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with respect to the relevant vector of expected asset returns, symmetry is

not a general property, and the available empirical evidence warrants
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of applicability.
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ASPECTS OF INVESTOR BEHAVIOR UNDER RISK

Benjamin M. Friedman and V. Vance Roley*

A greatly enhanced understanding of the nature of economic

uncertainty, and with it substantial insight into economic behavior in

circumstances under which uncertainty is central to necessary decisions, stand

as one of Kenneth Arrow's most significant contributions. His classic

lectures on zspects of the Theory of Risk-Bearing clarified key elements

of the theory of choice under uncertainty, formalized crucial aspects of

risk—averse behavior, and explored the implications of the relevant theory

for such important economic activities as resource allocation and insurance.

These lectures, together with many of Arrow's other papers on risk and

uncertainty, have provided a foundation that is now standard in monetary

and financial economics.

The object of this paper is to analyze several aspects of the asset

demands characterizing investors' portfolio behavior under risk. Section I

derives asset demand functions exhibiting wealth homogeneity and linearity in

expected asset returns — two convenient properties that are often simpiy assumed,

especially in the monetary economics literature. The main result here is

that, among the numerous familiar sets of specific assumptions sufficient

to derive mean—variance portfolio behavior from the more general theory

of expected utility maximization, the assumptions of constant relative risk

aversion and joint normally distributed asset return assessments are also

jointly sufficient to derive asset demands with these properties, as close

approximations, either in continuous time or in discrete time if the time

unit is small.
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Section II, however, provides empirical evidence that contradicts the

plausibility of these assumptions — and, for that matter, a variety of

others as well. In particular, a standard feature of asset demands, also

often simply assumed in applied research, is that the responses of these

demands to expected asset returns are symmetric. The evidence summarized

here, based on the observed portfolio behavior of both institutional

and individual investors in the United States, casts doubt on the hypothesis

of symmetry and therefore also casts doubt on the set of more fundamental

assumptions that imply symmetry in this sense.

Section III considers another aspect of investors' portfolio

behavior implied by a familiar group of utility functions. It is well known

that the quadratic utility function implies, a wealth satiation level, or

"bliss point." The analysis here shows that a number of other familiar

utility functions similarly exhibit wealth satiation when investors' behavior

is restricted only by the distribution of asset returns. This property

imposes still another important caveat in applications to the study of

investors' behavior based on such functions.

Section IV briefly summarizes the paper's principal conclusions.
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I. The Derivation of Linear Homogeneous Asset Demand Functions

The asset demand functions used for both analytical and empirical

research, especially in the monetary economics literature, are often assumed

to exhibit the two convenient properties of wealth homogeneity and linearity

in espected asset returns.' The convenience afforded by the tractability of

the linear form is apparent enough, and the wealth homogeneity property in

particular is often especially important in empirical applications to

aggregate data.2 Despite the frequent use of such return—linear and wealth—

homogeneous asset demand functions, however, there exists (to the authors'

knowledge) no readily available source setting forth sufficient conditions

for the derivation, from underlying principles of expected utility maximization,

of asset demands simultaneously exhibiting both of these properties.3

The purpose of this section is to show that, among the numerous

familiar sets of specific assumptions sufficient to derive mean—variance

portfolio behavior from more general expected utility maximization in

continuous time, the assumptions of (a) constant relative risk aversion

and (b) joint normally distributed asset return assessments are also jointly

sufficient to derive as approximations, asset demand functions with the two

desirable (and frequently simply assumed) properties of wealth homogeneity

and linearity in expected returns. Constant relative risk aversion and

joint normally distributed asset return assessments are also sufficient

to yield such asset demands as approximations in discrete time if the time

unit is small.4

Analysis in Continuous Time

To begin with expected utility maximization, the investor's o3'jective

as of time t, given initial wealth W, is
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max E[U(Wt+dtfl
(1)

a
t

subject to

a'i= 1, (2)
t

where E() is the expectation operator, U(W) is utility as a function of

wealth, and a is a vector expressing the portfolio allocations in
t

proportional form

a E-A (3)

t t

for vector A of asset holdings.
t

Assumption (a) noted alx)ve is that U(W) is any power (or logarithmic)

function such that the coefficient of relative risk aversion

U" (WT)

p — W
U'(W)

is constant.5 Assumption (b) is that the investor perceives asset returns

riTl i = 1,... ,n, to be generated as Wiener processes with respective means

re , standard deviations G. and correlations . , where the tilde sign
iT iT 1JT

indicates a random variable, and the time subscript generalizes the investor's

assessments to permit variation over time. Given the assumption of Weiner

processes for the asset yields, is in turn generated by

=
W a(l + rtdt +

where , is the unit normal random variable corresponding to each yield i..
1
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Expanding U(Wt) about W, for dt sufficiently small, and then taking

the expectation yields a representation of the maximand in the form

E[U(W÷t)] = • U(W) • E[wt - (6)

where the notation () indicates the k-th derivative of U().

