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ABSTRACT

Frequently, economic theory places shape restrictions on functional relationships between

economic variables. This paper develops a method to constrain the values of the first and second

derivatives of nonparametric locally polynomial estimators. We apply this technique to estimate the state

price density (SPD), or risk-neutral density, implicit in the market prices of options. The option pricing

function must be monotonic and convex. Simulations demonstrate that nonparametric estimates can be

quite feasible in the small samples relevant for day-to-day option pricing, once appropriate

theory-motivated shape restrictions are imposed. Using S&P500 option prices, we show that

unconstrained nonparametric estimators violate the constraints during more than half the trading days in

1999, unlike the constrained estimator we propose.
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1 Introduction

In many settings, economic theory only restricts the direction of the relationship between variables,

not the particular functional form of their relationship. Typically, a theory would predict that some

economic variable Y should increase when some other variable X increases. Beyond that, the typical

economic theory is often not very restrictive about the speciÞc nature of the relationship between

Y and X, and if it is, it is often as a result of choosing a particularly tractable model which the

theorist understands to be for illustrative purposes only. Sometimes, economic theories manage

to put additional restrictions on the shape of the function that links X to Y . For instance, the

relationship may be predicted by the theory to be not only monotonic, but also concave. Or it may

satisfy some other inequality restrictions on the function and/or its derivatives. Or the function

may be homogenous of some degree, or homothetic (i.e., a positive monotonic transformation of the

function is homogenous of degree one).

Examples of this nature abound in economics. The cost function of a standard perfectly com-

petitive Þrm must be increasing and convex. For such a Þrm, the production function linking its

inputs and outputs must be increasing and concave. The utility function of a typical economic agent

must be increasing and concave. In fact, the most speciÞc result in this literature, Afriat�s Theorem,

states that a utility function can be found to rationalize a set of observations on prices and quantities

if and only if it is nonsatiated, continuous, concave and monotonic [see Afriat (1967)]. No speciÞc

functional form can be deduced from the axioms of utility theory, yet one would often parametrize

the utility function as an exponential function, a power function, a logarithmic function or rely on

more complex functional forms.

Of course, stringent parametric assumptions are very useful for a variety of reasons. First, they

allow extrapolation beyond the support of the observed data. Many economic policy questions

require that hypothetical experiments be performed in the context of the model (what would the

effect of a tax cut be on consumption and investment?). Strategic decisions made by Þrm also

require extrapolation (how would proÞts be affected if prices were raised further?). Second, it is

easy to specify a functional form that will necessarily satisfy the theory-determined restrictions

(for example, Y = Ln(X) will always be increasing and concave). Indeed, the common approach

in empirical work, for example in microeconometrics, has been to specify parametric functional

forms which satisfy the necessary shape restrictions [see e.g., Diewert (1973)]. Third, more general

parametric models can be built and tested against nested models that satisfy the restrictions imposed

by the theory to see if these restrictions are valid. For instance, if the function is predicted to be

increasing and concave and the adopted model is Y = Xρ, an estimate of ρ can be readily used to
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test the concavity restriction, i.e., 0 < ρ < 1. Fourth, the theoretical restrictions can be imposed and

result in a decrease in the variance of the estimated parameters.

Despite all their advantages, parametric assumptions have their drawbacks. First, any speciÞ-

cation error will typically lead to inconsistent estimates. Second, any test of the theory such as

that described above is a joint test of the theory and the (essentially arbitrary) parametric model.

Changing the parametric speciÞcation of the model will produce different answers. As a result, non-

parametric methods are often used in empirical work, at least as a Þrst step in the analysis of the

data useful to guide the speciÞcation effort. With nonparametric methods, it becomes possible to

examine say, whether Y increases with X, without assuming a particular model for the conditional

expectation of Y given X. Unfortunately, nonparametric estimators pay for their robustness to

speciÞcation errors in other ways. They converge more slowly than their parametric counterparts,

thereby requiring a larger sample size to achieve the same degree of accuracy �often, but not always,

a small price to pay for the elimination of misspeciÞcation risk. Moreover, their rate of convergence

deteriorates even further when derivatives of the function are estimated. Consequently, in small

samples, the estimated Þrst and second derivatives of the function of interest can often fail to satisfy

the restrictions that the theory imposes, simply because of sampling noise.

It is therefore quite natural for the literature to have evolved towards estimates that are non-

parametric in nature, yet satisfy whatever theory-motivated properties are appropriate. The main

body of literature deals with the use of monotone restrictions to estimate a nonparametric regression

[see Barlow et al. (1972), Robertson et al. (1988) and Matzkin (1994) for an excellent survey]. A

common model is Y = m(X)+ ε, where either the expected value or the median of ε given X is zero

and m(·) is estimated by minimizing the least squares or least absolute deviations of the residuals,
under the constraint that it be monotonous. Brunk (1970) and Hanson and Pledger (1973) proved

the consistency of the estimator under different assumptions.

While the rate of convergence of the least squares estimator is available [see Wright (1981)], its

asymptotic distribution is not yet known. The estimation of concave regression functions (same

context as above except that m(·) is known to be concave) has also been extensively considered
[see e.g., Hildreth (1954) and Hanson and Pledger (1976)] and its distribution is known in the least

squares case [see Wang (1993)]. Finally, algorithms that extend Hildreth�s to estimate a regression

curve under inequality restrictions have been proposed by Dykstra (1983) and Ruud (1997), again

in the constrained least squares context. To the best of our knowledge, the asymptotic distribution

of these estimators is unknown.

Rather than attempt to solve the least squares (or least absolute deviations) problem, we propose

in this paper a method to impose shape restrictions as a simple modiÞcation of nonparametric

2



locally polynomial estimators. The standard Nadaraya-Watson kernel regression estimator is a special

case of a locally polynomial estimator, corresponding to a �locally constant� speciÞcation, i.e., a

polynomial of order zero. By modifying locally polynomial estimators, instead of attempting to

devise a new type of constrained nonparametric estimator, we can rely on a well-understood set of

tools in the unconstrained regression case [see e.g., Fan and Gijbels (1996)]. Moreover, our estimators

are smooth like any other kernel-type regression estimator, unlike for instance the estimator produced

by solving the constrained least squares problem. Our constrained nonparametric estimators satisfy,

by construction, the restrictions imposed by economic theory. We focus on locally linear estimators

and on the case where inequality constraints are imposed on the regression function and its Þrst two

derivatives.

As is often the case, and the estimation of option-implied densities in Þnance is no exception, there

are many different ways to smooth a curve �Nadaraya-Watson kernel regression as in Aït-Sahalia and

Lo (1998), splines with a penalty for lack of smoothness [e.g., Mammen and Thomas-Agnan (1998)],

constrained splines [Bates (2000)], ßexible parametric functional forms [in the context of SPDs, see for

example Abadir and Rockinger (1998)], neural networks [see Garcia and Gencay (2000) and Haefke,

White and Gottschling (2000)], etc. Bates�s paper in particular considers cubic splines estimated

under the same constraints as ours, while Bondarenko (1997) considers the same constrained least

squares problem we do.

We focus on a particular method, locally polynomial regression. In our view, locally polynomial

estimators present a few advantages, some of which are shared by the other possible choices. First,

they are truly nonparametric. Second, they have well-documented good small sample behavior [see

e.g., Fan and Gijbels (1996)], especially relative to kernel regression estimators. Third, we are able

to implement the method in such a way that the locally polynomial estimator will always produce

estimates satisfying the constraints, which is also possible with some of the other methods, but

in our case turns out to require no modiÞcation to the estimator, only its application to some

transformed data. This said, we do not mean to suggest that local polynomials are necessarily a

dominating alternative to everything else nonparametric (otherwise there would not be such a long

list of available methods!), but rather our objective is to add to the nonparametric toolkit by showing

how this particular method can be amended to reßect shape constraints, especially those that are of

interest in derivative pricing. This is achieved in our main theoretical result, Proposition 1, which we

hope will be of independent interest beyond our application to the estimation of state-price densities.

Our estimator extends the results of Mammen (1991). Mammen introduced a two-step kernel

regression that results in monotonic estimates. We extend Mammen�s results in three directions.

First, we incorporate restrictions in the Þrst and in the second derivatives, which is empirically
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relevant in a large number of economic contexts. Second, we work with locally polynomial estimators

(locally linear in our speciÞc context) as opposed to the Nadaraya-Watson kernel regression estimator

used by Mammen, which is a locally constant polynomial estimator. Third, we allow for a broader

class of kernel functions than just the Gaussian kernel; in particular, the popular uniform and

Epanechnikov kernels are admissible.

