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the Yarket Valve of the Fim

Andrew T, Abell

1. Introduction

In this paper we develop a stochastic model of the production ard invest—
ment behavior of a competitive firm and use this model to examine the effects
of uncertainty on the optimal rate of investment. The framework for this
analysis is a stochastic version of the g theory of investment. Following a
line of argument presented by Yeynes [19361, Tobin [1969] defined (average) g
as the ratio of the market valuve of a firm to the replacement cost of its cap-
ital and then argued that investment is an increasing function of q. A more
rigorous foundation for the g theory of investment is based on the adjustment
cost literature developed by Fisner and Strotz [19621, Lucas [19671, Gould
(1968}, and Treadway [1959], Tt has been shown by Massa [1977]1, Abel [1979,
19821 and Yoshikawa [1980] that in the presence of convex adjustment costs,
investment 1is an increasing function of the shadow price of installed capital
(marginal q). lMore recently, Yayashi [1992] has shown that wunder certain
linear homogeneity and price—taking asswiptions, the shadow price of installed
capital is equal to the market valwe of the fim divided by the replacement
cost of its capital; that is, marginal q equals average g. In situations in
which marginal g and aversge ¢ are not equal, it is marginal g which is

relevant for investment.

The literature cited above has developed the q theory in a deterministic

framevork with adjustmernt costs. “tochastic models of investment in the



rreserce of adjustment costs have beern developed by Lucas and Trescott 719717,
Tartman {1972}, Pindyck [19821, and Abel 110683], Using a discrete-time sto-—
chastic model, Fartman showed that for a competitive fim with constant
returns to scale, increased vncertainty about future output prices or factor
prices leads to increased current investment. 'ore recently, Pindyck [1082]
and Abel T71983) have analyzed investment behavior in continuons time models in
which the price of output evolves according to an Ito process, ard Abel demon—
strated that Yartman's results carry over to continuvous time. This paper
extends Abel [1933] by incorrorating several variable factors of oproduction,
with stochastic prices, and analyzes the effects of increased uncertainty. By
extending the model to inclunde several stochastic prices, we are led to exam—
ine different types of increases in uncertainty. A payoff to this extension
is that we find that different types of (meanpreserving) increases in uncer~

tainty can have qualitatively different effects on the rate of investment,

In analyzing the effects of increased uncertainty about prices, we exam—
ine two types of increase in uncertainty: (1) a mean—preserving spread, and
(2) an increase in scale, Althous: asr increase in scale is a mean—preserving
spread for a scalar random variable, we show that for a multivariate random
variable, an increase in scale is not, in general, a mean—preserving spread.
More importantly, we show that these two types of increase in uncertainty
about prices have different effects on investment. As shown by Hartman
[1972), a mear—preserving spread tends to increase investment; however, an
increase in the scale of the random component of a single rnrice will raise,
lower, or not affect the rate of investment depending on whether the covari-
ance of this price with a weighted average of all prices is positive, nega—

tive, or zero.



Section 2 develops the model of the competitive firm and discusses the
stochastic processes for the output price and the factor prices. The strategy
of the paper is to restrict the specification of technology enough (constant
elasticity) so that we can obtain explicit solutions for investment, marginal
q and the market value of the fim. Ve present these solutions and provide an
economic interpretation for them in Section 3. In Section 4 we define and
analyze the effects of two altermative types of increase in uncertainty. The

effects of increased uncertainty on the required rate of return are discussed

in Section 5. Concluding remarks are presented in Section 6.

2. The Model of the Firm

Consider a competitive fimm with a neoclassical production function

F( X ., Kt) where X, i=1,...,n, is the amomt of the ith variable

Xlt"" nt it’

factoer used at time t and Kt is the amomnt of capital used at time t. Let D,

denote the price of output at time t and let Wi i=1,...,n, denote the

price of the ith variable factor at time t, The firm can accumulate capital
is a

by undertaking gross investment It at a cost Wn+1,tC(It)’ where Wn+1,t

mul tipl icative shock to the adjustment cost function, Following the adjust—

ment cost literature, we assume that C(It) is an increasing convex function

(C* > 0, ¢ > 0) and that C(0) =0, The accumul ation of capital is given by

(1) ar, = (It - 5Kt)dt

i
t

where & is the constant proportional rate of depreciation.

The price of output, the prices of the variable factors, and the nulti-
plicative adjustment cost shock are generated by Ito processes., To economize

on notation, we let LA denote the price of output P, and specify the evolr—
L4



tion of Wi i=6,.0.,n+1 as

(2) 1t=q.dt+6.d7_. i=0’1l2loon; n+1
1 1 1

where dZi are Wierer processes with mear zero and unit variance such that

R 7 '7/ = o
(3) “(d'id’j) o,.qdt

The correlation cocefficients pii satisfy -1 ¢ pij {1 and Py = 1.

There are several properties of these stochastic processes for P which

v,y

2 1
should be noted.” The expected growth rate of LI E;Et(w,

) is equal to .
it

. . . 2 2 . .
and the instantaneous variance of wit is witci' The instantaneous covariance

of w. and w., is pija.c.w. w . Finally, note that conditional on L the

it jt it §tt t’

future value of Wi, SaY W, S >t, is 1log-normally distributed with mean

ni(s—t) ci(s-t) Zni(s—t)
w..e and variance [e -1]e v ." Thus,
it 1t
ni(s~t)
F =
(4) ,t(wis) Ve s >t

where Et( ) denotes the expectation conditional on information at time t.