Substituting from (5) and omitting terms of higher than second order in dt

yields

E[U(W)] = U(wt) + Ut(Wt).Wt.cLredt

(7)

+ -U"(w )Wa' cdtt ttt

where is a variance—covariance matrix consisting of elements c. EL
t itjtijt

Forming the Lagrangean for the maximization of (7) subject to (2),

differentiating with respect to c , and equating the derivative to zero
t

yields the first-order condition for the solution of (1) as

* e= B r + 'rr (8)

t __t t

where the asterisk indicates an optimum. If there is no risk—free asset

(because of price inflation, for example), B and have the form6
t t

= — (i1ci)1I) (9)

•11 = (i'Q1i)1Qt1i. (10)

t

Alternatively, in the presence of a risk—free asset is singular, so

that it is necessary to partition the system of demands. The resulting
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solution, in which and refer to the risky assets only, is

(8')

whore

(9')

,* 7
and the optimum portfolio share for the risk—free asset is just (1 — a '1).

t
It is apparent by inspection that the optimum portfolio allocations

in both (8) and (8') exhibit the two properties of wealth homogeneity

and linearity in expected returns. Moreover, since (or is a

variance—covariance matrix, the Jacobian Bt (or Bt) indicates symmetrical

asset substitutions associated with cross—yield effects.

Pnalysis in Discrete Time

In the discrete—time analog to the model developed above, the

investor's single-period objective as of time t, given initial wealth

wt, is

max E[U(W )Jt+l (11)
t

where

= +
(12)

and assessments of (i.e., asset returns between time t and time t+l) are

distributed as

N(re,
(13)
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Expanding U(W+i) about E(W+i) and then taking the expectation

yields a representation of the maximand in the form

E[U(Wi)] =
k=O

.

E(Wt+i)]
• (t1 -

E(Wt+l)]k}. (14)

It follows from the moment generating function of the normal distribution

that the term within brackets in (14) has value

—
E(Wtl)]k = (k/2k [var(Wt÷i)1"2 (15)

for k an even integer and

E[Wt+i
—

E(W+l)]k = 0 (16)

for k an odd integer. Hence (14) sinip1iies to

E[U(Wt÷i)] rn1 U(2m)[E(+lI [var(W+i)]m.
(17)

m=0 2 m!

Substituting from (12) and omitting terms of higher than second order yields

E[U(Wi)] = U[E(Wi)] + U"[E(w1)].w2.cz'ca. (18)

Forming the Lagrangean for the maximization of (18) subject to (2).

differentiating with respect to a , equating the derivative to zero, andt
again omitting terms of higher than second order yields the first-order

condition for the solution of (11) if there is no risk—free asset as

* ec =Br + (8)
t tt t

once again, where now



—A —

= { w1)] }[Q - (ç)-'Q''ç'] (19)

and ir is again as in (10). Mternatively, in the presence of a risk—freet
asset the resulting solution is again (for ct , Bt and re as defined above)t

a =Br (8')t t
where

—U' [E(w )1
B ={ (19')t

WtU"[E(Wt+1)J

and the optimum portfolio share for the risk—free asset is again just

(1-ct' 1). If the time unit is sufficiently small to render a good

approximation to E(Wt+i) for purposes of the underlying expansion, then the

scalar term within brackets in (19) and (19') reduces to the constant

coefficient of relative risk aversion, and the discrete—time model yields

the same linear homogeneous asset demand functions developed above.

Isomorphic Assuntions

Other combinations of assumptions, if they are isomorphic to

constant relative risk aversion and joint normally distributed asset

return assessments, also yield asset demand functions exhibiting both

wealth homogeneity and linearity in expected returns, either exactly or

as an approximation. For example, the negative exponential utility

function with coefficient of absolute risk aversion inversely dependent

on initial wealth yields results equivalent to those derived above .

Z1ternatively, the logarithmic utility function, in conjunction with the



assumption of joint lognormally distributed returns, yields asset demand

functions that are homogeneous in wealth and log—linear in ep:tcd

returns, in either continuous or discrete time; but in this case yet a

further (apparently reasonable) approximation is necessary, because a

linear combination of lognormally distributed returns is not itself

distributed lognormally.9
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10
II. Evidence on the Symmetry Hypothesis

Imposition of symmetry restrictions on coefficients describing

responses to expected asset returns is a frequent practice in the empirical

estimation of systems of asset demands. Whoily apart from the theoretical

considerations laid out in Section I, a typical motive for imposing

symmetry in such applied research is simply to reduce the number of

independent coefficients to be estimated. In large systems of asset demands,

the corresponding gain in degrees of freedom is substantial. As is true

in the standard consumer demand paradigm, however, the coefficient matrix

applicable to the vector of expected asset returns consists of a combination

of symmetric Slutsky substitution effects and (in general) asymmetric

Slutsky wealth effects.11

The analysis in Section I shows that in some specific cases the

relevant wealth terms do exhibit symmetry. The linear homogeneous asset

demands derived in Section I under constant relative risk aversion and

joint normal asset return distributions provide a clear example. Mare

generally, in terms of expected utility functions that reduce to exact

mean—variance preference orderings, the symmetry restriction per se has

corresponding behavioral implications. In particular, when such a mean—

variance expected utility function has wealth as its argument, symmetry

implies that investors exhibit constant absolute risk aversion.l2 When the

arguint is instead the portfolio rate of return, with wealth homogeneity

as in Section I, symmetry implies constant relative risk aversion if the

time unit is sufficiently small to render W a good approximation to E(W1).