The remainder of the paper is organized as follows. We start in Section 2 by describing the main

example that motivates this paper, the kernel estimation of the state-price density implicit in the

market prices of traded options. In Section 3 we introduce our estimator and compare it to the

unconstrained Nadaraya-Watson and locally linear nonparametric estimators. We show in particular

that our estimator will satisfy the constraints imposed in sample and not just asymptotically. The

results of a Monte-Carlo analysis of these three estimators are presented in Section 4. In Section 5,

we apply our methodology to option pricing. Section 6 concludes. Technical proofs and results are

in the Appendix.

2 Monotonicity and Convexity of Option Pricing Functions

The motivation for our empirical work is the theory-imposed restriction that the price of a call option

must be a decreasing and convex function of the option�s strike price. Assuming that markets are

dynamically complete, the absence of arbitrage opportunities implies the pricing operator is linear.

Continuity and linearity of the pricing operator implies by the Riesz representation theorem the

existence of a state-price density (SPD), which we denote by p∗(ST |St, τ , rt,τ , δt,τ ).1 The call pricing
function at time t is then given by:

C(St,X, τ , rt,τ , δt,τ ) = e
−rt,τ τ

Z +∞

0

max(ST −X, 0)p∗(ST |St, τ , rt,τ , δt,τ )dST (2.1)

1The existence and characterization of an SPD can be obtained either in preference-based equilibrium models, e.g.,

Lucas (1978), Rubinstein (1976), or in the arbitrage-based models by Black and Scholes (1973) and Merton (1973). In

the equilibrium framework, the SPD can be expressed in terms of a stochastic discount factor or pricing kernel such

that asset prices are martingales under the actual distribution of aggregate consumption after multiplication by the

stochastic discount factor.

Among the no-arbitrage models, the SPD is often called the risk-neutral density based on the analysis of Cox and Ross

(1976) who observed that the Black-Scholes formula can be obtained by assuming that all investors are risk neutral and,

consequently, all assets in such a world must yield an expected return equal to the risk-free rate of interest. The SPD

also uniquely characterizes the equivalent martingale measure under which all asset prices discounted at the risk-free

rate of interest are martingales [see Harrison and Kreps (1979)], and the state-price deßator [see Duffie (1996)].
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where St is the underlying asset price at date t, X the strike price, τ the time-to-expiration, T = t+τ

the expiration date, rt,τ the risk free interest rate for that maturity, and δt,τ the corresponding

dividend yield of the asset. In what follows, we will leave the conditioning information implicit, and

write p∗(ST ) for p∗(ST |St, τ , rt,τ , δt,τ ).
In order to rule out arbitrage opportunities, C must be a decreasing function of X and the Þrst

derivative of C with respect to X must be greater than −e−rt,τ τ . This follows from (2.1) since

∂C(St,X, τ , rt,τ , δt,τ )

∂X
= −e−rt,τ τ

Z +∞

X
p∗(ST )dST (2.2)

thus from the positivity of the density and its integrability to one

−e−rt,τ τ ≤ ∂C(St,X, τ , rt,τ , δt,τ )

∂X
≤ 0 (2.3)

By differentiating the call price function twice with respect to the strike price, one obtains, as in

Breeden and Litzenberger (1978) and Banz and Miller (1978):

∂2C(St,X, τ , rt,τ , δt,τ )

∂X2
= e−rt,τ τp∗(X) ≥ 0 (2.4)

i.e., ∂2C(·)/∂X2 is proportional to a probability density function and hence must be positive. Any

local non-convexity of the call pricing function implies negative state prices, which constitute a

violation of the no arbitrage principle.

Thus the Þrst two derivatives of the �cross-sectional� option pricing function X 7−→ Ct,τ (X) ≡
C(St,X, τ , rt,τ , δt,τ ) for given (St,X, τ , rt,τ , δt,τ ), i.e., at each point in time t and for each maturity

τ, must satisfy the set of inequality constraints −e−rt,τ τ ≤ C 0t,τ (X) ≤ 0
C 00t,τ (X) ≥ 0.

(2.5)

The theory also imposes no arbitrage bounds for the call option pricing function itself:

max
³
0, Ste

−δt,ττ −Xe−rt,τ τ
´
≤ Ct,τ (X) ≤ Ste−δt,τ τ . (2.6)

Note Þrst that it follows from (2.1) and (2.4) that C 00t,τ (X) ≥ 0 implies Ct,τ (X) ≥ 0. Secondly, if

the price Ft,τ at t of a forward contract for delivery of the underlying asset at date T = t + τ is

observable, then by no arbitrage

Ft,τ = e−rt,ττ
Z +∞

0

ST p
∗(ST )dST

= St exp((rt,τ − δt,τ )τ). (2.7)
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In this case, it follows from the fact that max(ST − X, 0) ≤ ST and from (2.1) and (2.7) that

Ct,τ (X) ≤ Ste−δt,τ τ . It also follow these equations and the fact that p∗ is a density that Ct,τ (X) ≥
St exp(−δt,τ τ)−X exp(−rt,τ τ). Indeed,

ert,ττ
n
Ct,τ (X)− Ste−δt,ττ +Ke−rt,ττ

o
=

Z +∞

X
(ST −X)p∗(ST )dST −

Z +∞

0
ST p

∗(ST )dST +X

=

Z X

0
(X − ST )p∗(ST )dST

≥ 0.

These restrictions can be expressed as restrictions on C 00t,τ (X), by writing them in the formZ +∞

0

C 00t,τ (X)dX = e−rt,τ τ (2.8)Z +∞

0
XC 00t,τ (X)dX = Ft,τ . (2.9)

Therefore, the constraints imposed by the theory can all be summarized in terms of the functions

C 0t,τ (X) and C 00t,τ (X), and our primary objective in this paper will be to construct nonparametric

estimators of the functions X 7−→ C 0t,τ (X) and C00t,τ (X) that satisfy the constraints (2.5), (2.8) and

(2.9).

Aït-Sahalia and Lo (1998) proposed to estimate the SPD nonparametrically by using market

prices to estimate an option-pricing formula �C(·) nonparametrically, then differentiate this estimator
twice with respect to X to obtain ∂2 �C(·)/∂X2. Under suitable regularity conditions, the convergence

(in probability) of �C(·) to the true option-pricing formula C(·) implies that ∂2 �C(·)/∂X2 will converge

to ∂2C(·)/∂X2. Consequently, to arrive at the SPD from (2.4) it is sufficient to estimate the second

derivative of the call price function in relation to the strike price. Without any restrictions on the

full nonparametric regression of call prices of stock value, strike, time-to-maturity, interest rate and

dividend yield, the estimates are too variable to be useful in practice. Therefore Aït-Sahalia and Lo

(1998) reduced the dimensionality of the regression function by using a semiparametric speciÞcation.

Suppose that the call pricing function is given by the parametric Black-Scholes formula

CBS(Ft,τ , X, τ , rt,τ ; σ) = e
−rt,τ τ {Ft,τΦ(d1)−XΦ(d2)} (2.10)

where Ft,τ = St exp((rt,τ − δt,τ )τ) is the forward price for delivery of the underlying asset at date T
and

d1 ≡ ln(Ft,τ/X) + (σ2/2)τ

σ
√
τ

, d2 ≡ d1 − σ
√
τ (2.11)

except that the volatility parameter for that option is a nonparametric function σ(X/Ft,τ , τ ) of the
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option�s moneyness Mt,τ ≡ X/Ft,τ and time-to-maturity τ :

C(St,X, τ , rt,τ , δt,τ ) = CBS(Ft,τ ,X, τ , rt,τ ;σ(X/Ft,τ , τ)). (2.12)

In this semiparametric model, they only need to compute the lower-dimensional kernel regression

of implied volatilities on moneyness Ft,τ , X and τ to estimate �σ(·). The rest of the call pricing
function C(St, X, τ , rt,τ , δt,τ ) is parametric, thereby substantially reducing the sample size of options

required to achieve the same degree of accuracy as the full nonparametric estimator. This approach

nevertheless has its own drawbacks. First, it is not fully nonparametric. Second, it still requires a

fairly large sample size to be effective. In a typical cross-section of options at one point in time, one

often observes the prices of 20 to 50 options with different strike prices (for a given maturity). This

limitation of the traded strikes is a consequence of a deliberate strategy on the part of the options

exchanges to insure that the market for each one of them remains sufficiently liquid. Enlarging the

sample by gathering data from different dates is useful for data description purposes but opens the

door to potential nonstationarity and regime shift issues. Moreover, the inputs of interest, such as

the underlying assets price, its volatility or the interest rate, can be volatile enough to preclude

aggregating data from different days.