Observe in (4) that the conditional expected value of . S 2 t, is indepen

dent of the variance of the process generating LT

The value of a risk-neutrzl firm at time t is the maximized expected
present valuve of net cash flow from time t onward., Assuming that the discount
rate r is constant, the value of the firmm can be expressed as a time-invariant

function of wi i=0,.e., ntl, and the capital stock Kt,

t,

14 =
,t’ . . . » wn"‘l‘t, \t)

n

(=]
it ¥ W, s e e E ,K - s b -
Bax Ty {[WOSF(Xls’ ’ xns s) i=1w1sgls Yn+l,

(5 V(wh

scus)]e"(s‘”ds



Lh

where the maximization in (5) is over

X ¥ and is
n

reguires that

7 )

at’ 't

3 = # 3 % h:d
6) v At max Ft{[wﬁtr(xlt"" pi

Fguation (6) has a simple economic interpre

ets on the right hand side of {(6) is the

dt of time and the term AV is the chanpe in

subject to the constraints in (1) and (2),

the decision wvariables I

—_— Ty

“ntl,

w

ot

X c( 7
i it tn\It)]dt + dvi}

tation. The term in sguare
net cash flow over a small

the value of the firm.

and

Hptimal ity

brack-
interval

FEguation

(6) simply states that the expected rate of return on the fim {(net cash flow
plus capital gain divided by the valve of the fimm) wmust he equal to the
discount rate r.
To calculate AV we use Tto's Lemma to obtain
n+tl n+l ntl 2
— oV — — iV
7 o= 3 gy s ar 13 3 ol —(dw, ) (aw, )
. § Tis Lo . .
i=0 Vit t i=0 j=0 “"it"Vjt J
n+1 2 2
A 1 a3~V 2
+ dw (av + = ar
2w, e (W) AT+ S gr (4T
1= it t t
The expected value of dV is easily caleculated using (1) and (2) and the fact
that © _(d7,) =0 = dt” = F _(dt)(d7.) to obtain
t i t i
(8) th(d’!) =
n-:l v 2y 1ni1‘nf_1 22y
{ X 5 Tw, . v T (It - Eﬁt) T 2 PR, LR t}dt
. i1 5 2 A A7 i i
i=0n it t i=0  j=N t ot
o
. Ay gy ATy
Substituting (8) inte {4) and defining ¥V, = , V.o === and V, = s
i Ay g A ij fw. Bw,
it t . it 3t



we cktain

n
(@) rVv = max {w, F(X . o . b4 i - Xw, % - eI
Ty v ot 1y *me TP T 2 i T Ve, S0
Tt Tt Tnt =t
nt+1 1ﬂ+1 ntl
* I Vomw, v (I-87)V, + 55 I Voo 00w w )
1:(} - d]‘_:O j=u J ! J ]

The nonl inear partial differential egmation in (9) is the TNellman eguation,
Tn general, the Bellman equation cannot be solved explicitlv. The strategy in
this paper is to restrict the specification of technology enough to obtain a

closed form solution to the Pellman egunation.

2.1 Constant Flasticity Technology

In order to make the Bellman equation easily solvable we assume that the
production function is Cobb-Douglas and that the adjustment cost function

C(It) has a constant elasticity. Specifically

a, o o
1,72 n..9
X 7) = X, 7} e ) 7
(10) F(‘l’ o s s 3 Xn, X) Yl XZ Xn ¥
n
(10a) where @, > 0 i=1,...,n and =1~ Xa, >0
i=1 1
and
(11) c(1,) =1 B> 1
t’ T Tt rF :

Given this specification of technology we can now maximize the right hand

X

side of (2) with respect to ylt' cee s XL

Since Xi i=1,..., n, affect

t,
only current ouwtput and current variab'- cost, they are chosen to =nizximize

current cash flow. It is straightforward to show that with the Cobb~Douglas



production function in (10),

(12)

4

0t
v
Xi t’ 3 . ® ,1\nt
(12a) where
The optimal rate of investment
respect to If

T

C'(It) = BIE—I, the optimal rate of investment satisfies w

which it follows that

~

-,
n n .7;1
)4 ¥y - Yw., ¥, = ji¢
R A FTL T ) L O FUA
i=1 i=0 -
n a L
y =9l 01 a."}q
=1 !
is found by differentiating (9) with

and setting the derivative equal to zero.

Using the fact that

p-1

BT,

- 7
1t Vg from

1
-1
(13) It EVK’(wn+1,tﬁ)}
and
- T ¥ = (A=1)v
(14) Wn+1,tC(It) + *tJY (8 1)wn+1,tC(It)
Substituting (12) and (14) into (9), letting gtFV denote the marginal revenue
r’Bt
product of capital, observing that C(It) = If, and using (13), we obtain

= 8- C - 8K
(15) v ptF$th PO ST - Yy
nt+l 1n.+1 n+tl
+ X V.oow, +53% XV..p..c.0,w,.w,
=0 11 1t * =0 =0 13713 13 1t 3t
-a,
2
(15a) where r. Y, =+vy1lw,,
t . it
t i=0
g
. f-1
= IV MHw A :
(15b) C(It) ,KR/(V +1’tﬁ)]

The solution to

the nonl inear partial

differential eguation in (15) is derived



in 2Appendix A and is discussed in the next section.