In both cases the symmetry restriction implies that the Slutsky expected

wealth (or portfolio rate of return) effects are identically equal to zero,

leaving only a symmetric substitution matrix. By contrast, the symmetry
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property does not follow from (for example) the quadratic utility function,

a form frequently encountered in the applied literature.

The symmetry property is therefore an empirically testable restriction.

It does not necessarily hold for any reasonable but arbitrarily chosen form

of expected utility maximizing behavior. Hence evidence indicating whether

investors' behavior does or does not exhibit symmetry provides potentially

useful information.

Evidence from Institutional Investors

Evidence based on the demands for two maturity classes of U.S.

Treasury securities by institutional investors in the United States

suggests that these investors' portfolio behavior does not exhibit symmetric

responses to nvements of asset returns. Table 1 summarizes this evidence

for six major categories of institutional investors in the U.S. markets,

including life insurance companies, other insurance companies, mutual savings

banks, savings and loan associations, private pension funds, and state and

local government retirement funds. The equations summarized in the table

are estimated using quarterly Federal Reserve data (seasonally adjusted)

for 1960-75. The data disaggregate the total financial asset holdings of

each investor group into asset classes such as corporate bonds, U.S.

Treasury securities, equities, commercial paper, mortgages, and currency

and demand deposits. The data further disaggregate each group's holding of

U.S. Treasury securities into four weighted maturity classes. The evidence

in the table focuses on each of the six investor groups' demands for two

1istinct classes of Treasury securities: those with maturities ranging from

about 1 1/2 to 5 years (S), and those with maturities over 10 years (L).13

As is typical in empirical nxdels of financial asset demands, the

specific form of asset demand functions estimated here rest on the assumption
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that transactions costs preclude complete portfolio adjustment to desired

asset holdings within one calendar quarter. The specific form of

adjustment model used to describe this aspect of short-rim portfolio

behavior is the multivariate optimal marginal adjustment model

= O(A* - A ) + * • Aw (20)
t t t-]. t t

where A* is the vector of equilibrium asset holdings corresponding to
t

for cxi' defined as in (8), and 0 is a matrix of adjustment
t

coefficients with column sums identically equal to an arbitrary scalar

Substituting for A* and a* from (3) and (8) yields

= CBre.w + 0•w - + + B.AW . (21)t t t—l
— t t

For each of the six investor groups, only two asset demands are
15subjected to the symmetry test in the estimated equations. In the data

used here, however, investors' asset holdings are disaggregated into a

minimum of nine categories, and selected yields on these other assets

appear in the estimated demand equations. As a whole, therefore, the set

of parameters in the estimated demand equations is underidentified either

with or without the symmetry constraint. The subset of parameters relevant

to the symmetry test is identified, however. Specifically, the null

hypothesis corresponds to = and 0.. = 0 (i=S,L), for {..} = B.16

Moreover, because only this subset of the estimated parameters is identified,

the system of equations may be estimated without using a nonlinear estimation

technique.

The asset return series used in the symmetry test reported in Table 1

are the Federal Reserve yield series on "3—to—5—year" (r) and "long—term"
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(r) U.S. Treasury securities. Hence for this test simple observed yields

are taken as proxies for expected rates of return.17 The cross—equation

symmetry restriction involves the coefficients on the r'Aw and rAW

terms in (21). Coefficients on r•AW terms specified with these yields

along with other yields are then used to form the within—equation row—sum

constraints also implied by symmetry.

Table 1 shows the results of applying full-information instrumental

variables estimation to (21). Although the undersized sajrle problem

precludes such alternatives as full—information maximum likelihood or

three—stage least squares, a full—information technique is nevertheless

requircd to allow for contemporaneous error covariances in tests involving

the two separate asset demands by each investor category.18

The left-hand side of Table 1 reports summary statistics and

estimated .. coefficients for the 12 asset demand equations, (two for
IJ

each of the six investor categories). The estimated own—yield responses

exhibit theoretically correct positive values in nine of the 12 cases,

and the majority of these positive responses are statistically significant

at the .05 level.

The estimated coefficient matrix is inconsistent with symmetry,

however. The right—hand side of Table 1 reports the corresponding

constrained symmetric estimates. For five of the six investor categories,

20
the null hypothesis of symmetry can be rejected at the .05 level.

the sixth category (savings and loan associations), symmetry can be

rejected at the .10 level. As a whole, therefore, the results indicate

that the observed portfolio behavior of U.S. institutional investors does

not exhibit symmetry, and hence does not conform to the type of risk

aversion implied by symmetry.
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Evidence from Individual Investors

Evidence from the portfolio behavior of U.S. households also

casts doubt on the assumption of symmetric responses of asset demands to

expected asset returns, although less strongly so than in the case of

institutional investors. Table 2 presents suimnary results, based on analogous

quarterly data for 1960-80, for the estimation of the U.S. household

sector's aggregate demands for three broad classes of financial assets

that differ from one another according to the risks associated with

holding them: Short—term debt CS) includes all assets bearing real

returns that are risky, over a single year or calendar quarter, only

because of uncertainty about inflation. Long-term debt CL) is risky

because of uncertainty not only about inflation but also about changes

in asset prices directly reflecting changes in market interest rates.

Equity (E) is risky because of uncertainty about inflation and about

changes in stock prices.

