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Abstract

The prediction accuracy of six estimators of econometric rrodels

are compared. Two of the estimators are ordinary least squares (OLS)

and full-infonratjon iiaxiiam likelihood (FIML). The other four

estimators are robust estimators in the sense that they give less weight

to large residuals. One of the four estimators is approximately

equivalent to the least-absolute-residual (LAR) estirrator, one is a

combination of OLS for smell residuals and LAR for large residuals,

one is an estimator proposed by John W. Thkey, and one is a combination

of FIML and LAR. All of the estimators account for first-order serial

correlation of the error terms.

The rrain conclusion is that robust estimators appear quite

promising for the estimation of econometric rnDdels. Of the robust

estimators considered in the paper, the one based on minimizing the
sum of the absolute values of the residuals perfond the best. The

FIML estimator and the combination of the FIML and LAR estimators also

appear promising.
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I. Introduction

Many recent studies of robust estimation techniques have been

Monte Carlo studies and have been concerned with estimating a small

number of parameters.' The purpose of this paper is to examine the

usefulness of such techniques for the estimation of econometric models.

Six estimators are compared. Each estimator is first used to estimate

the stochastic equations of the model described in Fair L1. Then for

each set of estimates, within-sample predictions (both static and

dynamic) of the endogenous variables are generated. The estimators are

compared in terms of the accuracy of the within-sample predictions. Some

outside-sample predictions are also analyzed.

The methodology of this paper is similar to the methodology in

Fair L61, where ten estimators were compared. The study [61 dealt only

with the eight-equation linear subset of the model in LU], however,

while this paper considers the nonlinear part of the model as well. The

results in L61 indicate that accounting for first-order serial

correlation of the error terms is quite important, and so all six

1See, for example, the studies of Andrews et al. [2], Aridrews
L 11, and Hughes L 9].
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estimators in this paper have been modified to account for first-order

serial correlation.2

Two of the six estimators are ordinary least squares (OLS) and

full-information maximum likelihood (FINL). The other four estimators

can be considered to be robust estimators in the sense that they give

less weight to large residuals. One of the four estimators is approximately

equivalent to the least-absolute-residual (LAR) estimator, one is a

combination of OLS for small residuals and LAR for large residuals, one

is an estimator proposed by John W. Tukey, and one is a combination of

FINL and LAR.

The present model is both nonlinear in coefficients (after

adjusting for serial correlation) and nonlinear in variables. Consequently,

the standard way of obtaining LAR estimates of a linear model by converting

the problem to a linear programming problem could not be used in this

study, and the available programs f or obtaining FIML estimates of a

linear model could not be used. The procedures that were employed

to obtain these estimates are described in Sections III and IV.

II. The Model

The model is described in [L1 and will not be discussed in any

detail here. For present purposes, the monthly housing starts sector has

not been used, and housing starts have been taken to be exogenous. The

be consistent with the notation in [61, "AUTO1" should be
added to the name of each estimator, but since all estimators in this
paper are "AUTOf estimators, this will not be done.
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equations of the model are listed in Table 1. There are a few

differences between the equations in Table 1 and the equations in Table

11-4 in L41, and these differences are discussed at the end of Table 1.

Duzimiy variables D644t, D651t, D704t, and D711t have been added to the

CDt, VV1, and Mt equations and duxnmy variables D704t and D7llt have

been added to the equation to account for the effects of the two
auto strikes. These four equations were the ones most affected by the

strikes. The sample period used for the estimation and simulationwas

1960 II - 1973 I, a total of 52 observations.

Each stochastic equation of the model except the price equation

is assumed to have a first-order serially correlated error term. For

each of the six estimation techniques, first-order serial correlation

was handled by transforming each equation into one with a non-serially

correlated error term and then treating the resulting equation as

nonlinear in the coefficients. If, for example, the equation to be

estimated is:

(1) b1 + b2xt + b3y1 + ut,
where

(2) u = Put_i +

not being serially correlated, the equation can be 'written:

(3) Pyt_i + b1(l-P) + b2(xt-Pxti) + b3(y 1-Py 2 +

which is a standard nonlinear equation in the coefficients.
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Table 1. The Equations of the Model

Stochastic Equations

(3.3) CD + 121t + i3MOCDti + iMOODt2
+ i5D6lfLft + i6D65lt +

17D7OLt
+ i8D7ilt

t = 2iGNPt
+

1322CNt
+

23MOODt2

(3.11) CS 3lt + +
33MOODt2

(L1..J4) 't = + 2t + 3PE2t + D7014t + 5D7lit

t = 5l + 52t +
S3HSQt

+
SIHSQt 1

+ 55HSQ2

(6.15) tt_l = 6l + s2(CDi+CNti) +

+ 614(CDt1+CN1_CD_cN) + 6sD6t + 66D65it
+
B67D70Ltt

+ 68D7ilt

20

(10.7) PDt_PDt1 = 7i + 72 . 2t-i+1
1=1

(9.8) logM_lo1 81 + + 83(1ogM1_1ogM1H1)
+ 8 l0gY1i0gY2) + f85(1ogY_logY1)
+ 86D6t +

1387D65it
+

88D7Ol4t
+ 68gD7il

Serial
Correlation
Parameter

p1

p2

p3

p1-1

p5

PS

p8

p9

P10

p11

.

.

.
2t -(9.12) -

2t l1,i
Mt+MAt+MCGt+AFt+ ll2 + ii 3 P +P

it 2t
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Table 1 (continued)

Identity Equations

Income

Identity GNPtCDt+CNt+CSt+IPt+IHt+Vt_vtl+EXt_IMPt+G

(10.5) GAP2t
-

GNPRt 1
-

GNP -GG
(10.8)

GNPRt
100 +

YGt

(10.9) Yt GNPRt - YAt
-

YGt

(9.2) MH =Ytt tt

(9.9) EtMt+MAt+MCGt_Dt

(9. 1) = 1 - it2tFt



—6—

Table 1 (continued)

1finition of Syrribls

CD, = Consumption expenditures for durable goods, SAAR
CN, = Consumption expenditures for nondurable goods, SAAR
CS, = Consumption expenditures for services, SAAR

fEX, Exports of goods and services, SAAR
tG, Government expenditures plus farm residential fixed investment, SAAR
GNP, = Gross National Product, SAAR

tI-ISQ, = Quarterly nonfarm housing starts, seasonally adjusted at quarterly rates
in thousands of units

il-f, = Nonfarm residential fixed investment, SAAR
tIMP, = Imports of goods and services, SAAR

IP, = Nonresidential fixed investment, SAAR
tMOOD, = Michigan Survey Research Center index of consumer sentiment in units

of 100
tPE2, Two-quarter-ahead expectation of plant and equipment investment,

SAAR
V, — = Change in total business inventories, SAAR

tAF, = Level of the armed forces in thousands
= Difference between the establishment employment data and household

survey employment data, seasonally adjusted in thousands of workers
E, = Total civilian employment, seasonally adjusted in thousands of workers

tGG, = Government output, SAAR
GNPR, = Gross National Product, seasonally adjusted at annual rates in billions of

1958 dollars
tGNPR = Potential GNP, seasonally adjusted at annual rates in billions of 1958

dollars
LF,, = Level of the primary labor force (males 25—54), seasonally adjusted in

thousands
LF2, = Level of the secondary labor force (all others over 16), seasonally adjusted

in thousands
M, .= Private nonfarm employment, seasonally adjusted in thousands of workers

tMA, Agricultural employment, seasonally adjusted in thousands of workers
tMCG, = Civilian government employment, seasonally adjusted in thousands of

workers
M, H, = Man-hour requirements in the private nonfarm sector, seasonally adjusted

in thousands of man-hours per week
tP1 = Noninstitutioial population of males 25—54 in thousands
tP2, = Noninstitutioiial population of all others over 16 in thousands
PD, = Private output deflator, seasonally adjusted in units of 100
UR, = Civilian unemployment rate, seasonally adjusted= Private rionfarm output, seasonally adjusted at annual rates in billions of