3. Investment, ¢, and the Valnation of the Firm

In this section we present and analyze explicit solutions for the valne
of the firm, marginal q and the optiral rate of investment., As shown in the
Appendixz, the value of the firm can be written as

‘/7 v e s e 2 :-: = T(: [ Tl -
(lea) (wﬂt’ Yol t ¥t) ulptFKt et uz(ﬁ l)wn+1,tC(It)

or (equivalently)

6b) V(s Ty Hpy mt may /9 9
v Y, == Y r } - —_— |2 0ne
Qs otr v v s Woug e K) =gy .{; it Ko ¥ (8-1) [ 5 }I v, ]
1= j=C
where ¢ ., = ¢/p
where
n e, n n ¢ o
_ s A, 12 1< 4 i -1
(Léc) ty = [r+§+.l 9 (ﬂi EUi) 2.l 3 7 7 pij i J]
i=0 i=0 j=0
nt+l fa n+l nt+l fla fla.
_ - i 12, 1< % i | -
aedl wy = e 2 Gayetm 27 T2 2 2 Hee! fpe? sty

Fauations (162) and (16b) are equivalent to each other; equations (16c) and
{(16d) give the valves of the constants ny and s e Fgnation (16b) expresses
the valve of the fim in terms of the state variables Vg » e e Vil t and
Kt. Fauation {162) expresses the value of the fim in terms of more easily

interpretable economic variables, Fxamination of the equations in (16) 1leads



to several results,

“esult 1: The valve of the fism at time t is a linezrly homogereouns function

of wf‘,t’ WI, s oeeey Woag e

To derive this result observe that the sum of the exponents of wjt in the

no -a,
first term in (16b) is X -GJ and the sum of the exponents of th in the
3 =0}
ntl —q,
. . A < i ‘s
second term in (16b) is ——— X . Pecaliing that a, = -1, a = ¢/8 and
-1 T, ¢ 0 n+1
n
=1~ X ., it is clear that each of the sums of cocfficients is egual to
j=1

one. Therefore, we obtain TPesult 1.

5 X . . . .
Pesult Z: The valne of the firm at time t is a linear function of Kt’

The slope of the value function with respect to ¥

£ i.e., V., is equal to
n -a /9
p1ptFY = gy i1 Vi , which, as we will show, is equal to the expected
St =0

nresent value of the marginal revenue products of capital. Since the fim is
a price~taker and the production function is linearly homogenecons, the margi-
nal revenune product of capital is independent of the level of the capital
stock. Ferce, the expected present velue of marginal revenue products is

independent of ¥ and the slope of the value function is independent of Et.

(9
In order to show that V_, is equal to the expected present value of the

marginal revemne products of capital, we first present the folloving lerma

which permits easv calculation of the expected present value of the marginal

ntl o,

= i
Lerma 1 Suppose 7 = G{w, , o« « . 4 w_, Yy = ¥l w. |, wkere ¢, are known
_—— = : t Gt ntl,t i, t i



constants and w, , evolve according to (2) and (3). Then the present
L

I
B ]

value of ﬂs s 2 t discounted at rate A is

w© [p
(17a) R fe e MsT, L
t ¢ S nil 19 1n+1 n+1
A+ X ci(wl - 5‘0’1) -5 X ¢,c.0,;.0.0,
4
{17b) = 1 1
+ =% 8) - = q
A dt[ t(d 1n t) 5 var(d In 't)]

Proof. See Appendix B.

If we let the discomt rate A be r+85 and let Gt be the marginal revenue
n -a,/9

product of capital at time t, ¥y fixvitl , so that c, = —ai/q, i=9, . . . ,n
L =0
and C,41 = 0, then it follows immediately from (16c) and Lemma 1 that ”1ptFY
i K,

is the expected present value of marginal revenue products accruing to capital
from time t onward. The discomt factor A reflects both the rate of interest

r as well as physical depreciation at rate 5. Thus HlptFF is the expected
t

present value of marginal revenue products accruing to the undepreciated por-

tion of a unit of capital which is in place at time t.

It is conveniernt to define G, 2s the marginal valvation of capital

divided by w (the shock to the adjustment cost function). Therefore,

ntl,t

from (13) we obtain

ﬁj‘“‘ i
(18a) Ty =07 Tay
v }s 1 = v -
(18b) vhere a = Vo IWoig e



Inspection of (18) leads to

Result 3: The optimal rate of investment is an increasing function of a, with
elasticity E%T where # is the (constant) elasticity of C(I) with respect

to I. Al so, 9, and It are homogeneous of degree Zero in

The relation between the valuation of the firm and the rate of investment

can be interpreted with the use of Figure 1.