Finally, it is possible for the implied volatility smile function σ(X/Ft,τ , τ) to have sufficiently

large derivatives with respect to the option�s moneyness Mt,τ for the resulting semiparametric SPD

to violate the nonnegativity constraint, especially for long-term options. That is, differentiating

(2.12) yields  ∂C
∂X =

∂CBS
∂X + 1

F
∂σ
∂M

∂CBS
∂σ

∂2C
∂X2 =

∂2CBS
∂X2 + 2

F
∂σ
∂M

∂2CBS
∂X∂σ +

1
F 2

¡
∂σ
∂M

¢2 ∂2CBS
∂σ2

+ 1
F 2

∂2σ
∂M2

∂CBS
∂σ

and the right hand sides of these expressions need not satisfy the respective constraints that their

left hand sides should satisfy.

Non- and semiparametric estimators of the call pricing function will satisfy the restrictions in

the Þrst and second derivatives only when the sample is large enough, and the true function veriÞes

them. This follows simply from the pointwise convergence of nonparametric regression estimators

and their derivatives. As in all the other examples from economic theory discussed above, nonpara-

metric estimates may violate the theory-imposed convexity restriction, but parametric estimates can

misspecify interesting properties of the SPD (such as its skewness and kurtosis patterns) because

they are overly rigid.

As a result, the estimation of the SPD is an empirical problem where the sample size is small, and
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where economic theory places no restrictions on the function other than the inequality restrictions

(2.5). Because of the potential risk involved in misspecifying the SPD, it is desirable not to impose

tight parametric restrictions on the density. And the constraints imposed by the theory provide no

guidance whatsoever in terms of specifying a parametric model for the SPD. In fact, as long as the

candidate parametric SPD is a proper density function, no matter how it is speciÞed parametrically,

the constraints will be satisÞed. Moreover, only when sufficiently strong assumptions are made on

the underlying asset-price dynamics can the SPD be obtained in closed form. For example, if asset

prices follow geometric Brownian motion and the riskfree rate is constant, the SPD is log-normal�

this is the Black-Scholes/Merton case. For more complex stochastic processes, the SPD cannot be

computed in closed-form and must be approximated by numerically intensive methods. So this is a

typical situation where we need a nonparametric estimator that can be constrained to satisfy given

shape restrictions.

3 Constrained Nonparametric Estimation

To obtain a nonparametric estimator satisfying the required shape properties, we use a combination

of constrained least squares regression and smoothing.

3.1 Constrained Least Squares Regression

The problem of constrained least squares regression consists in Þnding the closest values mi, in

the sense of least squares, to a set of n observations y1, y2, ..., yn satisfying a set of constraints.

Bondarenko (1997) also uses constrained least squares in the same context as we do. The constraints

involve n observations on an explanatory variable, x1, x2, ..., xn. In our case, yi is the price of the call

option with strike xi. Without loss of generality assume that the observations on the explanatory

variable have been ordered, i.e., xi ≥ xj for i > j, i, j ∈ {1, 2, ..., n}.
The constrained least squares regression consists in Þnding the vector m that solves, for the

observation vector y :

min
m∈Rn

nX
i=1

(mi − yi)2 = min
m∈Rn

km− yk2 (3.1)

subject to the slope and convexity constraints: −e−rt,τ τ ≤ mi+1−mi

xi+1−xi ≤ 0 for all i = 1, ..., n− 1
mi+2−mi+1

xi+2−xi+1 ≥
mi+1−mi

xi+1−xi for all i = 1, ..., n− 2
(3.2)
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If we were only imposing monotonicity of the pricing function, then this would reduce to the

classical isotonic regression [see e.g., Barlow et al. (1972)]. We can eliminate some constraints that

are redundant. The convexity constraints insure that the slopes Mi+1,i ≡ (mi+1 −mi)/(xi+1 − xi)
are nondecreasing. Therefore the inequality constraints on the interior slopes (i = 2, ..., n − 2) are
redundant and only the boundary slope constraints (lower bound for i = 1 and upper bound for

i = n− 1) matter. Therefore the constraints (3.2) can be rewritten as m1−m2
x1−x2 ≥ −e−rt,ττ and mn−1 −mn ≥ 0
mi+2−mi+1

xi+2−xi+1 ≥
mi+1−mi

xi+1−xi for all i = 1, 2, ..., n− 2
(3.3)

This reduces the total number of constraints from 2n−3 to n, which has computational implications
when n is moderately large.

Note that the price constraint corresponding to (2.5) can be imposed as

max
³
0, Ste

−δt,ττ − xie−rt,τ τ
´
≤ mi ≤ Ste−δt,ττ for all i = 1, ..., n.

In light of the monotonicity constraints already present, these n constraints can be reduced to

Ste
−δt,ττ − x1e−rt,ττ ≤ m1 ≤ Ste−δt,τ τ and mn ≥ 0. (3.4)

In any event, the three additional constraints (3.4) need not be implemented at this stage. As we

discuss later in Section 3.6, we will obtain an estimator of the pricing function Ct,τ directly from the

SPD estimator, i.e., from C00t,τ up to discounting, and provided the SPD estimator satisÞes constraints

(2.8)-(2.9) �which we will insure� our price function estimator will satisfy the constraints (2.5).

When the strike prices are equally spaced, xi+1 − xi = ∆x for all i, which is the case in most if
not all options markets, the second constraint in (3.3) becomes

mi+2 +mi − 2mi+1 ≥ 0 (3.5)

which says that the butterßy portfolio constructed by buying a call struck at xi+2, one struck at xi

and selling two calls struck at xi+1 must have a nonnegative price.

When solving the constrained minimization problem, we are effectively �cleaning� the data yi in

a non-arbitrary manner. Of course, we mean to apply this step after obvious data recording errors

(such as a price recorded as 0, etc.) have been corrected. Solving this problem can be contrasted

to the commonly used practice of simply deleting from the sample the recalcitrant observations �

those that fail to satisfy the arbitrage restrictions� under the rationale that they must be the result

of unacceptable measurement errors. Besides being questionable as a general practice, deleting
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observations can be quite damaging when the sample is tiny to start with.

Naturally, in cases where the constraints are satisÞed by the original option prices, the solution

is simply mi = yi for all i = 1, 2, ..., n. But how often is this not the case empirically? Based on the

full year 1999, violations of the constraints (3.3) occurred 24% of the time in the raw high frequency

S&P 500 index option data from the Chicago Board Options Exchange (lower frequency observations

have lower violation occurrences). Hentschel (2001) provides more evidence regarding how noisy the

raw option data are.

Finally, the least squares criterion function (3.1) can be weighted as in

min
m∈Rn

nX
i=1

(mi − yi)2ωi (3.6)

to reßect the relative liquidity of different options. In this framework, more actively traded options

would receive a higher weight ωi than those less actively traded. Readily available data can be used

for that purpose. In transaction-level data, the actual weights can be determined on the basis of

the size and time of the most recent transaction and the bid-ask spread. In closing prices, the open

interest and the bid-ask spread can be used to proxy for liquidity.

Solving the constrained least squares problem has a long history. Von Neumann (1950) originally

proposed to solve it using alternative projections. While this insight remains at the heart of the more

modern algorithms, Von Neumann�s approach was limited in the possible set of constraints. Hildreth

(1954), then Dykstra (1983) progressively extended the set of possible constraints to convex cones (a

cone is such that if the solution vectorm belongs to it then λm also belongs to it for any constant λ).

This would suit our purposes, except that the lower bound constraint on the slopes in equation (3.3)

make that constraint affine (a convex set) instead of linear (a convex cone). We show in Appendix

A that we can Þrst transform it to one with conic constraints, to which we can then apply Dykstra�s

algorithm. We also describe Dykstra�s algorithm, applied to the transformed problem, in Appendix

A.

3.2 Locally Polynomial Kernel Smoothing

We now have the transformed data mi. The transformed data (not yi) then serve as inputs to the

next and last step in our procedure. This step involves smoothing the transformed data mi and we

wish to do so in a way that preserves the constraints that were enforced in the previous step.

Let us now turn to a brief description of locally polynomial regression, which allows us also

to introduce some notation. Suppose that the regression function m(z) ≡ E [Y |Z = z] is to be
approximated locally for z in a neighborhood of a given state value x by Taylor�s formula up to order
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p

m (z) ≈
pX
k=0

βk (x)× (z − x)k (3.7)

with βk (x) ≡ m(k) (x) /k!. This representation of the function m suggests modeling m(z) around x

by a polynomial in z, and to use the regression ofm(z)on powers of (z−x) to estimate the coefficients
βk. To insure that the estimated coefficients reßect the local nature of the representation, we should

intuitively use a weighted regression putting more weights on points close to x. A natural way to

achieve this is to introduce a kernel functionK(.), a bandwidth h and to use as weightsKh (xi − x) ≡
K ((xi − x)/h) /h . This leads to the estimates of the coefficients bβk (x) as the minimizers of

nX
i=1

(
mi −

pX
k=0

βk,p (x)× (xi − x)k
)2
Kh (xi − x) (3.8)

which is, at each Þxed point x, a generalized least squares regression of the m0
is on powers of the

(xi−x)0s with diagonal weight matrix formed by the weights Kh (xi − x) . This regression is �local�
in the sense that the regression coefficients in equation are only valid in a neighborhood of each point

x.