The pre—tax nominal return associated with the short—term debt

category here is a weighted average of zero (for money), the Federal

Peserve average rate on time and saving deposits (for other deposits bearing

regulated yields), and the four—to—six month prime commercial paper rate

(for all other instruments maturing in one year or less), weighted in each

quarter according to the composition of the U.S. household sector's aggregate

portfolio. The pre-tax nominal return on long-term debt is the Moody's

Baa corporate bond yield plus the fitted value, from a simple univariate

autoregressive process, of annualized percentage capital gains or losses

approximated by applying the standard consol formula to changes in the Baa

yi3ld. For equity the pre-tax nominal return is the dividend-price

yield on the Standard and Poor's 500 index plus the fitted value, from an

analogous autoregressive process, of annualized percentage capital gains



TABLE 2

ESTIMATED HOUSEHOLD ASSET DEMAND RESPONSES

Unconstrained Estimates
Q

2

2\sset S 'L E R SE DW

S —.0192 .00283 .00575 .78 11.71 1.53
(—1.7) (1.3) (2.7)

L .00201 —.000231 —.00117 .16 10.41 1.49
(0.6) (—0.3) (—1.8)

E .0172 —.00260 —.00458 .25 3.43 1.81
(2.2) (—1.8) (—3.0)

Constrained Symmetric Estimates
Q

2

Asset S R SE DW

S —.0135 .78 11.74 1.52
(—2.5)

L .00266 —.000299 .16 10.42 1.48
(2.0) (—0.8)

E .0108 —.00237 —.00847 .18 3.58 1.73
(2.6) (—2.4) (—2.7)
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or losses on that index.22 For each asset, the return used for r0 in (8)

is the corresponding after—tax real return, calculated by applying the

household sector's average effective marginal tax rates in each year for

interest, dividends and capital gains to the respective components of the

pre—tax nominal returns, and then si.ibtracting the annualized percentage
23

change in the consumer price index.

Because there is substantial evidence that individual investors

do not fully rebalance their portfolios within a time span as short as one

quarter-year, it is again appropriate not to estimate (8) directly but to
embed it within some model of portfolio adjustment out of equilibrium.

The most familiar such model in the asset demand literature is the multivariate

partial adjustment form

1A ®(J*_) ) (22)
t t t-l

where A* is the vector of equilibrium asset holdings as before, and is

now a matrix of adjustment coefficients with columns satisfying "adding up"

constraints analogous to those applying to B. Substituting for A* from (3)

and (8) yields

= OBre.w + Oir'w - GA (23)
t t t —

t—l

ble 2 shows the results (B estimates and summary statistics only)

of applying nonlinear maximum likelihood estimation to (23), using data

for re as described above and Federal Reserve data on actual household

sector asset holdings for A (and hence W).24 These data are constructed

for each of the three assets by decrementing backward from the reported 1980

yearend value using the corresponding seasonally adjusted quarterly flows.25

In addition, for equities (the only one of the three assets for which the

asset stock data are at market value), quarterly valuation changes are
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included without seasonal adjustment. The data for W include the three

financial assets only, in part to avoid inadequacies in the available data

describing holdings of and returns on nonfinancial assets, and in part simply

to limit the scope of the analysis. The data for W also omit the

household sector's outstanding liabilities, since the great bulk of

26
household borrowing is tied to the ownership of nonfinancial assets.

Because each term in (23) has the dimension of nominal dollars, care

is necessary to avoid spurious correlations due to cosunon time trends.

For purposes of estimation, therefore, the data for A (and hence W) are

rendered in real per capita values, using the consumer price index and

the total u.s. population series. In addition, both AA and W. exclude the
t

current period's capital gains or losses (although the vector of lagged asset

stocks A reflects previous periods' gains and losses), so that the estimated
t-l

form focuses strictly on the household sector's aggregate net purchases or

sales of each asset associated with the sector's net saving. Defining the

asset flows in this way is equivalent to assuming that investors do not respond

within the quarter to that quarter's changes in their holdings due to

changing market valuations, but do respond to market valuations as of the

beginning of each quarter.

The upper panel of Table 2 reports summary statistics and estimated

values for each of the three asset demand equations, estimated in this

way with no further constraints.27 These .. estimates clearly bear little

apparent relation to any asset demand response matrix that makes sense in

theoretical terms, however, in that all three estimated on—diagonal "own"

responses are negative. More to the point here, despite the absence of

any contradiction in signs among the three pairs of off—diagonal responses,

the data are inconsistent with symmetry. The lower panel of the table
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reports analogous summary statistics arid estimated (3.. values for the same

three equations estimated by exploiting the nonlinear maximum likelihood

procedure to impose the set of three constraints that here comprise

symmetry. The value of the test statistic for these three restrictions

is x23) = 8.0, which warrants rejecting the restrictions at the .05 level.

Because the after—tax real returns on all three classes of financial

assets were serially correlated during the 1960-80 sample, tt unconditional

variation of the observed returns used for re in the estimation of these results

presumably overstates the uncertainty that investors actually associated with

their expectations of asset returns, over each coming calendar quarter,

throughout this period.28 An alternative (and presumarly superior) way of

conducting such an analysis, therefore, is to construct some representation of

investors' perceptions of these asset returns and risks that takes more careful

account of what information investors did or did not have at any particular time.