Wn,‘ﬂ"ci(lt)

el o anaae s e v ey o)

¢ 1

Figure 1

The optimal rate of investment is chossn to equate the marginal valuation of
q B

capital, V, , with the marginal adjustment cost w £'(I.), as shown in Fig-
Kt ntl,t t

ure 1. Thus the optimal rate of investment is related to the slope (with
respect to Kt) of the valuwation of the firm. The constant term in the valua—
tion equation is related to the shaded area in Wigure 1., This shaded area 1is

C(7 Y, which is the expected present value of rentals
&

T -3y
equal to ”tJHt wn+1,t

accruing to infra-marginal units of investment at date t; it is the amount by

which the valuation of current investment, EtV¥ » exceeds the cost of current
Tt

investment Yo tC(It). According to (14} this present valuwe of infra—



merginal rents is equal to (5—1)wr+1 tC(It). Therefore, the constant term in
Y I3
the valvation equation (16a) is equal to the area of the shaded region in Fig-
, .. a Pt .
ure 1 rultipl ied by ty» ince (7 )wn+1,tC(It) is equal to
11,y ol —a /9 n1

(B—l)[—E“ 17 wj SR T , it follows from (16d) and Lemma 1 that the constant
=0 -

term in the valuvation eguation is egual to the expected present value of

inf ra-marginal rents to current and future investment (To apply Lemma 1, 1let

~-fe,
i .
A=r1and ¢, = ThTyg for i=0,1, ..., ntl).
To summarize, the valve of the firmm at time t is a 1inear function of Kt.
The 1linear term in Kt represents the expected present value of marginal reve-
nue products accruing to capital currently in place at time t. The constant
term represents the expected present value of rents to infra—marginal units of

current and future investment.

4, e Effects of Increasing Uncertainty

In this section we examine the effects of increased uncertainty on the
optimal rate of investment and on the market value of the fimm. In a

discrete—time model, Hartman [1972] has shown that if w i=0,..., n¥+l,

it’
undergoes a mean preserving spread, then there is an increase in the rate of

investment. In a continuvous time model with a single variable factor of pro

duction, Abel [1983] has shown that Hartman®s result continues to hold.,

In this section we extend the results of Abel {19831 to a model with
several ({(n+2) random variables, The extension is non-trivial as explained
below., We consider two types of increases in uncertainty: (1) a mean

preserving spread (MPS); and (2) an increase in the scale of one of the random



variables (¥5). In the case of a single random variable, an increase in scale
is a mear preserving spread, However, with several random variables, an
increase in the scale of ome variable is a mean preserving spread if and only
if that variable is wncorrelated with all other random variahles; if the vari-
able whose scale is increased has a nonzerc covariance with any other random

variable, then an increase in scale is not a mear preserving spread.

The effects of an MP? increase in uncertainty differ from the effects of
an IS increase in uncertainty. Ve will show that, consistent with Fartman's
findings, an »PS increase in uncer tainty will increase investment. However,

the effects on investment of an IS increase in the uncertainty associated with

n a,
Vit depends on the covariance of In i with X ?%(ln (wi/wj))« De pending

on whether this covariance is positive, negative, or zero, an IS increase in

uncertainty will increase, decrease or leave unchanged the rate of investment.

Ye will examine the effects on investment of increasing uncer tainty hol d-

ing constant the current values of Wige fiince investment is an increasing
»
function of q,, we can focus on the effects of vncertainty on q,- For given
valves of LT i=20,..., n, the effects on a, and investment can be deter—
»

mined simply by determining the effects on Byt the effects on q, and invest—

ment are in the same direction as the effects on g e

We will first compare optimal investment wmder certainty and under uncer-

tainty. ¥n all ases we will examine changes in wncertainty whkich leave

[+

?t(wig), s 2 t, mcharged., Observe from (4) that Ft(wis) is independent of

‘herefore, the certainty case relevant for comparison to

=

any uncertainty case is obtained simply by setting all 5y equal to zero., From

(1fc) it follows that u, (an? hence 6, and T,) is grester under uncertainty



nooeo, noonoa o«
(19) I 2T+ 3T 7—6‘]‘0 cg.6.>0

e can prove that (19) holds by using

m
Lemma 2. Suppose % >0 for i=1,2,..., m and that by X, = -1. Define
i=0
m 5 m m
S(x,s « « o« »x ) = 2 x,06,. + X X x.%,p,,6.6, where p,. = cov(dZ.,dZ.).
G m . i i P b SRR 5 B ij i J
i=0 i=0j=0
Then S(xo. .. X ) 20, with strict inequal ity unless
Var(c.d?, - .47 = 0 for all i,
i 070
Proof. See Appendix C.
%4
If we let x, =g and m = n, then (19) follows immediately from Lemma 2

(provided that there is not perfect correlation among all dZi). Hence, as
shown by Partman [1972] and Abel [1983] the optimal rate of investment is

higher under uncertainty than under certainty,

4.1 Mean Preserving Spread

We follow Fartman's extension to several random variables of the
Rothschild-Stigl itz [1970] definition of a mean preserving spread. Specifi-
cally, if x is a random vector and if u is a random vector (with the same
dimension as x) such that Z(ulx) = 0, then the distribution of the random vec-
tor y = x+u is a mean preserving spread of the distribution of =x. Observe
that the covariance matrix of y exceeds the covariance matrix of x by a nonne-

gative definite matrix {we allow some elements of 1u to be nonstochastic).