The estimates of the regression function (and its successive derivatives) are then given by

�m(k) (x) ≡ �mk,p (x) = k!bβk,p (x) . (3.9)

In particular, �m (x) ≡ bβ0,p (x) is the coefficient of the constant term in the polynomial regression

of degree p. In this framework, the classical Nadaraya-Watson kernel regression corresponds to the

special case of a �locally constant� estimator where the polynomial is reduced to a constant term,

i.e., p = 0. Indeed,

�m0,0 (x) =

nP
i=1
Kh (xi − x)mi

nP
i=1
Kh (xi − x)

=

nP
i=1
kimi

nP
i=1
ki

(3.10)

where the heteroskedastic weights are ki = Kh (xi − x) , is the generalized least squares (GLS)
regression coefficient of the mi�s on a constant.
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More generally, the GLS estimator �βp = (
�β0,p,

�β1,p, . . . ,
�βp,p)

0 can be written as

�βp =


Sn,0 Sn,1 · · · Sn,p

Sn,1 Sn,2 · · · Sn,p+1
...

...
. . .

...

Sn,p Sn,p+1 · · · Sn,2p



−1
Tn,0

Tn,1
...

Tn,p

 (3.11)

where

Sn,j =
Xn

i=1
(xi − x)j ki and Tn,j =

Xn

i=1
(xi − x)jmiki. (3.12)

The sums Sn,j and Tn,j depend on x, but we leave that dependence implicit to keep the notation

simple. In particular if p = 0 (Nadaraya-Watson case), �m0,0 (x) = Tn,0/Sn,1 , while if p = 1 (locally

linear regression), we have

�m0,1 (x) = �β0,1 =
Sn,2Tn,0 − Sn,1Tn,1
Sn,2Sn,0 − S2n,1

(3.13)

which can be rewritten in the form

�m0,1 (x) =

Pn
i=1wimiPn
i=1wi

where the regression weights are wi ≡ ki {Sn,2 − (xi − x)Sn,1} compared to ki in the Nadaraya-
Watson case of equation (3.10). Therefore the locally linear estimator assigns weights that are

asymmetric, whereas the Nadaraya-Watson weights are always symmetric. This turns out to be a

critical improvement especially when x is near the boundaries of the support, i.e., in the tails of

the distribution. There, the locally polynomial regression assign weights that adjust for the relative

scarcity of the data, unlike those assigned by the locally constant Nadaraya-Watson estimator.

3.3 Estimation of Derivatives

To estimate the derivative of order k of the regression function m, we can simply set p = k + 1 and

use the estimator �mk,p obtained from equation (3.9). For instance, a locally linear regression serves

to estimate the regression function �m0,1, a locally quadratic regression for the Þrst derivative �m1,2

and a locally cubic regression for the second derivative �m2,3. This is generally the optimal choice on

the basis of asymptotics (see (3.17) below). But alternatives are available, and they may outperform

the asymptotic optimum in small samples. The Nadaraya-Watson estimator in equation (3.10) can

easily be differentiated to yield an estimator of the partial derivative of m(x) with respect to x.

12



�m0
0,0(x) =

(
Pn
i=1 k

0
imi)

(
Pn
i=1 ki)

− (
Pn
i=1 kimi)(

Pn
i=1 k

0
i)

(
Pn
i=1 ki)

2
(3.14)

where k0i = (1/h)K
0((x − xi)/h). Further differentiation of (3.10) will produce an estimator of the

second derivative m00
0,0(x).

We can also consider the estimators �m0,1 for the regression function, �m1,1 for its Þrst derivative

and �m0
1,1 for the second derivative. In this case,

�m1,1(x) = �β1,1 =
Sn,0Tn,1 − Sn,1Tn,0
Sn,2Sn,0 − S2n,1

=

Pn−1
i=1

Pn
j=i+1(xi − xj)(mi −mj)kikjPn−1

i=1

Pn
j=i+1(xi − xj)2kikj

(3.15)

from which �m0
1,1 follows. Our shape-constrained estimator is based on applying the latter estimators

to the transformed datami rather than the original data yi.We show below that this insures that the

desired shape restrictions are satisÞed in sample, not just asymptotically. For comparison purposes,

we also consider the unconstrained estimators �mk,2 for k = 0, 1, 2, corresponding to a locally quadratic

regression, and �mk,3 for k = 0, 1, 2, corresponding to a locally cubic regression.

3.4 A Word on Asymptotics

Under standard regularity conditions, both bm(x) and its derivatives converge pointwise to their true
values, as the sample size n goes to inÞnity. Assume that the conditional expectation m(x) admits q

continuous derivatives. The best achievable asymptotic rate of convergence of the estimator �m(k)(x)

of the k-th derivative of m(x) �in the integrated mean-squared error sense� is given by:

n(q−k)/(1+2q) (3.16)

This is actually the best rate of convergence that can be achieved by any nonparametric estimator

[see Stone (1982)]. The fact that the rate of convergence in equation (3.16) slows down as the order

k of the derivative to be estimated increases is often referred to as the curse of differentiation. This

rate is achieved for instance by the Nadaraya-Watson kernel regression when the bandwidth satisÞes

h = O(n1/(1+2q)). In the case of locally polynomial estimators, the optimal choice of polynomial

order p on the basis of asymptotics is given by

p = k + 1 (3.17)

(see Fan and Gijbels (1996, Section 3.3)).

In theory, all the estimators we discussed so far have desirable asymptotic properties. In empirical

13



work, however, the slow rate of convergence of the derivative estimators can be a major hindrance.

In our empirical application, the object of interest is the second derivative of the call option pricing

function, Ct,τ (·), with respect to the options strike price, X, when the sample size is of the order
of 20 to 50 observations. The asymptotic guidance given by (3.17) would lead to locally quadratic

estimators to estimate C 0t,τ and locally cubic ones for C 00t,τ . We compare below these unconstrained

(but asymptotically optimal) estimators to our constrained locally linear procedure. Monte Carlo

simulations immediately reveal that the asymptotics are a poor guide in terms of predicting the

behavior of the estimators for such small sample sizes and hence as a guide to selecting them. More-

over, as we illustrate in Figures 1 to 3, the constraints are quite often violated by the unconstrained

nonparametric estimators with these sample sizes. In addition, we would ideally like an increase in

the sample size n to correspond to an increase in the number of strike prices for which prices are

observed rather than additional prices obtained at a different point of time for the same strikes.

The latter could potentially introduce nonstationarity, with prices at a different instant drawn from

a different state-price density. But then collecting data for additional strikes requires going to the

over-the-counter market where quotes can be obtained beyond and between the Exchange�s limited

traded strikes. Liquidity issues can be substantial. For all these reasons, we are interested in con-

structing estimators that will be nonparametric in nature, yet will not require large sample sizes to

satisfy the constraints � we want them to satisfy the desired constraints in sample, rather than just

asymptotically.

3.5 Bandwidth Selection

A bandwidth of h = 0 results in interpolating each data point (the most complex model), whereas

a bandwidth of inÞnity results in a single global polynomial Þt of degree p throughout the sample

(the simplest model). How to choose the bandwidth is therefore equivalent to choosing the model�s

complexity. Hence it is highly desirable to rely on automatic procedures that remove any potential

arbitrariness in the bandwidth�s choice. By minimizing the conditional mean-squared error at xn
E
h
�m(k)(x)|x

i
−m(k)(x)

o2
+ V ar

h
�m(k)(x)|x

i
(3.18)

the optimal local (i.e., variable with x) bandwidth is (see e.g., Fan and Gijbels (1996)):

hlocal(x) = Ck,p

"
v(x)©

m(p+1)(x)
ª2
π(x)

× 1

n

#1/(2p+3)
(3.19)

where π(x) is the marginal density of the regressors and v(x) their variance.