1958 dollars
t YA, = Agricultural output, seasonally adjusted at annual rates in billions of 1958

dollars
t YG, = Government output, seasonally adjusted at annual rates in billions of 1958

dollars

Duimny variable: 1 in 19614 IV, 0 otherwise
i-D651.t

= Dummy variable: 1 in 1965 I, 0 otherwise

tD7O'4t Dummy variable: 1 in 1970 IV, 0 otherwise

tD7llt Dummy variable: 1 in 1971 I, 0 otherwise

.
Notes: t Exogenous variable.

SAAR. = Seasonally adjusted at annual rates in billions of current dollars.
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Table 1 (continued)

Differences between present nrdel and nodel in Fair [14], Table 11_14

1. Housing starts (HSQt) exogenous.

2. Imports exogenous.

3. Price equation (10.7) linear and length of lag is 20 rather than 8.

Li.. In equation (9.12), Mt + MAt+MCGt replaces Et.

5. Strike dumii' variables added to equations (3.3), (L . Li.), (6.5), and (9.8).



III. The Computation of the FII"IL Estimates

th
Write the g equation of the model at time t as:

(4) it''' t' g) Ugt

where the are endogenous variables, the x. are predetermined variables,

is a vector of unknown parameters, and Ugt is an error term. The FINL

estimates of the unknown parameters in (4) are obtained by maximizing
T

(5) L - - T log S + log
t:l

with respect to the unknown parameters,3 where

(6) S =
Sgh t g, h = 1,..., G.

If G-M of the G equations are identities, then S is MxN, but remains

GxG,

There are a number of approaches that can be tried to maximize L.

The results in Fair L5] indicate that quite large unconstrained maximiza-

tion problems can be solved using algorithms that either do not require

derivatives or for which derivatives are obtained numerically. The

approach in Lsl is the approach taken in this paper. Three algorithms

were used: the 1964 algorithm of Powell [iii, which does not require

any derivatives; a member of the class of gradient algorithms considered

by Huang [81, which requires first derivatives; and the quadratic

hill-climbing algorithm of Goldfeld, Quandt, and Trotter L71, which

requires both first and second derivatives. All derivatives were obtained

numerically. See Lsl for more discussion of these algorithms and for

a discussion of the computation of numeric derivatives.

3See, for example, Chow L31.
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The model in Table 1 decomposes naturally into two blocks: a

linear, simultaneous block and a nonlinear, recursive block. FflVIL

estimates were first obtained for the two blocks separately, using the

ordinary least squares estimates as starting points, which required

estimating 38 and 23 coefficients, respectively. FI estimates of all

61 coefficients were then obtained, using the FI estimates of the two

blocks as starting points. In contrast to the work in L51, no systematic

attempt was made in this study to compare the various algorithms, and so

no results using alternative algorithms will be presented here. Powell's

no-derivative algorithm was usually used first to obtain an answer, and

then this answer was checked by starting the gradient and quadratic-hill-

climbing algorithms from the answer to see if a larger value of the

likelihood function could be found. In some cases a larger value was

found using the other two algorithms, and in some cases the quadratic-

hill-climbing algorithm found a larger value than did the gradient

algorithm. In general it appeared that the FI computational problem

here was not as well behaved nor as robust to the use of different

algorithms as was the optimal control problem in [51.