We now consider the effects of z mean preserving spread on the distribu-

tion of the Wiener process dZi. In particular, we add an uncorrelated process

dw .,
to the Ito process for to obtain
it
it
(20). " = mdt 4o d7, 4 oo %aT i=0.,1,...,n+1
i, t -

vhere E_(dZ ) (dZ .*) =0 and E_(d7 #)(d7 ,*) = p. *dt. The expected srowth rate
t 1 J t 1 3 ij

dw ,
of w Lg (—if)
it dtTt'w

s is equal to ﬁi as before., However, the instantaneous

it

. . 2 2 2 . .

variance of w, is now w, (o”, + 6.%7) aund instantaneous covariance of W, and
1t it 1 i it

i . . ,.0.0. + p,, ¥g *g ¥}, s 1 f T 3 i his MK
Wig is now w1tw3t(p136163 913 5%, ) The effect of performing this MPS on
2oy 2 12 29 ey
by ra oi* by 3 E'Er “in.*ci*s.*, Tt fol~
i=0 i=0j=0 J !

b i

dZi is to reduce M;l by A* =

lows immediately from Lemma 2 that A* > ¢ and hence that a MPS jincreases in

uncertainty leads to am increase in and investment,

rl’ qt

4.2 Increase in Scale

1

Consider a scalar random variable 7 with mean Z. We will say that the
scalar random variable v represents an increase in scale for the random vari-

able 7, if y—E = (1+b)(Z-7) for some constant b > O. Thus from (2) an TS

dw

increase in uncertainty of corresponds to an increase in o but has no

Tit
effect on the distribution of dzit’ Thus, in a multivariate context, an IS
dw.t
. ; . : i
increase in the uncertainty of " has no effect on {é?it§ {47 ..) and hence
v L
1t J
) Ck?:ﬂ‘l .
does not affect the correlation wutriz of (= s e e e ,Tf““i“? which
1Lt
has p, as the (i+t1,3i+1) element, he effect on the covariance matriz of

(&

w ¢ 1s tomultiply row (i+1) and col (i+l) by some constant areater than 1.



This effect on the covariance matrix is tc be contrasted {(see Lemma 3 below)
with the effect of a MP5 increase in uncertainty which adds a positive semi-

.. . R . dw
definite matrix to the covariance matrix of o

7

We examine the effects of an IS increase in uncertainty by differentiat-
ing Hy with respect to o hol ding constant all pij and Gj’ j#i. Differentiat—

ing (16¢) with respect to o, we obtain

dn a. n g,
(21) el e T A T - PP
9o . 1 ¢ci i j=0q 11717
n a,
Pecalling that 2 7f‘= -1, equation (21) may be rewritten as
j=0
an 5@ D fi
(22) Foa ula—’(.l 7 (pijcioj - 5.))
j=0
Mow observe that Cov(ln(wj/wi), in wi) = P00 T oi so that (22) can be
expressed as
du e uz n a
(23) —1_ .41 Covl T =% In(w./w.), 1nw.]
9o, 9o . . q j i i
i i j=0
au
From eguation (23), Fy is positive, negative, or zero depending on whether
i

n o,
the covariance of X jf'ln(wj/wi) and 1n w, is positive, negative, or zero.

j=0

Thus an IS increase in uncertainty will increase, decrease or have no effect

on the optimal rate of investment depending on whether
n a,
Covi X Ef ln(wj/wi), in wi] is positive, negative or zero. Observe from (21)
j=0
I a a

that in the special case in which Pi; = e, i+ j, e = uloiak(1+al) > 0 so
- i

that an YIS increase on uncertainty leads to an increase in the rate of invest-

ment.



At first glance it may azppear inconsistent that the effect on investment
of ar I'PS  increcase im uncertainty is unambiguously positive, whereas the
effect on invectment of an TS increase in wncertainty can be opositive, ne ga—
tive, or zero. These two findings are reconciled by the fact that, in ge n—

eral, an ¥S increase in uncertainty is not an [!PS increase in uncertainty.

Cnly if dZi is uncorrelated with all d?j, j# i, is it the case that an IS

dw |

increase in uncertainty of is an PS increase in uncertainty.

Vit

To show that an IS increase in uncertainty of dZi is not, in general, a

MPS, we will use the following lemma:

Lemma 3. Let kl’ o« o e .kﬂ be the eigenvalmnes of

hti

r cen ]
B T,
, 0+-0
A=, o
a Q-0
L™ :
2 s
where a, > 0 andm > 2, Then Ayhy = ~.§;a; <0, Myt Ay = 2y > 0 and, if

Proof. See Appendiz D,

Using the fact that all eigenvalnes of a syrmetric nonnegative definite matrix

are non-negative we obtain the following

Corollary. The matrix A in Lemma 2 is



Using the corollary above we can now prove the following

Proposition. An T8 increase in uwncertainty of d?i is not an I'P%  increase in

_—— e s

uncer tainty unless d?i has zero correlation with all de. i# i,

Proof. Vithout loss of generality, we examine an IS increase in uncertainty
cw ¢
of —*

which 1increases the covariance matrix from = = (p..c.5.) to
LI ij i3
5,

Y + D where

} )
2 2 .
b oy BPpiop%y 0t f PPppop%,
bp016061 0 coe 0
o ) ) )
Q « e
proncocn 0

From the Corollary to Lemma 3, D is nonnegative definite if and only if
pOi =0 fori=1,...,n, %Since an ¥PS increase in uncertainty causes the
covariance matrix to increase by a nonnegative definite matrixz, the IS
increase in uncertainty cannot be a MPS if Py i # 0 for any i > 1. On the
cther hand, if Pai = ¢, i=1,...,n, then the IS jincrease in uncertainty
is equivalent to the following MPS: In (20) 1let oo* = bo, and let

ci* =0, 1i=1,..., n. g.e.d.