As of the beginning of each calendar quarter, investors presumably

know the stated interest rates on short—term debt instruments, the current

prices and the coupon rates on long—term debt instruments, the current

prices and (approximately) the dividends on equities, and the relevant tax

rates. The three uncertain elements that they must forecast in order to form

expectations for the coming quarter of the after—tax real returns on the

three broad classes of assets considered here are therefore inflation,

the capital gain or loss on long-term debt, and the capital gain or

loss on equity.

Table 3 presents an alternative set of results based on a procedure

that infers investors' risk perceptions by representing investors as

forming expectations of these three uncertain return elements, at each

point in time, by estimating a linear vector autoregression model giving



TABLE 3

HOUSEHOLD ASSET DEMAND RESPONSES ESTIMATED FROM FORECASTED RETURNS

Unconstrained Estimates

Asset R SE DW

S .00923 —.0000482 .00190 .79 11.49 1.66
(0.6) (—0.0) (1.1)

L —.00515 .0000231 —.000338 .19 10.24 1.61
(—0.9) (0.0) (—0.5)

E —.00408 .0000251 —.00157 .16 3.68 1.68

(—0.4) (0.0) (—1.4)

Constrained Symmetric Estimates

Asset S L SE DW

S —.00255 .80 11.36 1.65
(—2.5)

L .000645 —.000294 .20 10.17 1.58
(1.8) (—1.2)

E .00191 —.000351 —.00156 .17 3.66 1.69
(2.8) (—1.4) (—3.3)
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the best linear projection of these elements from past values. In other

words, at the beginning of each period investors estimate the three—

variable vector autoregression using all then—available data (through the

immediately preceding period), and then use the estimated model to project

inflation and the respective capital gains on long-term debt and equity for

the period immediately ahead. After that period elapses, investors incorporate

into the sample the new observation on the three random variables,

re—estimate the vector autoregression, and use the updated model to project

the relevant unknowns for the subsequent period.

This inherently backward—looking forecast procedure enjoys the

advantages and suffers the shortcomings of expecting the immediate future

to be like the immediate past, so that the degree of success achieved by

the resulting one—period—ahead forecasts naturally varies according to the

extent of the serial correlation in the series being forecast. The first—

order serial correlation coefficients of the realizations of the three

random variables (again based on quarterly movements during 1960-80) are .90

for price inflation, .44 for long-term debt capital gains, and .31 for

equity capital gains. The simple correlation coefficients between the

realizations and the corresponding forecasts derived from this continual updating

procedure are .88 for inflation, .42 for long—term debt capital gains,

and .23 for equity capital gains.29 The simple correlation coefficients

between the realizations of after—tax real returns and the corresponding

forecasts are .83 for short—term debt, .51 for long—term debt, and .30

for equity.

Table 3 reports estimation results, analogous to those shown in

Table 2, for the same system of three asset demands estimated using

these continually updated return forecasts for r0. Here too, the resu
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a hardly satihactory in theoretical terms. The unconstrained estimates,

shown in the top panel of the table, still indicate a negative estimated

response of the demand for equity to the estimated return on equity.

More to the point here, two of the three pairs of off-diagonal estimated

responses have opposite signs.

The lower panel of Table 3 reports the corresponding results for

the same estimation subject to the further constraint that matrix B be

symmetric. Although imposition of the synutetry restriction is not strictly

inconsistent with the data in a statistical sense (the test statistic value

is x2() = 2.65), the constrained estimates are even less plausible than their

unconstrained counterparts. Here the estimated responses of all three asset

demands to their respective "own" expected returns are negative as they were

in Table 2. Moreover, all three asset pairs are now not substitutes but

complements. Although asset coinpiementarity is plausible enough in general,

in this context there is nothing in the unconditional variance—covariance

structure of the three assets' returns, or in the conditional variance—covarjance

structure that results from the continually updated forecast procedure, to

suggest complementarity among any of these three asset pairs.

For individual as well as institutional investors, therefore, the

available evidence suggests that asset demands exhibiting symmetry do not

describe the observed portfolio behavior. Given the connection between

symmetric asset demands and the specific assumptions underlying the

maximization of expected utility, these results therefore cast doubt on

the validity of standard assumptions often used — either explicitly or

implicitly — to characterize the behavior of risk averse investors.
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III. The "Bliss Point" problem

In both theoretical and empirical analyses of investor behavior under

risk, specific utility functions are frequently assumed to represent investors'

preferences. The most -analytically tractable and therefore most widely

used utility functions are those that reduce to preference orderings

over the mean and variance of wealth (or portfolio rate of return) under

uncertainty. Because quadratic utility reduces in a straightforward manner

to such a mean-variance function for all probability distributions of

end-of-period wealth, it in particular is often applied to represent

investors' utility.30 The existence of a "bliss" (or wealth satiation)

point in quadratic utility is widely acknowledged. In this case utility

has a finite maximum with a corresponding satiation level of end—of—period

wealth.

The possible existence of a different bliss point has also been

shown in mean—variance models. A sufficient condition for this other bliss

point to exist is that a riskless asset is not available and indifference

curves are convex in variance—mean space.31 The untenable implication of

this second bliss point is that a satiation level of beginning-of-period

wealth exists. In other words, there exist levels of initial wealth such

that an investor maximizes utility by disposing some of his wealth before

selecting his portfolio.

The existence and implications of initial wealth satiation have been

frequently misinterpreted. In particular, initial wealth satiation is

usually interpreted as being the same as end—of—period wealth satiation in

quadratic utility.32 These bliss points are in fact distinct, however.