If we are interested in a global bandwidth (i.e., one that is independent of x), minimizing the
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weighted mean integrated squared error with weight function ω(x)Z ½n
E
h
�m(k)(x)|x

i
−m(k)(x)

o2
+ V ar

h
�m(k)(x)|x

i¾
ω(x)dx (3.20)

produces the optimal bandwidth

hglobal = Ck,p

" R
v(x)ω(x)/π(x)dxR ©
m(p+1)(x)

ª2
ω(x) dx

× 1

n

#1/(2p+3)
(3.21)

The constants Ck,p depends upon the choice of the kernel. For example, for the Gaussian kernel

K(u) = exp(−u2/2)/√2π, the relevant constants are C0,1 = 0.776, C0,3 = 1.161, C1,2 = 0.884 and
C2,3 = 1.006. The bandwidth expressions involve unknown quantities: π(x), v(x) and m(p+1) (x),

which all need to be estimated prior to the calculation of the optimal bandwidth. A simple way to

do so is by Þtting a polynomial of order p+3 globally to m(x), i.e., m (x) =
Pp+3
k=0 αkx

k estimate the

parameters αk by ordinary least squares, v by the sum of squares of residuals (so that the estimator

is independent of x), and m(p+1)(x) as the second order polynomial obtained by differentiation of

the polynomial Þt of order p+ 3 of m(x), i.e.,

m(p+1) (x) =
Xp+3

k=p+1
αkk(k − 1)...(k − p+ 1)xk−(p+1) (3.22)

For the global optimal bandwidth, a typical choice of weighting function would be ω(x) = ω0(x)f(x)

where ω0(x) is a Þxed function (for instance ω0(x) is 1 for all x between the mean of the xi�s minus

1.5 times the standard deviation of the xi�s and the mean plus 1.5 times the standard deviation, and

0 for x outside this interval). In this case,
R
ω0(x)dx = 3

p
V ar(X), estimated by replacing V ar(X)

by the sample moment. The estimated optimal global bandwidth is then

�hglobal = Ck,p

"
ssr× R ω0(x)dxPn

i=1

©
m(p+1)(Xi)

ª2
ω0(Xi)

× 1

n

#1/(2p+3)
(3.23)

where ssr is the sum of squares of residuals from the regression (3.22).

3.6 The Result: Estimation Under Inequality Constraints

We now show that the two-step procedure we proposed, namely constrained least square regression

of the data followed by a locally linear estimation using the transformed data, results in an estimator

satisfying the constraints. The following proposition states our result. The shape-constrained esti-

mator we described will always satisfy the constraints for every sample size, not just asymptotically:

Proposition 1 Consider a set of n observations on the dependent variables, y1, y2, ..., yn and the

corresponding independent variable values x1, x2, ...., xn. Without loss of generality, let xi ≥ xj for
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i > j, i, j ∈ {1, 2, ..., n}. Assume that the transformed data mi result from applying the constrained

least squares algorithm to the original data yi. Then the locally linear estimator obtained from

the transformed data and a log-concave kernel function satisÞes the required constraints in sample:

−e−rt,τ τ ≤ �m(1)(x) ≤ 0, and �m(2)(x) ≥ 0.

Proof: See Appendix B.

The last two constraints (2.8)-(2.9) on the function �m(2)(x) are easily satisÞed. Restriction (2.8)

is a scaling constraint: replacing �m(2)(x) by exp(−rt,ττ) �m(2)(x)/
R +∞
0 �m(2)(z)dz produces the desired

result. Restriction (2.9) amounts to a Þxed translation of the estimated density to achieve the desired

expected value Ft,τ : replace �m
(2)(x) by the shifted function �m(2)(x− z) with the Þxed shift amount

z determined by setting the expected value of the resulting function to the desired level Ft,τ . As we

show in Section 4 below, these two adjustments have very little effect on the estimator in practice.

We then deÞne the estimator �m(0)(x) of the call pricing function from the SPD estimator by

�m(0)(x) ≡
Z +∞

0
max(z − x, 0) �m(2)(z)dz (3.24)

(with an obvious generalization if we wish to price another European-style payoff: just replace

max(z − x, 0) by that contingent claim�s payoff function). The estimator �m(0)(x) will automatically

satisfy the no-arbitrage bounds (2.6) satisÞed by the call pricing function. In effect, having a proper

SPD estimator in the form of exp(−rt,ττ) �m(2)(x) will automatically result in the price function

satisfying the arbitrage bounds appropriate for its payoff structure (in particular, (2.6) for a call

option). In the case of American-style payoffs, this would include adding to the right hand side of

(3.24) a supremum over the dates over which exercise may occur.

Finally, while we are motivated by the problem of constraining our locally polynomial estimator

to have bounded Þrst derivatives and to be convex, it should be noted from the proof that the

proposition in fact applies to more general inequalities on the Þrst two derivatives of the function,2

not just the speciÞc ones of interest in the context of estimating SPDs. The assumption that the

kernel density function is log-concave is not much of a restriction since that class of kernel functions

contains among others the Gaussian, uniform, Epanechnikov and Laplacian kernels, i.e., most of the

kernels used in practice.

2 If the inequalities are modiÞed, then the constraints in the constrained least squares need of course to be modiÞed

accordingly.
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4 Monte Carlo Analysis

4.1 Comparison with Unconstrained Nonparametric Estimators

We perform a Monte-Carlo analysis to determine the performance of the shape-constrained non-

parametric SPD estimator and compare it to the standard unconstrained Nadaraya-Watson and

locally linear nonparametric estimators. The natural terrain to apply these tools involve S&P 500

index options, so we calibrate our Monte Carlo simulation experiments to match the basic features

of this market. We assume that the true price function is the Black-Scholes/Merton model with a

implied volatility smile curve. Naturally, the advantage of our nonparametric approach lies in its

robustness. If the options were priced by another formula, the nonparametric approach should be

able to approximate it as well since, by deÞnition, it does not rely on any parametric speciÞcation

for the underlying asset�s price process. Therefore, similar Monte Carlo simulation experiments can

be performed for alternative option-pricing models. However, we choose to perform the simulation

experiments under an implied volatility smile model designed to be realistic for a typical trading

day in 1999. The smile curve used as the data generating process for the simulations was calibrated

based on the smile observed on May 13, 1999 on options on the S&P 500 traded at the Chicago

Board Options Exchange (CBOE) with expiration in July. The assumed smile is a linear function

of the strike with volatility equal to 40% at the strike price 1000 and 20% at the strike price 1700.

We set the spot price St at 1365. The short term interest rate and the dividend yield are set at

rt,τ = 4.5% and δt,τ = 2.5%, respectively. We consider both the 30 and 60 maturities and plot the

results for the 30-day options. The 60-day results are qualitatively similar.

We assume that we observe n = 25 option prices with strike prices equally spaced between

1000 and 1700, as would be the case with actual data. To create simulated option prices, we add

uniformly distributed noise to the theoretical option prices. There are two possible rationalizations

for the amount of noise to introduce around the assumed �true� option prices in order to carry out

simulations. First, the noise can model the bid-ask spread and the different liquidity of different

options. Second, we can assume that there is a true set of option prices at one point in time and

introduce noise to capture the time series variations of the option prices in a short window of time

around that date, after accounting for the variation of the underlying asset price in the same window.

In the Þrst approach, the assumed bid-ask spread, calibrated to the market data, is set to 5% of

the option�s ask price, with a ßoor at 50 cents and a cap at 2 dollars. The noise distribution around

the theoretical price is then uniform between 0 and half of the bid-ask spread value. We also account

for the different liquidity of options with different degrees of moneyness (most of the liquidity is near

the money). SpeciÞcally, recall that the option�s moneyness is Mt,τ ≡ X/Ft,τ (strike divided by the
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forward value of the S&P 500). The noise distribution around the theoretical price is then uniform

between 0 and half of the bid-ask spread value times a liquidity factor given by 1 + (2/0.2)|Mt,τ −1|.
This makes the liquidity factor 1 at the money (Mt,τ = 1) and 2 at Mt,τ = 0.8 or 1.2, and proxies

for the observed differences in liquidity of these options.

In the second approach, we calibrate the noise to the typical intraday variation of S&P500 option

prices, using their range to calibrate the uniform distribution of the noise term. In percentage terms,

the range of values reached stretches from 3% of the option value for deep in the money options

to 18% for deep out of the money options. In terms of the performance of the estimators, both

models for the noise term produce qualitatively similar results with the provision that the lower the

amount of noise, the lower the RMSE performance advantage of the constrained estimator over the

unconstrained locally linear estimator (since fewer simulated data samples violate the constraints).

This being said, one may argue that any violation of arbitrage constraints (such as those produced

by the unconstrained estimator) is potentially much more damaging than its mere RMSE effect (it

could for instance induce trading on a false perceived arbitrage) and should be penalized accordingly

when assessing an estimator�s performance. Also, other things equal, more noise tends to increase

the advantage of the constrained estimator. Nevertheless, the amount of noise we speciÞed above

is not unrealistically high. It is in fact, if anything, too conservative: see the empirical evidence in

Hentschel (2001).

For estimation, we use a Gaussian kernel. We select a range of bandwidths including those given

in Section 3.5 and repeat the estimation steps for each bandwidth value. Then for each function

to be estimated, we selected the optimal bandwidth on the basis of minimizing the small sample

weighted mean integrated squared error given in equation (3.20). We discuss this further below.