In this section we have examined two different <concepts of increasing
uncertainty in a multivariate context: an PSS increase in uncertainty and an
IS increase in uncertainty., WYe have shown that an PS5 increase in uncertainty

unambiguovsly raises the rate of investment whereas an IS8 increase in
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uncertainty will raise, lower or leave unchanged the rate of investment

depending on whether a certain covariance is positive, negative, or zero.

As a final comment on the effects of uncertainty, it should be emphasized
that it is uncertainty of relative prices which has an effect on investment.
If all W., are perfectly (positively) correlated and have the same propor—
tional variance, then all relative prices wit/wjt are non-stochastic. In this

case, the rate of investment under uncertainty is the same as under cer tainty.

5. The Required Rate of Return6

Up to this point our analysis of the fim's behavior has been conducted
under the assumption of risk-neutrality. 1In particular, we have assumed that
the required rate of return on the fim's equity, r, remains unchanged when
the uncertainty of output price and factor prices is changed. Tt should be
noted that risk-neutrality per se is not required for the invariance of r with
respect to changes in uncertainty. Iore generally, in the traditional capital
asset pricing model, the required rate of return on a fim is independent of
the variance of its own prices (output prices and factor prices) if the rate
of return on the fim is uncorrelated with the return on the market portfol io,
In the context of more recent asset pricing models of Lucas (197%) and Rreeden
(1979), the required rate of return on a fimm will be independent of the vari-
ances of prices if the rate of return on the fim is uncorrelated with the
marginal utility of consumption. Thus, risk-neutrality per se 1is not

required for the results in this paper to hold,

If we drop the assumption that the returc on the fimm is wuncorrelated

with the market portfol io {or with the marginal utility of consmmption), then



- 20 -

the required rate of return on the firm is an increasing function of the
covariance of the fim's return with the return on the market portfol io, If
the increase in price uncertainty causes this covariance to incrcase, then the
required rate of returr alsc increases which tends to decrease both 9 and
investment, Alternatively, if the increase in price uncertainty 1leads to a
decrease in the relevant <covariance, then the required rate of return

decreases so that qt and investment each tend to increase.

It is clear that to reach any conclusions about the effect of uncertainty
on the required rate of return we would have to impose some structure on the
covariance of the rate of return on the firmm and the rate of return on the
market portfolio (or the marginal utility of consumption). The results in
earlier sections can be used to calculate the random component of the rate of
return on the firm., However, without developing a complete general equil i-
brium dynamic stochastic model, we have tremendous latitude in specifying a
stochastic process for the rate of return on the market portfol io and thus
could "derive” results which show the required rate of return increasing or

decreasing in response to an increase in uncertainty,

The aralysis of this paper is explicitly partial egquil ibrium in nature,
We have argued above that to reach any conclusions about the effect of
increased uncertainty on the required rate of return (without, in effect,
being free to assume the conclusion by strategically specifying the stochastic
process for the rate of return on the market portfol io) would require a gen
eral equil ibriwn model. Of course, in a general equil ibrium framework, the
apnalysis of wncertainty should focus not on the effects of price uncertainty
but rather on the effects of uncertainty azbout preferences and technology.

Svch analysis is beyond the scope of this paper.
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6. foncluding Temarks

Ve have analvzed the optimzl production and investment hehavior of a com—
petitive fim facing random prices for outrut and factors of production, Ry
restricting the production function to be Cobb—ounglas and the adjustment
technoclogy to have constant elasticity, we were able to obtain closed—form
solutions for investment, marginal g and the market value of the fim. In
particular, the market valve of the fim is a linear function of the fim's
capital stock; investment is an increasing function of the siope of this value

function.

Using the closed-form solution for the optimal rate of investment, we

examined the effects on investment of two alternative types of increase in

uncertainty about the random vector of oprices. The effect of a mean
preserving spread is to increase investment, However, the effect of an

increase in the scale of the random component of a single price is to
increase, decrease, or leave unchanged the rate of investment depending on
whether the covariance of this price with a (geometric) weighted average of

all prices is positive, negative, or zero.

Marvard Tniversity
and

Mational Turean of Fconomic Pesearch



EO™

3.

then® Trnst Terndt, Ttarnlev Fischer, “Tohert "sTonald, Teter Terrill and

Aiscussiors on cazrlier Arafts of this wnaner,

T also thark the participants in workshons at Tolvmbia "niversity, Tar—

ous refereces for their helpfnl

vard Mniversity and 7, 7.7, and two
comrients, Tesearch support fron the Tenmartment of Tnerav and the

Mational fcience Foundaticn is gratefunlly acknowledped,

For good discussions of stochastic calenlus set in an cconeomic context,

the reader is referred to Trock, Thow 19911, Figcher [16751, and Yerton

The solution to the stochastic differential equation in (2) is

. 12 a
(_*) “lis = wit exﬁr(ﬂl - ‘iﬁl)(s t) + U. _r‘“‘?l'!