The present approach to obtaining the FI estimates has the

advantage of requiring little human effort. Given that algorithm

and numeric-derivative programs are available, one needs only to write

a simple program to compute the value of L for a given vector of

coefficients. In the present case can be factored into two parts:

one that is a function of some of the coefficients but not of time and

one that is a function of time but not of any coefficients. Consequently,

the determinant of J has to be computed only on per evaluation of L
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.
rather than the T times required for the more general case. The more

general case can be handled by the present approach, however, since all

the more general case does is increase the computer time required per

evaluation of L. The extra prograimning effort required for the more

general case is quite small.

IV. The Computation of the Robust Estimates

Least-absolute-residual (LAR) estimates of equation (Lij) are

obtained by mi.nimizing

(7) Q ut!g

with respect to the unknown parameters. Since in the present case
Ugt

is a nonlinear function of the unknown parameters because of the serial

correlation assumption, Q cannot be minimized through the solution of a

linear programming problem. An attempt was made in this study to minimize

Q by using the approach and algorithms discussed in Section III, but this

attempt failed. The algorithms were not in general successful in finding

global optima. Often they converged to different answers for different

starting points, and many times different algorithms converged to different

answers from the same starting point.

LAR estimates can, however, be obtained, at least approdmately,

by converting the problem to a weighted-least-squares problem. Rewrite

Q as:

T (uj
(8) Q= L g

tl Ugt

.
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The problem of minimizing Q in (8) is merely a weighted-least-squares

problem if the denominator is known. An iterative procedure can thus

be used to minimize Q. Initial estimates of the residuals are first

obtained, say by ordinary least squares, and are then used as weights to

obtain new estimates of the parameters and residuals by weighted least

squares. These new residual estimates are then used as new weights to

obtain new parameter and residual estimates, and so on. In the present

case, unweighted ordinary-least-squares estimates were used to begin

the iteration, and the program was allowed to iterate four times thereafter.

The estimates usually changed only slightly after the first or second

weighted-least-squares estimates (the first or second iteration following

the initial ordinary-least-squares estimates). The problem of zero

residual estimates (making weighted-least-squares estimates on the next

iteration impossible to obtain) was avoided by setting residual estimates

less than a small number in absolute value equal to • For present

purposes, was taken to be .00001.

Both the unweighted- and weighted-least-squares problems in the

present case are nonlinear problems, and the estimates had to be obtained

by a nonlinear technique. The degree of nonlinearity, however, is not

great, being due only to the presence of the serial correlation parameter,

and hence the problems could be easily solved using standard algorithrns!

Because the program was allowed only four iterations and because of

the c treatment of very small residuals, the estimates obtained by the

The algorithm used in this case is the algorithm prograrimied into
TROLL at the Computer Research Center of the National Bureau of Economic
Research. This same algorithm was also used in the computation of the
WLS-II and WLS-III estimates described below.
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.above procedure are not exactly LAR estimates, but for practical purposes

they should be quite close. This estimator will be called WLS-I.

The second weighted-least-squares estimator considered is a

combination of OLS for small residuals and LAR for large residuals. For

this estimator the denominator in (8) was still taken to be IUgt if

> k, but was taken to be k if I u < k. The value of k was
ugt

— gt
taken to be a robust estimate of the standard error of the regression,

namely m/.67L'5, where i is the median of the absolute value of the

estimated residuals.5 The WLS-I estimates were used as starting

points, and the program was allowed to run for four iterations. The

median of the absolute value of the residual estimates was reestimated

at each iteration, and the value of k was changed from iteration to

iteration. This estimator will be called WLS-II.

The third weighted-least-squares estimator considered weights

each residual as6

r 212
1- () if IzI <k

L 1J
and 0 otherwise, where

k2

5See Andrews et al. L 21 for a use of this estimator.

6 .The weights used for this estimator are to be compared to 1/ lu
for the WLS-I estimator and l/Iugt or 1/k for the WLS-IT estimator. g

.
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This estimator is attributed to John W. Tukey by Andrews Lii. Values

for k1 of both 6 and 9 have been proposed, and the value of 6 was used

for this study. The value of k2 was taken to be m/.67LI5, where again

m is the median of the absolute value of the residuals. The WLS-I

estimates were used as starting points, and the program was allowed to

run for four iterations. The value of k2 was changed from iteration to

iteration. This estimator will be called WLS-III.