The Monte-Carlo averages and conÞdence intervals for each bandwidth, estimator and function to be

estimated are based on 5, 000 simulations and we focus on simulations using the second speciÞcation

of the noise term, the results being qualitatively similar to the Þrst one.

Figure 1 shows the average estimate, a 95% conÞdence interval, and the true functions for the

unconstrained Nadaraya-Watson estimator. Panel A of Figure 1 shows the call pricing function

estimator �m0,0, Panel B the Þrst derivative �m0
0,0 of the pricing function with respect to the strike

price, and Panel C shows the state price density �m00
0,0. As observed in Panel C of Figure 1, standard

unconstrained Nadaraya-Watson estimates are, on average, negative near the left boundary, where

the true probabilities are low. Of course, kernel estimation near the boundaries is known to be

problematic, see e.g., Wand and Jones (1995).

Figure 2 shows the same results for the (unconstrained) locally linear estimator, �m0,0 in Panel

A, �m0,1 in Panel B and �m0
0,1 in Panel C. As observed in Panel C of Figure 2, the locally linear
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estimator has much lower boundary bias than the Nadaraya-Watson estimator, but the SPD still can

be negative in the left boundary where the true probabilities are low.

Figures 3 and 4 report the results for the locally quadratic ( �mk,2 for k = 0, 1, 2) and locally

cubic ( �mk,3 for k = 0, 1, 2) estimators, respectively. As expected, higher order locally polynomial

estimators perform poorly in this context because they effectively correspond to more complex local

models in the absence of large enough samples. The net result is that the estimator�s biases can

be entirely eliminated but at the cost of a large variance penalty. At the optimal bandwidth choice

(which is what is plotted in the Þgures), the trade-off between squared bias and variance results in

relatively large biases and variances (see Panels C in Figures 3 and 4). In addition, these estimators

often violate the constraints near the boundaries (see Panels B and C). Comparing the results for the

unconstrained locally polynomial estimators corresponding to p = 0, 1, 2, 3, it appears that locally

linear estimators perform best in our context.

Figure 5 reports the results for our estimator, �m(0), �m(1) and �m(2). As observed in Panel C of

Figure 5, the constrained estimator does not share the drawbacks of the unconstrained estimators.

First, the constrained SPD estimator does not have the same boundary bias as the locally constant

Nadaraya-Watson �it behaves rather like the locally linear estimator that it is. Second, unlike the

unconstrained locally linear estimator, the constrained estimator remains nonnegative even when

the true probabilities are low. Intuitively, imposing the constraints has the effect of allowing lower

bandwidths than would be optimal for a locally linear estimator in their absence. This lowers the

bias of the estimator without increasing the variance correspondingly because the constraints prevent

the large deviations (which would violate the constraints) from occurring. The net effect is a more

accurate estimator on the basis of its mean squared error properties. Recall that we scale our

density estimator and shift it, as discussed in Section 3.6. Even though these last two constraints are

necessary to rule out arbitrage opportunities, our Monte-Carlo analysis reveals that, in practice, they

make small difference on the estimated function �m(2)(x).Indeed, for the optimal bandwidth case the

average value of
R +∞
0 �m(2)(z)dz is close to one (0.94) and the average shift z is 0.7% of the futures

price.

We conÞrm that intuition by studying the mean squared error behavior of the various estimators,

both pointwise and global, for the sample size under consideration. Figure 6 reports the global

root integrated mean squared error (RIMSE) of the Þve estimators of the pricing function, the Þrst

strike-derivative and the SPD. The RIMSE is the square root of the integral given in equation (3.20).

For each function to be estimated (k = 0, 1, 2) and estimator (p = 0, 1, 2, 3, and shape-constrained

estimator) we used the bandwidth resulting in the lowest RIMSE. The fact that smaller (resp. larger)

bandwidths result in smaller (resp. larger) bias and larger (resp. smaller) variance produce these
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U-shaped RIMSE curves with the bottom of the U identifying for each function and estimator the

globally optimal bandwidth used in Figures 1 through 5 respectively. Comparing speciÞcally our

constrained estimator to the unconstrained locally linear estimator conÞrms the initial intuition: the

shape-constrained estimator results in a lower RIMSE for lower bandwidths. For larger bandwidths,

the two estimators converge because larger bandwidths result in ßatter estimates, which consequently

tend to satisfy the constraints. This explains why the RIMSE curves for these two estimators converge

to one another to the right of their respective minima. However, the lowest RIMSE for the constrained

estimator of the SPD is about 25% lower than that of the unconstrained estimator because lowering

the bandwidth from the unconstrained optimum results in further decreases of the shape-constrained

RIMSE. Figure 7 shows the local, or pointwise, effect of oversmoothing (higher bias, lower variance)

and undersmoothing (lower bias, higher variance) the constrained estimator relative to the optimal

bandwidth.

Furthermore, we should note that, in all likelihood, MSE-based error measures alone underesti-

mate the true cost of using an estimator that can violate the constraints. The mean-squared error

does not attach any penalty to violations of the constraints by the unconstrained estimators. Eco-

nomic measures of the cost of violating the constraints could be quite large. For example, hedges

based on option deltas that violate the constraints could quickly become ineffective; pricing with

an estimated SPD that is negative in the left tail leads to underestimation of out of the money put

prices, trades could be put in place based on the false perception of arbitrage (locally negative SPD),

etc.

Simulation results for n = 50 observations, and the Þrst simulation design, are qualitatively

similar. Overall, the results of the simulations suggest that for these types of sample sizes, imposing

the shape constraints (2.5) results in a substantial improvement of the estimators.

4.2 Comparison with Parametric Alternatives

Finally, we also compare our estimator to two parametric alternatives. We consider the Jarrow

and Rudd (1982) parametric extension of the Black-Scholes model where the lognormal density is

replaced by a four-parameter expansion, namely

p (ST |St) =
exp

©−z2/2ª
ST
√
2πτσ

³
1 +

µ3
6

¡
z3 − 3z¢+ µ4

24

¡
z4 − 6z2 + 3¢´ (4.1)

where

z = z (ST |St) =
Ln(ST/St)−

¡
µ1 − σ2/2

¢
τ

σ
√
τ
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and the call price computed as

Pt = e
−rτ

Z +∞

K
(ST −K) p (ST |St) dST . (4.2)

The 4 parameters µ1, σ, µ3, µ4 are estimated by minimizing the squared deviations between

market prices and parametric prices.3 Since there is no bandwidth choice involved in this parametric

formula, there is only one density per simulation. Given the sample sizes we consider, more ßexible

functional forms become essentially nonparametric in nature � if we have 25 observations and we

are Þtting a parametric model with, say, up to 10 parameters, then the choice of the number of

parameters becomes akin to the choice of the bandwidth in nonparametrics.

The second parametric family we use in our comparisons is a Þve-parameter mixture of lognormal

densities which has been used in this context by Bahra (1996). The assumed model is

p (ST |St) = αpLN (ST |St;µ1, σ1) + (1− α) pLN (ST |St;µ2, σ2) (4.3)

where

pLN (ST |St;µ, σ) = 1

ST
√
2πτσ

exp

½
− 1

2σ2τ

¡
Ln(ST/St)−

¡
µ1 − σ2/2

¢
τ
¢2¾

and the call price computed as in (4.2). The pricing formula corresponding to (4.3) is a linear com-

bination of Black-Scholes formulae (α times the Black-Scholes formula corresponding to parameters

(µ1, σ1) plus 1− α times the Black-Scholes formula corresponding to parameters (µ2, σ2)).
The 5 parameters α,µ1, σ1, µ2, σ2 are estimated by minimizing the squared percentage deviations

between market prices and parametric prices. The reason for using squared price errors in one case

and squared percentage errors in the other is that they produced the best results for the two methods

respectively. Attempting to minimize squared price errors with the mixture of lognormals often

produces nonsensical results, where one of the two densities is tailor-made to Þt in the money calls

where pricing errors in dollars are costly, resulting in that density having a very low value of its σ

parameter (in addition to a very negative value of its µ parameter).

Both parametric models provide a better contrast between the results of a true parametric pro-

cedure and those of nonparametric ones. Panels A and B of Figure 8 report the results for the

estimated SPD resulting from these two methods, in the same format as Panel C of Figures 1-5.

Because they are global in nature as opposed to local, the two types of parametric estimators are

unable to cope well with arbitrage violations in the data. This is not due to the inadequacy of the

parametrizations: as we show in Panels C and D of Figure 8, the two models can Þt the true SPD

3See Christoffersen and Jacobs (2001) for a discussion of the inßuence of the choice of loss function in this context.
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assumed in the data generating process (with no noise) almost perfectly. The issues arise when we

attempt to Þt a set of price data that includes noise, i.e., sometimes local violations of convexity, as

this produces a global distortion of the estimator � in other words, the error propagate from the local

violation (which often occurs in one tail) throughout the estimated distribution (including near the

peak and in the other tail).