(fee, for example, Fischer [1975], egunation (13A)). The solution may be

rewritten as

s
“
* % v - \ - - 7
(**) Inw, = 1n Wi + (g 2 1)(s t) + vy i @7,

from which it follows that In Vi is normally distributed with mean

Inw,, + (n, - %ﬁ )(s—t) and variance o (s—t). lsing the facts that if

. . . 2
In x is normally distributed with mean n and variance o, then

Px) = explp + %Uz} and Var(x) (eyn(v Y =11 - Texp(2p + 62)], we find
2
ﬂi(s—t) , ?ni(s—t) c;(s—t)
that Ft(wis) = w..e and Vart(wis) = v, .° e - 11.
_ n
fhoosing ¥,, . . . "Y‘.-T‘{ to maxiniz @‘“’."’3, e e . ,'fﬁ, )y - .z‘!“?i,‘fi where
1:

e
—t
]
N
ok
™
R

() is the fobh—"ouslas nroduction function wvields



(4.1) = pF i=1,...,n

G,
1

which reflects the fact that e, is the (constant) share of variable fac—

tor i. Using (4.1) for Xi and .‘fij yields

w.X,

(4.2) X, = —a-d
J a

ELE

i

Substituting (4.2) into the production function for j=1,...,n yields

n
X, .i 3 n a.
(4.3) F= 20377 1 (o, w167
i =t 3
n
Combining (4.1) and (4.3) and recalling that 9 =1 - X ¢, yields
=1 -
w_X, n a.
4.4) 247 < ot 11 o wp ST
¢4 j=1 3
so that
n a,
@.5) WX, = a;p YT (o wy 1%
i%i i . i
i=1
n .
From (4.1) the maximized value of pF - :wi}\’i is equal to 9pF which
i=1
using (4.1) and (4.5) is equal to
n a,
“.6) o T (o vy 1Y%
Pria B

Equation (4.6) is equivalent to equation (12) in the text.

5. Mussa [1974] showed that for a linearly homogereous production function,

the value of the firm under certaintvy is 1linear in .V,t.

6. I thank an anonymous referee for suggesting that I consider the effects of

uncertainty on the reguired rate of return,
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Ve solve the Rellman equation in (15

cients.

A~ 1

vsing the moethod of wndeiesrmined

We hypothesize that the solution takes the form

coeffi-

IO & b - 23
(al) V(wﬂ, . e s ,wn+1,ﬁ) =V h"ﬂ’ . s e ,v,«'n)* + ¥ (WQ’ e e s .-wn+1
(1) n -, /9
(Ala) where \Y = “1PFV = 147 I w.
f &
n,y = p+l —qa /91—
2 MY 12 15 i -1
{Alb) V( ) - plz(-.‘%-_'i)w +1C(“ = gx,,(:%—l)(';l;')g . li w, I | !
o { L=0 ] 1
(x) 2,{k)
EAY 1
Letting V{k) denote 2y and V{T) denote Q_X___' we can differentiate (Ala)
i dw ] Bw. dw,
SN
and (Alb) to obtain
(1
(AZ) ‘J?r - ‘.!\ i)
-
(1) i (1)
w Y7 e YT
(a3) @V p Y
LA L,
(a4) vag%} =21 + ~i)V(1)
i'ii ¢ ¢
LA £
(85) v v D = Ay 4 ]
o d
-
(2) 3 i (2}
w Y =z X7
(26} Vit n-1 ¢
« o,
’) [ -} [ad :\
(A7) ’:;\!'"'(?;i) =T "31"{1 + T Tf' w(2)
(Ag) v ot ‘7(2) = («-——ﬂn "ﬁi iiVJT""”'} i # i
: 75 13 "1 g ¢ P
(1Y, {2) 0. {23 .
Pecognizing that ¥V, = Vi"” + ¥, and that 7. ”éi B Vi{ s we svhstitunte

(A2) - (AR) (15)

into

to ohtain



r -o o
(1, {2) -1,010., -1.,(7) s § 2 < i 172, (0
art ity bl o TR 3 oY ATARLE g —1r 2 Loty
T T S ,l(d”i+"¢ci)
i=0
n+l - o n n oo«
4 i1 2,0 1 - o« _i_3 (D
+ — -0 A AN -k = ; r
2Tty Y R I TR F LR A
i= 1:!!1:(\ h
1 ﬂt] fzil a0 7y (7)
(n9) +5 2 2 gy
a-1 1513
i=0 j=N . -
1), . .
Fanating the coefficients of V( ) on hoth sides of (A9) vields the wvalue of
(2)
v,y shown in (16¢) and equating the coefficients of V(”) on both sides of (A9)

A

vields the valve of Ity in (164).