Indeed, in the quadratic utility case, initial wealth satiation occurs at

a lower level of expected utility than end-of-period wealth satiation.
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Hence those researchers who have placed importance on restricting the range

of application of quadratic utility because of end-of-period wealth

satiation should logically have restricted its application still further

because of initial wealth satiation. Moreover, initial wealth satiation

limits the usefulness not only of quadratic utility but also of many other

common mean—variance utility functions.

I.io specific examples serve both to show the existence of initial

wealth satiation and to examine its consequences.33 These examples

involve quadratic utility and negative exponential utility with joint

normally distributed asset returns. Before considering these two cases,

however, it is useful to define initial wealth satiation in more precise

terms. Initial wealth satiation is attained at initial wealth W if all

levels of initial wealth < W yield lower mean-variance utility, and

if, given W. > W, an investor will maximize utility by disposing of

an amount of initial wealth equal to -
W. In other words, at

sufficiently high levels of initial wealth, marginal mean-variance utility

is negative with respect to increments of initial wealth. The implication

of this bliss point is therefore highly untenable, in that it is inconsistent

with a generally accepted norm of rational behavior.

Quadratic Utility

Perhaps the most interesting example of initial wealth satiation

involves quadratic utility

U(w+i) = - bW1 (24)

where b is a positive scalar. while this utility function has been severely

criticized for displaying increasing absolute risk aversion, it nevertheless
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is the only von Neuinann—Morgenstern utility function that reduces to an

exact mean—variance preference ordering for all probability distributions

of end-of—period wealth.34 The quadratic utility function also possesses

a global maximum at

-,* 1
(25)

thereby implying the existence of a satiation level of end—of-period wealth.

Expected quadratic utility immediately follows from (24) and may

be written as

E[U(W1)] =
E(W+1)

- b.E(wti)2 - b.var(W1). (26)

In selecting an optimal portfolio, an investor maximizes (26) subject to the

contraint

A'l=W. (27)

t t

Equivalently, in the case considered here in which no risk—free asset

exists, the optimal portfolio is the one that maximizes expected utility

subject to the efficiency locus

W(reQtre) -
2Wt(recl 11) E(W l + (iIcli).E(l)2

var( )
= (28)t+l

(1 'Q1l) (ret lre) — (re , _ll) 2
-- L t t t

which is a parabola in variance—mean space dependent on the iv tial

wealth and on the parameters of the joint probability distribution of asset

returns.35 Figure 1 displays an efficiency locus c[W with initial wealth

equal to W. The well—known result that investors with convex indifference

curves will always select efficient portfolios is readily apparent from

the parabolic curvature of the efficiency locus. With quadratic utility,
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maximum mean-variance utility is obtained at [E(Wtl)*,var(Wt+i)*], with

expected utility U2, as illustrated in the figure.

To find the conditions that lead to initial wealth satiation,

the level of invested wealth is then varied to form a family of efficiency

loci representing sets of feasible portfolios. The boundary of the set

of all possible portfolios, denoted as ctW] in Figure 1, is given by

the envelope of the efficiency loci, expressed as36

var(Wi) = E(W+1)2?(.2tr). (29)

Each point on this boundary corresponds to a unique level of invested wealth.

To demonstrate that expected quadratic utility has a point of

initial wealth satiation, a finite solution to the maximization of (26)

subject to (29) must be found. The first- and second-order conditions

associated with this problem are

1 — 2b (1 + (e1e)l) E(W1) 0 (30)t t
—2b • (1 ÷ (eQle)l) < 0. (31)

t t

These conditions are jointly satisfied for the unique level of invested wealth

W = (l/2b) ' 1'(Q + . (32)

Consequently, a satiation level of initial wealth exists at W, and all

initial wealth above this level will be divested.

Figure 1 illustrates the existence of initial wealth satiation in

the quadratic utility case. The maximum possible level of expected utility

is
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(33)

which occurs at the center of the set of concentric indifference curves.

The level of expected utility associated with initial wealth W is

= (eQie) • [4b . (1+ eQle)]_l (34)
t t t t

which is always less than that of the unconstrained maximum (U > U**)

It is therefore initial wealth satiation, not end-of-period wealth satiation,

that effectively places the upper limit on the level of expected quadratic

utility. Moreover, restrictions insuring W÷1 < do not necessarily

preclude W > W. Initial wealth must instead be restricted to be less

than W in order to circumvent the effective bliss point problem in the

quadratic utility model.

Negative Exponential Utility with Joint-Normally Distributed Asset Returns

An expected utility model that also enjoys widespread use is derived

from the combined assunption of negative exponential utility

U(W1) = _exp(_bWi) (35)

and joint normally distributed asset returns. One of the attractive

features of this specification is that absolute risk aversion is nondecreasing.