This results in RMSE measures that, for the same simulation designs as the other estimators we

considered, are worse than what can be achieved by our proposed locally linear constrained estimator.

After all, avoiding this local-to-global contamination due to outliers, bad data, etc., is often why one

uses nonparametric estimators in the Þrst place. Locally polynomial estimators are particularly apt

at dealing with this issue.

5 Example: S&P 500 Implied SPD Under Shape Restrictions

Aït-Sahalia and Lo (1998, 2000) estimated the market call pricing function from a sample of 14,441

option prices on the S&P 500 index. They used the semiparametric approach described in (2.12).

They found empirically, without imposing shape constraints, that their SPD estimator is convex but

only because of the dimension reduction involved in the semiparametric speciÞcation, and because

of the very large size of their sample. In practice, it would be desirable to have similar guarantees

with substantially smaller samples. Indeed, as opposed to Aït-Sahalia and Lo (1998, 2000), we work

with samples of tiny sizes (a typical cross-section at one point in time of 20 to 30 options versus a

time-aggregated cross-section of 14, 431 options).

The data consist of the closing prices on May 13, 1999 for call options on the S&P 500 traded

at the CBOE for a maturity of 65 days corresponding to the July 1999 expiration (July 17). The

closing spot price of the S&P 500 on that day was 1367.56, and the risk free interest rate for that

maturity was 4.83%. The dividend yield is implied through put-call parity for the put-call pair at

the money. The results from applying the Þve different estimators (unconstrained Nadaraya-Watson,

unconstrained locally linear, quadratic and cubic, shape-constrained locally linear) are reported in

Figure 9. The bandwidths correspond to the optimum identiÞed in the previous section. The three

panels correspond to the three functions to be estimated. As is apparent from Panel A, all estimators

produce sensible looking (and visually indistinguishable) estimates for the pricing function as long

as strikes remain relatively near the money (strikes between 1200 and 1500). However, for values

of the strike price above 1600 the locally quadratic and locally cubic estimators display their high

variability tendency which was clearly apparent in the simulations. And the Nadaraya-Watson

estimator exhibits poor boundary behavior below 1100, clearly violating the convexity constraint on
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prices.

Naturally, differentiation tends to emphasize the differences between estimators. In Panel B,

all remaining estimators except the two locally linear ones (constrained and unconstrained) violate

the Þrst derivative constraints somewhere. Regarding SPD estimates in Panel C, all the uncon-

strained estimators either violate the positivity constraint in the left tail of the density, or are too

ßat when evaluated at the globally optimal bandwidth. The unconstrained locally linear estima-

tor tracks the constrained estimator relatively closely, except that the optimal bandwidth tends to

produce an estimator that is slightly too ßat, as was evidenced in the discussion of our simulation

results. By contrast, the optimal amount of smoothing for the shape-constrained estimator is slightly

lower which produces an estimator that is more sensitive to Þner features of the data. Indeed, our

shape-constrained estimator produces an estimate of the SPD which looks quite plausible, displaying

the expected level of negative skewness and excess kurtosis, while satisfying (by construction) the

positivity constraint.

Finally, we report in Table 1 the results of repeating this analysis for every trading day during the

year 1999. We repeated the analysis for different days (one set of quotes per day, each day treated

separately) and report the frequency of arbitrage violations during that year. The unconstrained

locally linear estimator violates the restrictions over 50% of the time, a percentage which rises to

close to 100% as we move to the (unconstrained) locally quadratic and cubic estimators. By contrast,

our estimator never violates the constraints (and still results in lower RMSE). The violation of the

arbitrage restrictions by the unconstrained estimators hold across a large spectrum of bandwidth

values. Substantial oversmoothing is required to make the unconstrained estimator no longer violates

he constraints. But this then results in a large bias.

6 Conclusions

This paper proposed a method to incorporate shape restrictions, such as monotonicity and convexity,

into nonparametric locally linear estimators. The estimator is motivated by the practical problem

of estimating state-price densities with option data, in a setting where no information other than

monotonicity and convexity is available, yet the sample size is typically small. The simulations

results indicate that nonparametric estimates can be quite feasible in sample sizes as small as twenty

observations, provided that appropriate theory-motivated shape restrictions, such as monotonicity,

and/or convexity, are imposed. As discussed in the Introduction, this is a frequent occurrence in

other areas of economics as well.

In our speciÞc context of SPD estimation, the shape-constrained SPD we estimated can have
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many uses. First, it provides us with an arbitrage-free method of pricing new, more complex, or

less liquid securities, e.g., OTC derivatives or non-traded ßexible options, given a subset of observed

and liquid �fundamental� prices, in this case basic call-option prices, that are used to estimate the

SPD. We are able to achieve this in the context where very few fundamental securities are available,

i.e., the observed cross-section is very sparse. Second, from a risk management perspective, our SPD

estimates provide information that is crucial to understanding the nature of the fat tails of asset-

return distributions implied by options data. Volatility cannot be used as a summary statistic for

the entire distribution when typical return series display events that are three standard deviations

from the mean approximately once a year. Our approach yields an estimate of the entire return

distribution, from which single points, such as value-at-risk, can easily be derived. Third, our

nonparametric estimator captures those features of the data that are most salient from an asset-

pricing perspective and which ought to be incorporated into any successful parametric model. It

also helps us understand what features are missed by tightly parametrized models, such as day-

to-day or even intraday changes in the shape of the SPD, since we can now estimate such SPDs

nonparametrically on the basis of very few observations. In fact, a nonparametric analysis can often

be advocated as a prerequisite to the construction of any parsimonious parametric model, precisely

because important features of the data are unlikely to be missed by nonparametric estimators.
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Appendix

A The Constrained Least Square Regression Algorithm

A.1 Transforming the Constrained Least Squares Problem to One with Conic

Constraints

We start by rewriting the constrained least squares problem in such a way as to reduce it to a convex

cone problem which is then amenable to Dykstra�s algorithm for constrained least squares under

conic constraints. Goldman and Ruud (1995) contain ideas along those lines, although not a formal

development. Write our constraints (3.3) in matrix form as A.m − b ≤ 0, where A is n + 1 (the

number of constraints) by n (the number of mi�s) and b is (n + 1) × 1. In its original form, our
problem is therefore

min
m∈Rn

km− yk2 (A.1)

subject to A.m− b ≤ 0

DeÞne

u =

 m− y
t

 =

 z

t

 , v =

 0

1

 , C = (A | A.y − b)

where t is 1× 1, and the 0 block in the vector v is n× 1. Then consider the problem

min
u∈Rn+1

ku− vk2 = kzk2 + |t− 1|2 (A.2)

subject to C.u ≤ 0 and t = 1

where minimizing over u means minimizing over (z, t). The solution u∗∗ = (z∗∗, 1) to problem (A.2)

gives the solution m∗∗ of our original problem (A.1) as m∗∗ ≡ z∗∗ + y. Indeed, the solution u∗∗ of

(A.2) has set t = 1 and then minimized kzk2 over z under the constraint that C.u ≤ 0 and we have

C.

 z

1

 ≤ 0 ⇔ A.z + (A.y − b) ≤ 0 ⇔ A.m− b ≤ 0.

But problem (A.2) still does not have conic constraints (because of the constraint t = 1, which

is again affine). So consider next the problem where we have relaxed the affine constraint t = 1 to
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the linear (or conic) constraint t ≥ 0 :

min
u∈Rn+1

ku− vk2 = kzk2 + |t− 1|2 (A.3)

subject to C.u ≤ 0 and t ≥ 0

Now this problem is in Dykstra�s conic constraints form, and let its solution be denoted by u∗ =

(z∗, t∗).

Let us see how the solutions to the two problems (A.2) and (A.3) are related. Note that because

u∗∗ satisÞes the constraint C.u∗∗ ≤ 0, we have

A.z∗∗ + (A.y − b) ≤ 0.

Since t∗ ≥ 0, it follows that

A.z∗∗t∗ + (A.y − b)t∗ ≤ 0.

Therefore (z∗∗t∗, t∗) satisÞes the constraints of problem (A.3). Since by deÞnition the optimum of

problem (A.3) is reached at u∗ = (z∗, t∗), it follows that

kz∗k2 + |t∗ − 1|2 ≤ kz∗∗t∗k2 + |t∗ − 1|2

or

kz∗k2 ≤ kz∗∗t∗k2 . (A.4)

Now, it is also the case that, since u∗ satisÞes the constraint C.u∗ ≤ 0, we have

A.z∗ + (A.y − b)t∗ ≤ 0.