4
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Arnendix D

Proof of Lerma 1

nt+1 n+1
Mserve that In € = 3 ¢, Inw, so that T (In0 ) = S c, FE{lnw,. ) and
8 i 1 is t s i it is
1=t 1=%7
nt+l nt+l
Var (In &) = % c.c, cov {Inw, , 1nw, ). Observe that (see footnote 3)
t t . . i t is is
i=0 i =0} 7
12
i) W, = 1n w + {7, - Y(s—-t nd co n o, 1my, = p, . . {s-
t(ln 18) 1n L (n, 2% (s—=t) an vt(ln 7ot nsz) plj 6163(3 t)
which vields
(BL) S lInf ) = 3 e flnw., + (n, — =v)M(s—t)]
t S e i it i 21
i=0
ntl nt+l
(B2) Var (in 2 ) = ¥ X c.c.0,.0.0.(s—t)
t S i=0 s=n 31310
0 j=f

Since In Y is {conditionally) normally distributed, so is 1n Gs' Therefore

- . 1
n(n = n IR n + =V a
(B3) ,t( S) eth,t(ln S) 5 .art(ln 5)]

Substituting (P1) and (M2) into (T2) vields

- n+1 1 ntl nt+1l
T (6 ) =0 Y (n, - =n" =3 I 1 (st
(B4) ”t(cs) ¢ exp{;' c (n, Eﬁi) + v . lc.piia.wi,(s t)}
i=0 i= i=0 B -
P L(s=t) P A(s~t)
Pecogniz ing that Wt f ﬂse MSTY s = f Ft(”s)e ALs ds, eguation (74) immedi-
t t

ately implies (17a)., The egquivalence of (17a) and (17h) follows from noting

. 4 n+l n+1 1
hat —=F (g g == 3 ¢, dlnw., = % e.{n - =) and that
the a4t ¢ Ir t) dt 't > j 1x Tit .Eﬁ 1(71 174
i= i=N
1 1 n+tl n+l
—Var (1 1n 7 = =Var [ X Y oc.e (2 1lnvw, )4 1n w. )] =
At t 1 g) At t'iié i=n i7j it ?}t,

ntl ptld

3

oL

1%
v
]
o]
A
A

i=N j=n
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Proof of Lerma 2

Tt will e converient to define x = (x!, e e e sxX Y', i=(1,,..,1)" and

m

3 = : 4 3% h m matri v 1ith i, 1 1em
lo (pﬂlgﬂcl’ .« e ,ﬂﬂmaocm) . et 2 he the mxm matrix with (i, j) element

equal to cov(cid7i, gidij) and let diag(2) be the mxl vector with ith element

o

)
equal to 5;. Observe that 5( ) may be written as

(c1) S{xqy, x) = "psi + x'diag: + xisg +2x . x'> + x'2x
‘ ) 00 ’ 0T TN
m
The constraint X x; = -1 can be written as g T -{1 + x'1). Substituting
i=0

this expression for x, inteo (£1) allows us to express the value of S(xn, x)

0

subject to this constraint as a function 5%(x)

(c2) S*(x) = (1+x'i)(x'i)cg - 2(1+x'i)55'x + x'diag(x) + x'3x

Combining the linear terms in x together and the guadratic terms together we

obtain
2 2 - -
* N < _ n . ) T PN
(c3) S*(x) = x'[oji Hfb + diag(2)] + x loyii 1§b 2,i"+2]x
Let 0 denote the mxm covariance matrix with (i,j) element egual to

. - A AR z
cov(cid?i cOd 0* cjd ; God.O). Therefore

(c4) P =3 - iIn' - Eni' + o-gii'

Substituting (£4) into (£3) yields

(C5) S*(x) = x'diag(n) + x'"%x
If var(cidzi - codzﬁ =0 for i =1,...,m then " =0 and S*(x) =0 for all
x 20, If var(cid?i - GOdZO) # 0 for any i, then 7 has at least one strictly

positive element on its diagonal, Tn this case, if x > 0 then 8#%*(x) > 0

(since ? is nonnegative definite).



Appendix 1

[alnl fa T aj

a, - ¢
Define A, =| : ..
J . .

a, ¢ -

i 2

and observe that the eigenvalues of the mxm matrix A satisfy det A = 0, Al so
o 0,

observe that det A1 = al—x and det Az = =} det A 2 In general,

1 7 Ay expanding

around the last row of Aj’ we have

a a a,

2 3 i

. - 0 ces g

(D1) t A, = - 1yt . .
de y A det Aj’l + (-1) ajdet . : s, i=2,3,...

0 v

Expanding the second determinant on the right hand side of (M1) around its

l1ast column we obtain

2 j=2
D2 det A, = = det A, - a(=n)" = 2,3, 0.,
(p2) i -1 J ’
Equation (D2) is a first—order difference equation with initial condition
"

det A2 = lz—alk—ag. The solution to the difference equation is

dget A, = (=037 e S
(D3) et A, = (=h -2, i_qdi:

Therefore, the eigenvalues of A are the m roots of

(D4) (-7 e - X2l =0



Pw inspection, m2 roots are equal to zero. The remaining two roots satisfy

2 . :
a, = 6 implying that these two roots have a sum of 24 ard a pro—

3
|
o]
>
|
&‘VL}

i

duet of — 3 al.

g.e.d.