All three of the weighted-least-squares estimators in this section

are single-equation estimators and do not take into account the problems

associated with estimating systems of equations.

V. The Combination of the FI}a.. and Robust Estimators

Considering robust estimators as weighted-least-squares estimators,

it is quite straightforward to combine the FI1fl and robust estimators.

Consider, for example, the WLS-I estimator, which in the single-equation

case weights each residual by 1/ J
Ugt

• The natural extension to the

FI1 case is to consider maximizing

T
(9) L* - T log S* + log

tl
where

(10) s* = (z* ); tuht
, g, li = 1,..., G,gh g T

UgjU11jJ

and where is the same as in (6). Given an initial set of residual

estimates to be used as weights, L* can be maximized with respect to

the unknown parameters. In the maximization process each residual

is weighted by one over the square root of the absolute value of the initial
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residual estimate. Weighting schemes other than the one used for 14LS-I

could also be proposed, which would merely change the computation of

S*gh in (10).

For purposes here only the WLS-I weighting scheme was combined

with FIML. The weights were taken from the WLS-I residual estimates,

with residual estimates of less than .00001 being set equal to .00001.

Given the weights, L* was maximized using the same algorithms that were

used to maximize L. The experience maximizing L* using the algorithms

was similar to the experience maximizing L, although the problem of

maximizing L* seemed slightly more difficult. Because of cost considerations,

no iterations on the weights were performed. In other words, L* was

only maximized once, and the new residual estimates from this solution

were not used to construct new weights to be used for a second maximization,

and so on. This estimator will be called FINLWLS-I.

VI. Within-Sample Comparison of the Six Sets of Estimates

In Table 2 the six sets of estimates are presented for each of

the eleven stochastic equations. The two sets of FI estimates tend to

differ more from the other four sets of estimates than the other four

sets of estimates differ from each other. In particular, this is true

for the coefficient estimates of the inventory equation and for the

estimate of the constant term, 7l' in the price equation. There were

no important cases of sign reversals among the different estimates

of the same parameter. The only sign reversals occurred for P3

and for two duimny-variable coefficients, and 89



-15-

Table 2

The Six Sets of Coefficient Estimates of the Model

Coefficient Method

OLS FI WLS-I FTMLWLS-I WLS-II WLS-III
1. -37.66 -32.59 -36.33 33.43 -37.03 -35.96
2.

812 .1158 .1135 .1134 .1134 .1140 .1141

3. .0900 .1413 .0900 .0354 .1099 .1050
4. .1437 .0564 .1502 .1682 .1345 .1251

5. -2.236 -2.144 -2.359 -1.943 -2.366 -2.324
6.

816 2.459 2.302 2.308 2.827 2.384 2.441

' -6.369 -6.756 -5.869 -5.829 -6.315 -6.389
8.

818 1.068 2.543 2.045 2.101 1.345 1.186
9. p, .5832 .3162 .5638 .5462 .5216 .5568

10. .05815 .04085 .04809 .04866 .05145 .05362

22 .7792 .8522 .8169 .8146 .8053 .7972
12.

823
.04802 .02771 .04608 .04635 .04515 .04504

13. -.1195 -.2716 -.2379 -.2556 -.2187 -.1739

14. .03584 .02802 .03708 .03504 .03579 .03727
15.

832 .8891 .9186 .8843 .8919 .8885 .8829
16.