This model also exhibits increasing relative risk aversion.37

The expected utility model consistent with these assumptions can be

shown to be maximized when the form

U[E(+1), v(+1)] = E(t+i) — (b/2) var(W+i) (36)

is maximized. TO obtain the satiation level of initial wealth, expected
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utility (36) may be maximized with respect to A subject to (29), with
t

the constrained optimum yielding first— and second—order conditions

1 — b • (eQle).l E(W1) = 0 (37)

t t

—b (reQtlre) < a. (38)
t t

These conditions are satisfied for the unique level of initial wealth

* —le
w = (1/b) (i' r ). (39)
t t

t

Figure 2 illustrates the initial wealth satiation point inherent in

this expected-utility model. The envelope of the efficiency loci and

indifference curves are labled as in Figure 1. This further example serves

to highlight the important fact that initial wealth satiation is an issue

completely unrelated to whether the utility function possesses an

unconstrained maximum, since U(+i) in (35) is inonotonically increasing in

wt+l
These results suggest that other mean—variance utility models with

convex indifference curves in variance-mean space are also consistent with

initial wealth satiation. Inalogous satiation points also occur when

utility is specified over portfolio rate of return instead of end-of-period

wealth. Initial wealth satiation does not, however, occur either when the

utility function is logarithmic with lognormally distributed end-of-period

wealth, or when mean—variance utility is viewed as an arbitrarily close

approximation to expected utility with constant relative risk aversion.38

The presence of initial wealth satiation points in irany comuon mean-variance

utility functions does nevertheless limit the usefulness of these specific

sodels.
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IV. Summary of Conclusions

Following the lead of Kenneth Arrow's significant contribution to

the theory of behavior under uncertainty, the development of the theory

of portfolio behavior has led to a greater understanding of the combined

effects of uncertainty and risk aversion on many aspects of individual

and institut-ional financial behavior. The focus of this paper is on aspects

of this theory involving the properties of investors' asset demands,

including in particular specific characteristics of asset demands that

in the monetary economics literature are often simply assumed and in the

financial literature are often ignored altogether in the consideration of

equilibrium asset returns.

The three sections of this paper support three related conclusions.

First, asset demands with the familiar properties of wealth homogeneity

and linearity in expected returns follow as close approximations from

expected utility maximizing behavior under the assumptions of constant

relative risk aversion and joint normally distributed asset returns.

Second, although such asset demands exhibit a symmetric coefficient matrix

with respect to the relevant vector of expected asset returns, symmetry is

not a general property, and the available empirical evidence warrants

rejecting it for both institutional and individual investors in the United

States. Finally, in a manner analogous to the finite maximum exhibited by

quadratic utility, a broad class of mean—variance utility functions also

exhibits a form of wealth satiation which necessarily restricts its range

of applicability.



Footnotes
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1. Brainard and Tobin (1968) and the voluminous work following their lead

provide numerous examples in both abstract and empirical work.

2. Friedman (1956) and deLeeuw (1965) in particular provide useful
discussions of the importance of the homogeneity property. For an
alternative view, however, see Goldfeld (1966, 1969).

3. Cass and Stiglitz (1970) showed that constant relative risk aversion
implies wealth homogeneity (and vice versa), but they did not consider
the form of dependence on expected returns in this context. A large
literature has investigated the conditions under which, in the presence
of a risk—free asset, the ex post demands for risky assets that emerge
from the market clearing process are linear in expected returns and
linear homogeneous with respect to the total amount invested in risky
assets only; see,for example, Sharpe (1964), Lintner (1965), Hakansson
(1970), Cass and Stiglitz (1970) and Merton (1971). Nevertheless,
these results do not apply to the ex ante demand relations that are
usually the focus of analysis in the monetary economics literature,
as exemplified by Tobin (1958). Moreover, these results dQ not

carry over in general to cases in which there is no risk—free asset;
and even when there is a risk—free asset the homogeneity is not with
respect to total wealth (as is usually assumed in the monetary economics
literature) and does not apply to the demand for the risk—free asset.

4. The rationale for mean—variance analysis provided by Samuelson (1970)
and Tsiang (1972) suggests that mean—variance analysis per se is only
an approximation that depends on (among other factors) a small time
unit.

5. Friend and Blume (1975) who proceeded along the lines followed here

(as did Ross [1975]), offered empirical evidence supporting the
assumption of constant relative risk aversion. See also, more
recently, Friend and Hasbrouck (1982).

6. Matrix B is singular, of course, so that the asset demand system (8),
in conjunction with a given vector of asset supplies, will be capable
of determining all relative yields and all absolute yields but one.
See Brainard and Tobin (1968) and Smith (1975) for discussions of
empirical implementation of such asset demand systems in the specific
context of this singularity.

7. In the case including a risk-free asset, vector e expresses the

mean risky returns in excess of the risk—free retrn. See Poley
(1977) for a detailed treatment of the distinctions based on the
presence or absence of a risk—free asset.



8. For given initial wealth, this assumption is equivalent to expressing
utility as a function of portfolio rate of return, with constant
absolute risk aversion; see Melton (1976).

9. See Lintner (1975) for a comprehensive treatment of portfolio
behavior based on the logarithmic utility function.

10. This section is based on Foley (1983) and Friedman (1984 and
forthcoming) ; see these papers for further details about the data
and estimation procedures used.

11. Others have recognized the similarity between systems of demand
equations derived from consumer and portfolio theories; see,
for example, Royama and Hamada (1967) and Bierwag and Grove (1968).

12. With a mean-variance expected utility function, U[E(Wt+1) var(W+1)J,

a necessary and sufficient condition for a symmetric coefficient

matrix on expected asset returns is = 0. This

condition in turn implies constant absolute risk aversion.

