r±i p ())

(A9) + (-)---a.X
i=0j=r

'i1atin the coefficients of on both sides of (A9) yields the value of

shn in (16c) and equating the coefficients of on both sides of (A9)

yields tl:e value of in (16d).
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Appendix P

Proof of Lemma 1

nfl nfl
Observe that in ( a £ c2 in w1 so that B (in fl ) — I c F (in w2 ) and5 j_ S £5 t £ t £5

n+ln+l
Var (in 0 ) a I cic, coy (in Wj usc1 ). Observe that (see footnote 3)t 10 3sf) J t S ,jS

Et(in w15) = in Wit + —

F/jxs—t) and cov(in 'is' i35) uij(5t)
which yieids

nfl
(81) B (mG ) a ojinw1 + —t $ a at a

nfl nfl
(82) Vart(in 0 ) a £

i-OJaO ' ' .'

Since in wj5 is (conditionauiy) normally distributed, so is in 75 Therefore

(83) Bt(05) a exP[Et(in 0) + } Var(in 05)J

Substituting (P1) and (12) into (ti) yieids

- nfl nflnfi
(84) Bt(o) a exp(t £ oi(ni — }or:i) + I I °i

i sic' I(s—t))i0 iaOjaO

7'ecognizing that Et ? o5e5t)ds ? Et(fls)eM5_t)ds, equation (P4) imedi—

ateiy Iapiies (17a). The equivalence of (17a) and (iTh) foiiows frau noting

nfl nfl
2that P (d irfl ) a-i-it I c d mnwi I c (n — u1) and that

nfl nfl
in (7) a iVarti I I cic1(d in 'it4 in wit)! at .t

i—0j_o
.1

nfl nfl
I I

i—C 3=0
-'
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Pppendix C

Proof j Lenra .

It will be convenient to define x = Cx, , . . ,x)', i — (l,,..,l)' and

—
(p01u0c1. . . . PomE7oCjs Let I be the rnn matrix with (ij) element

equal to cov(ci&!i. U(TZ) and let diag(I) be the mxl vector with ith element

equal to cr2i. Observe that S( ) stay be written as

() S(x. x) = xo4 + :'diagl + xct + 2x&c'io x'Ix

The constraint I xi — —l can be written as X0 a —(1 + x'i). Substituting
iso

this expression for :0 into (Cl) allows us to express the value of S(x0, x)

subject to this constraint as a function S*(x)

(C2) S(x) — (l+x'i)(x'i)cr — 2(l+x'i)10'x + x'diag(I) + x'ix
bining the 1 inear terms in x together and the quadratic tens together we

obtain

((3) S(x) — x'Lcri — 2; + dlag(I)J + x'Icii'—1Z,'—Si'+IIx
Let fi denote the an covariance matrix with (i.j) element equal to

cov(ciai — u0dZ0, utZ — c0dZ0). Therefore

(C4)

Substituting (C4) into (C3) yields

() S'(x) = x'diag(fl) + x'flx

If var(uiOi — cr0dZ0)
— 0 for i — l,...,m, then P "0 and Se(x) —0 for all

x 2. 0. If var(uidzi — c0dZ0) # 0 for aw i, then ft has at least one strictly
positive element on its diagonal. In this case, if x > 0 then S(x) > 0
(since P is nonnegative definite).
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Apnendix

Proof of Lemma 3

fa;X a,

Define A. =

a, 0
3

and observe that the eigenvalues of the mxm matrix A satisfy det A = 0. Ai.so

observe that det A1 =
a1—X and det A — det A1 — a. Tn general, expanding

around the last row of A., we have

Ia a3
a.

(Dl) det A. = —X det A_1 + (—1)a.det
—

•. , j 2,3,...
—x o

Expanding the second determinant on the right hand side of (p1) around its

last coiwan we obtain

(p2) dot A. = —X det A1 — a(X)2 j = 2,3,...

Equation (02) is a first—order difference equation with initial condition

2 2
dot A2 = X —a1X—a2. The solution to the difference ecuation is

j

(D3) dot A. = (—X)3 —a1?—aI

Therefore, the cigenvalues of A are the m roots of

(D4) (X)2FX2aa7i =



r inspection, n—2 roots are equal to zero. The reniairing two roots satisfy
V1

7. —

a1X
— a. = 0 iriplying that these two roots have a sum of a1 and a pro—

1=2'

duct of — a.
1

q. e. d.