833
-.02338 -.02074 -.02402 -.02347 -.02214 -.02241

17. .2694 .1293 .0286 -.0560 .2044 .3216

18. -10.32 -9.54 -8.62 -8.59 -11.21 -12.20

19. U2 .07964 .07734 .07395 .07603 .07350 .07412

20. 8 .4707 .4942 .5163 .4968 .5685 .5804
21. -3.908 -3.844 -4.517 -4.322 -4.151 -3.898

22. 45 -1.947 -2.218 -2.618 -2.777 -2.292 -1.791
23. p4 .8514 .865o .8458 .8345 .8825 .8983
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Table 2 (continued) .
Coefficient OLS FITfl WLS-I FITffWLS-II WLS-II

24.
B5i

-20.71 -28.23 -15.57 -30.38 -16.32 -18.16

25.
B52

.03339 .0Li249 .02705 .02690 .02833 .03108

26. .07631 .06178 .07854 .08202 .07836 .07612

27.
B54

.07416 .07379 .08242 .08271 .08208 .07856

28. .03444 .02583 .03548 .03650 .o346o .03386

29.
p5

.9427 .9616 .9260 .9942 .9149 .9278

30. -29.40 -65.08 -30.79 -60.32 -33.15

31 662
.4081 .5755 .3984 .5461 .4045 .4279

32. -.3139 -.4090 -.3047 -.4104 -.3069 -.3372

33. B .3736 .1786 .3345 .3299 .3353 .3188

34.'
B65

-2.435 -1.695 -2.000 -2.966 -2.182 -2.203'
B86

4.964 3.975 4.998 5.439 4.842 4.784

36.
B67

-1.825 .397 -1.712 -1.446 -1.623 -1.485

37. B68 5.219 2.998 4.705 5.559 4.853 4.912

38. p6 .9683 .9029 .9493 .9191 .9533 .9648

39. i 1.361 1.220 1.365 1.156 1.366 1.364

40.
B72

-.02508 -.02503 -.02510 -.02208 —.02484 -.02510

41. - .4629 -.5425 -.4127 -.4929 -.4660 -.4605

42.
B82

.00007157 .00007172 .00007650 .00007202 .00007685 .00007216

43. e83
-.1267 -.1485 -.1127 -.1351 -.1275 -.1261

44. .07038 .03545 .10200 .05477 .08091 .07566

45.
B85

.1751 .2605 .2064 .2312 .1664 .1729

46. B86
.00202 .00315 .00197 .00212 .00169 .00191

47.
48.

B88

.00154
-.00290

.00111

-.00161
.00123

-.00319
.00036

-.00173
.00152

-.00341
.00155

-.00309

49. B8 .00365 —.00034 .00233 .00199 .00370 .00365

50. p8
.2648 .3089 .2073 .3684 .2552 .2495
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Table 2 (continued)

Coefficient Method
OLS FIML 1LS-I FIMLWLS-II )LS-II WLS-III

9l -16974. -18809. -17808. -18859. -17494. -17496

52. 92 126.2 -142.9 -136.1 -ll4i.2 -137.3 -135.7

53, 93 .4884 .5383 .5137 .5400 .5104 .5085

54. p9 .6768 .5910 .6418 .6175 .6226 .6352

5 io i 1.001 1.000 .999 1.000 1.000 1.003

56. 8102 -.0004472 -.ooo1416 -.0004261 -.0004343 -.0004394 -.0004681

' io .7883 .7703 .7835 .8007 .7779 .7883

58. 8iii .2679 .2368 .2697 .2540 .2503 .2621

811,2
.00082 .0008153 .0009257 .0008304 .0009424 .0009060

60. 8113 .2401 .2933 .2239 .2654 .2524 .2382

6i. p11 .8642 .8467 .8371 .8778 .8462 .8597
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.
The root mean square errors and mean absolute errors for six

variables are presented in Table 3 for each of the six estimators. The

six variables are GNP in current dollars (GNPt), the private output

deflator GNP in constant dollars (GNPRt), private nonfarm employ-

ment (Mt), the difference between establishment employment data and

household survey employment data (Dt), and the level of the secondary

labor force (LF2). The errors for the six variables are not independent

of one another in the sense that, for example, large errors in predicting

GNPt are likely to lead to large errors in predicting the other variables.

is determined in the linear, simultaneous-equations block of the

model, and the other variables are determined in the nonlinear, recursive

block. The five variables presented in Table 3 from the recursive block

are the five most important variables in the block. The estimates of

the serial correlation coefficients were used in the generation of the

predictions from the model.