13. The weighted maturity class data are defined in terms of four
"definite" areas and three "borderline" areas. The definite areas
corresponding to the two maturity classes examined here are 2 to 4
years and over 12 years to maturity. Securities with maturities in
the borderline areas — in this case securities with 1 to 2 years
and 8 to 12 years to maturity — are allocated to the definite
classifications according to a weighting scheme.

14. The basic notion behind the optimal marginal adjustment model is
that investors can allocate new investable flows AW less expensively
than they can re—allocate assets already in their portfolios, and
that such flows will be allocated according to desired asset
proportions; see Friedman (1977).

15. The estimated model corresponds to that reported in Foley (1981).
Mditional asset demands are included in expanded versions of the
model; see Foley (1982).

16. The columns of B must sum to zero regardless of whether the B matrix
is symmetric. The rows of B are required to sum to zero only when
symmetry is imposed.

17. Alternative measures of expected returns are considered below in the
context of symmetry tests based on household sector portfolio
behavior.

18. The technique used is a modified version of a technique suggested by
Fair and Parke (1980). Under this procedure, the covariances of the
errors between equations in an individual investor category are in
general nonzero, but the error covariances between equations of
different categories are constrained to equal zero.



19. The standard errors reported in the table are in millions of dollars.

20. The statistic presented by Gallant and Jorgenson (1979) is used
to test the symmetry restriction. Under the null hypothesis, this
test statistic is asymptotically distributed as chi-square with
three degrees of freedom.

21. The equation is

= -1.63 + 0.567
cgL

— O.366c t—2
(—1.2) (5.0)

' (—2.8)

+ O.3S7c t
— .000615

t—4
(2.9)

' —
(—0.0)

.28 SE = 11.25 DW = 1.99

where the standard error is in per cent per annum.

22. The equation is

cg = 5.85 + 0.393 cg — 0.268
t—2

(2.1) (3.5) ' (—2.2)

— 0.00331 t—3
+ 0.017 cg4

(—0.0) ' (0.1)

.12 SE — 23.18 DW = 2.00

where the standard error is again in per cent per annum.

23. The marginal tax rates applied to interest and dividends are values
estimated by Estrella and Fuhrer (1983), on the basis of internal
Revenue Service data, to reflect the marginal tax bracket of the

average recipient of these two respective kinds of income in each
year. The marginal tax rate applied to capital gains is an analogous

estimate, including allowances for deferral and loss offset features,
due to Feldstein et al. (1983). Preliminary experimentation with
the respective price deflators for gross national product and
personal consumption expenditures indicated that the results presented
below are not very sensitive to the choice of specific inflation
measure.

24. The nonlinear maximum likelihood procedure facilitates not only the
direct estimation of asymptotic t-statistics on the elements of B
but also the imposition of constraints as discussed below.

25. The purpose of this procedure is to generate series of seasonally
adjusted end—of—quarter asset stocks without any gaps or
inconsistencies due to splicing of data series. (The Federal Reserve

System does not construct such series.)



26. Out of $1,494 billion of household sector liabilities outstanding
at yearend 1980, $971 billion consisted of mortgage debt and
$385 billion of installment and other consumor credit.

27. The standard errors reported here have the dimension of thousands
of constant 1967 dollars per capita.

28. The simple first-order serial correlation coefficients are
.86 for short—term debt, .51 for long-term debt, and .33 for
equity.

29. In comparing these "fit" correlations to the corresponding serial
correlations, it is helpful to recall that investors did not
know the 1960—80 serial correlation properties of these variables
until after this period had ended. The forecasting procedure
applied here uses only information that investors had at the
time they needed to make each quarter's forecast.

30. In fact, Borch (1969) proved that quathatic utility function is,
the only von Neumann-Morgenstern (1944) utility function that
induces nan—variance preferences for all probability distributions
of end-of-period wealth.

31. Bierwag and Grove (1966) demonstrated that convexity of the
indifference curves is a sufficient condition. Jones and Poley
(1981) generalized this result and showed that some utility
functions with concave mean—variance indifference curves also have
bliss points,

32. Borch (1969) and Hakansson (1972), for example, interpreted the
result of Bierwag and Grove (1966) as implying that indifference
curves in standard deviation—mean space are concentric circles
with the point of highest utility represented by a single point at
the center. This bliss point corresponds to end-of-period wealth
satiation in quadratic utility. Bierwag and Grove (1966), however,
did not examine the case in which indifference curves in standard
deviation—mean space have this representation. Instead, they assumed
convex indifference curves in variance—mean space, and showed that this
assumption implies a preference ordering in asset space represented
by concentric circles. The center of these circles represents
the point of initial wealth satiation.

33. See Jones and Poley (1981) for a more general analysis.

34. See 1rrow (1965) for a discussion of the adverse risk aversion
properties of quadratic utility.

35. Following Markowitz (1952), the efficiency locus may be derived from
the problem

minimize 'I2 subject to A,re E(Wt1) and A'l = W.t t tt t
At



36. The envelope of the efficiency loci may be derived from the

problem

minimize subject to Ale = E(Wt+1).t t tt
A
t

37. Arrow (1965) argued, on both theoretical and empirical grounds,
that relative risk aversion is an increasing function of wealth.

38. This latter result is due to Jones (1979). The additional cases

mentioned here are examined by Roley (19.77) and Jones. and
Roley (1981).
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