The results in Table 3 are fairly self-explanatory. Consider

GNPt first. OLS is obviously the worst, being last on all grounds except

the one- and two-quarter-ahead predictions, where it is better than

FIMLWLS-I. WLS-I is better than WLS-II and WLS-III for the three-quarter-

ahead predictions and beyond, beating them on all counts, although not

by much for the three-quarter-ahead prediction. For the one- and two-

quarter-ahead predictions, the results are close. FI does well for all

but the simulation over the entire period, where it falls down somewhat.

FIWLS-I is the best for the simulation over the entire period, but is

not particularly good for the other predictions.

Consider next. The two FINL estimators are the worst, which

is caused in large part by the different estimates of the constant term
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in the PD equation. The results for the other four estimators are

quite close except for the simulation over the entire period, where the

ranking is WLS-I, WLS—II, WLS-III, and OLS. This ranking is the same

as that for GNPt for the simulation over the entire period, which is

explained by the fact that for the simulation over the entire period the

perdictions of GNPt have an important effect on the predictions of
PDt.

For GNPRt, OLS is again the worst, being last on all grounds.

WLS-I is better than WLS—II and WLS-III on all grounds. FIML does better

than WLS—I for the one—and two—quarter—ahead predictions, even considering

the poorer FIML predictions of PDiwhich are used in the computation of

the predictions of GNPRtI but the opposite is true for the three-quarter-

ahead predictions and beyond. FIMLWLS-I is the best for the two-through

five-quarter-ahead predictions, but falls down slightly for the other two.

For Mt the results are fairly close except for the simulation

over the entire period, where the RMSE ranking is WLS-I, WLS-II, WLS-III,

OLS, FIMLWLS-I, and FIML, and the MAE ranking is WLS-I, WLS-II, FILMWLS-I,

FIML, WLS-III, and OLS. For Dt. does consistently well, but the

results are again fairly close except for the simulation over the entire

period. For LF2t. the FIML estimators get worse as the period ahead

lengthens. For the simulation over the entire period, OLS is best by a

slight amount.

The following is a tentative list of conclusions drawn from

the results in Table 3.

1. WLS—I appears better than WLS-II and WLS-III, and all three

appear better than OLS. In this regard it is interesting to note that

it is not just the treatment of large residuals that appears important,

since WLS—II, which is a combination of OLS for small residuals and WLS-I



-22-

for large residuals, does not do as well as WLS-I. The different treatment

of small residuals by WLS-I compared with OLS appears also to be of importance.

2. For the predictions of GNPtF FIML is obviously better than

OLS, which is the same conclusion reached in { 6] . For the other variables,

which are not determined simultaneously, FIML is not always better. In

other words, more gain appears likely from using FIML over OLS when the

model is simultaneous than when it is recursive.

3. Among WLS-I, FIML, and FIMLWLS-I there is no obvious winner

since the rankings differ depending on the variable predicted and the number

of periods ahead for which the prediction is made. Overall, however, WLS-I

probably has an edge, especially if emphasis is put on the results for the

variables in the recursive block, where FIML and FIMLWLS-I do not in general

do particularly well, Given the success of WLS-I, it may be of interest in

future work to examine the performance of the combination of two—stage

least squares and WLS-I.7

4. For the one-quarter-ahead (static) predictions, the results

are all fairly close, which means that if one is only interested in static

predictions, the choice of an estimator is not too important (assuming

the estimator accounts for first-order serial correlation) . For dynamic

predictions the choice is important, and a conclusion reached in [ 6]

7One obvious way to combine two—stage least squares and WLS—I
is simply to run first—stage regressions in the usual way and use the
fitted values of the endogenous variables from these regressions in
place of the actual values of the right-hand-side endogenous variables
in the present procedure of obtaining WLS-I estimates.
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is also relevant here, namely that more work ought to be done on

developing estimators that take into account the fact that values of

the lagged endogenous variables are not known after the one-period-ahead

predictions.

It should finally be noted that predictions were also generated

based on WLS-I estimates obtained after the first iteration from ordinary

least squares (rather than after the fourth iteration as above). The

results were better than the OLS results, but not as good as the WLS-I

results based on four iterations. Iterating more than once clearly

improved the prediction accuracy of the estimator.

VII. Outside-Sample Comparisons of OLS and WLS-I Estimates

In order to see if the superiority of WLS-I over OLS also held

up for outside-sample predictions, the model was reestimated by

WLS-I and OLS only through 1968 IV. Predictions for the 1969 I - 1973 I

period were then generated based on these two sets of estimates. In

Table L, error measures for the simulation over the entire prediction

period (17 observations) are presented for fifteen variables. For

GNPt, WLS_I outperforms OLS. Of the six components of GNPt, W'-I is

better for three. Of the other eight variables, which are determined

in the recursive block, WLS-I is better for all but two
(Mt and UR).

Overall, WLS-I appears to outperform OLS,8 although the superiority

of 1LS-I here does not appear as pronounced as it was for the within-

conclusion is consistent with the results of Meyer and
Glauber [101, who found the LA.R estimator to be an improvement over
ordinary least squares in terms of outside-sample, single-equation
prediction accuracy.
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.
Table 4. Outside-Sample Prediction Errors

for Fifteen Variables.

Estimation Period: 1960 II - 1968 IV

Prediction Period: 1969 I - 1973 I
(Error measures for the simulation over
the entire prediction period only)

RMSE = Root Mean Square Errors

MAE Mean Absolute Errors

RMSE MAE

LS-I OLS WLS-I

GNPt 13.48 9.84 10.76 8.22

CDt
4.63 3.94 3.71 3.15

CNt
11.24 8.27 9.55 7.10

CS 2.13 2.32 1.80 1.97

'Pt
2.89 3.36 2.43 2.83

IHt
5.91 6.14 4.45 4.65

- 6.80 6.84 6.08 6.08

PDt
0.85 0.82 0.72 0.69

GNPRt
8.23 7.46 6.64 5.81

Mt
421. 468. 355. 429.

Dt
500. 376. 434. 322.

Et
729. 696. 565. 536.

LFit
260. 240. 229. 207.

LF2t
2276. 2230. 2109. 2067.

tm .0163 .0164 .0149 .0150



—25—

sample comparisons. This same conclusion also emerged from examining

the predictions for the 1969 I - 1973 I period in more detail (e.g., by

the number of periods ahead predicted) and from examining predictions

for the 1970 III - 1973 I period based on estimates through 1970 II.

All of the outside-sample comparisons are, of course, based on only a

small number of different periods predicted and so must be

interpreted with some caution.

VIII. Conclusion

The main conclusion of this paper is that robust estimators

appear quite promising for the estimation of econometric models. Of

the robust estimators considered in this paper, the one based on minimizing

the sum of the absolute values of the residuals performed the best.

The FI estimator and the combination of the ETML and least-absolute-

residual estimators also appear promising, at least for simultaneous

equations models.

The same caveats discussed in [61 regarding the methodology of

that study are also relevant here. The comparisons in this paper are

based only on the criterion of prediction accuracy, and the model used

for the comparisons has some special features that are not characteristic

of other models. 4hether the conclusions reached in L611 and in this

paper hold for other models is an open question and the conclusions are

merely put forth as indicating what might be the case for such models.
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