Since t∗ ≥ 0, it follows that

A.(z∗/t∗) + (A.y − b) ≤ 0,

so that ((z∗/t∗), 1) satisÞes the constraints of problem (A.2). But by deÞnition the optimum of

problem (A.2) is reached at u∗∗ = (z∗∗, 1), thus

kz∗∗k2 ≤ k(z∗/t∗)k2 . (A.5)

Multiplying equation (A.5) by (t∗)2 and combining with (A.4), it follows that kz∗k2 = kz∗∗t∗k2 ,
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so that the minimum of problem (A.2) is achieved at

z∗∗ = z∗/t∗. (A.6)

Therefore the solution (z∗∗, 1) of problem (A.2).can be obtained from the solution (z∗, t∗) of problem

(A.3). Recall that the solution m∗∗ to our original problem (A.1) is obtained from the solution of

problem (A.2) by m∗∗ ≡ z∗∗ + y. Hence solving problem (A.3) using Dykstra�s algorithm to Þnd

(z∗, t∗) ultimately gives us the the solution m∗∗ to our original problem (A.1).

A.2 Algorithm for Constrained Least Squares Under Conic Constraints

We now brießy describe Dykstra (1983)�s algorithm to solve the constrained least square regression

problem (A.3), which has conic constraints. DeÞne the following cones in Rn+1. For j = 1, ..., n− 2,
let

Cj = {u ∈ Rn+1 s.t. zj+2 − zj+1
xj+2 − xj+1 −

zj+1 − zj
xj+1 − xj + t×(

yj+2 − yj+1
xj+2 − xj+1 −

yj+1 − yj
xj+1 − xj ) ≤ 0} j = {1, ..., n−2}

and

Cn−1 = {u ∈ Rn+1 s.t. − zn + t× (−yn) ≤ 0}
Cn = {u ∈ Rn+1 s.t. zn − zn−1 + t× (yn − yn−1) ≤ 0}

Cn+1 = {u ∈ Rn+1 s.t. − z2 + z1 + t× (−y2 + y1 − (x2 − x1)× e−rt,ττ ) ≤ 0}
Cn+2 = {u ∈ Rn+1 s.t. − t ≤ 0}.

The minimization problem (A.3) can be written as:

min
u∈Tn+2j=1 Cj

nX
i=1

(ui − vi)2 (A.7)

The algorithm consists in repeatedly projecting the vector u onto the cones Cj :

� Let u1,1 denote the projection of u onto the cone C1. Let I1,1 = u1,1−u denote the incremental
change incurred by the projection, so that u1,1 = u+ I1,1

� Let u1,2 denote the projection of u1,1 onto the cone C2. Let I1,2 = u1,2 − u1,1 denote the
incremental change incurred by the projection, so that u1,2 = u+ I1,1 + I1,2.

� Let u1,n+2 denote the projection of u1,n+1 onto the cone Cn+2. Let I1,n+2 = u1,n+2 − u1,n+1
denote the incremental change incurred by the projection, so that u1,n+2 = u + I1,1 + I1,2 +
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I1,3 + ....+ I1,n+1 + I1,n+2.

� After u1,n+2 and I1,n+2 are found. Let u2,1 denote the projection of u + I1,2... + I1,n+2 onto
the cone C1. Note that we have removed the increment I1,1 before this projection. The new

increment is I2,1 = u2,1 − (u+ I1,2...+ I1,n+2).

� Continue, until u�,� ∈
Tn+2
j=1 Cj.

The projections of u�,� onto cones Cj are easily obtained. If we represent the cone Cj by Cj =

{u ∈ Rn+1 s.t. Pn+1
i=1 aj,iui ≤ 0}, then the projection of u onto Cj is given by:

P (u|Cj) =
 u if

Pn+1
i=1 aj,iui ≤ 0

u0 if
Pn+1
i=1 aj,iui > 0

where

u0i = ui −
(
Pn+1
l=1 aj,lul)aj,iPn+1

l=1 a
2
j,l

.

B Proof of Proposition 1

Part 1: Proof that exp(−rt,τ τ) ≤ �m1,1(x) ≤ 0.
The proof is based essentially on rearranging the terms in the numerators and the denominators

of the locally linear estimators in such a way that they can be signed. With ki = Kh(x − xi) =
h−1K(h−1(x− xi)), the local linear estimator of the regression function is

�m0,1(x) = �β0,1 =
Sn,2Tn,0 − Sn,1Tn,1
Sn,2Sn,0 − S2n,1

=

Pn
i=1

Pn
j=1(xj − x)2mikikj −

Pn
i=1

Pn
j=1(xj − x)(xi − x)mikikjPn

i=1

Pn
j=1(xj − x)2kikj −

Pn
i=1

Pn
j=1(xi − x)(xj − x)kikj

=

Pn−1
i=1

Pn
j=i+1(xj − xi)((xj − x)mi − (xi − x)mj)kikjPn−1

i=1

Pn
j=i+1(xi − xj)2kikj

(B.1)
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while the locally linear estimator of the Þrst partial derivative of m(x) with respect to x is given by:

�m1,1(x) = �β1,1 =
Sn,0Tn,1 − Sn,1Tn,0
Sn,2Sn,0 − S2n,1

=

Pn
i=1

Pn
j=1(xi − x)mikikj −

Pn
i=1

Pn
j=1(xj − x)mikikjPn

i=1

Pn
j=1(xj − x)2kikj −

Pn
i=1

Pn
j=1(xi − x)(xj − x)kikj

=

Pn
i=1

Pn
j=1(xi − xj)mikikjPn

i=1

Pn
j=1(xj − x)(xi − xj)kikj

=

Pn−1
i=1

Pn
j=i+1(xj − xi)(mj −mi)kikjPn−1

i=1

Pn
j=i+1(xj − xi)2kikj

(B.2)

Therefore if the bivariate sample (x1,m1), ..., (xn,mn) satisÞes the property that if xi < xj then

(mj −mi)/(xj − xi) ≥ c
¯
, for all i and j > i, where c

¯
is a constant then

n−1X
i=1

nX
j=i+1

(xj − xi)(mj −mi)kikj ≥ c
¯

n−1X
i=1

nX
j=i+1

(xj − xi)2kikj

and hence �m1,1(x) ≥ c
¯
. If in addition the bivariate sample (x1,m1), ..., (xn,mn) satisÞes the property

that if xi < xj then (mj −mi)/(xj − xi) ≤ c̄, for all i and j > i, then
n−1X
i=1

nX
j=i+1

(xj − xi)(mj −mi)kikj ≤ c̄
n−1X
i=1

nX
j=i+1

(xj − xi)2kikj

and hence �m1,1(x) ≤ c̄. Applying this with c
¯
= exp(−rt,ττ) and c̄ = 0 gives the result.

Part 2: Proof that �m0
1,1(x) ≥ 0.

Let Mi,j = (mi−mj)/(xi−xj) = (mj −mi)/(xj −xi) denote the local slope between xi and xj.
Also deÞne ki,j = (xi − xj)2kikj and let k0i,j denote the partial derivative of ki,j with respect to x.
Rewrite (B.2) as

�m1,1(x) =

Pn−1
i=1

Pn
j=i+1Mi,jki,jPn−1

k=1

Pn
l=k+1 kk,l

so that:

�m0
1,1(x) =

Ã
n−1P
i=1

nP
j=i+1

Mi,jk0i,j

!Ã
n−1P
k=1

nP
l=k+1

kk,l

!
−
Ã
n−1P
i=1

nP
j=i+1

Mi,jki,j

!Ã
n−1P
k=1

nP
l=k+1

k0k,l

!
Ã
n−1P
k=1

nP
l=k+1

kk,l

!2 (B.3)

Rearranging the terms in (B.3) yields
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Ã
n−1X
k=1

nX
l=k+1

kk,l

!2
�m0
1,1(x) =

n−1X
i=1

nX
j=i+1

n−1X
k=i+1

nX
l=k+1

³
k0i,jkk,l − ki,jk

0
k,l

´
(Mi,j −Mk,l) (B.4)

+
n−1X
i=1

nX
j=i+1

nX
l=j+1

³
k0i,jki,l − ki,jk

0
i,l

´
(Mi,j −Mi,l)

We want to prove that �m0
1,1(x) ≥ 0, i.e., that the right hand side of (B.4) is nonnegative. Recall

that we assumed that the kernel functionK(·) was a log-concave probability density. That is, log(K)
is concave, i.e., its Þrst derivative is decreasing:

K0 (a)
K(a)

≥ K0 (b)
K(b)

if b ≥ a. Therefore if k ≥ i and l ≥ j we have
x− xi
h

≥ x− xk
h

and
x− xj
h

≥ x− xl
h

and hence

k0i
ki
≤ k0k
kk

and
k0j
kj
≤ k0l
kl

where ki = Kh(x− xi) and k0i = h−1K 0
h(x− xi). Therefore

k0i
ki
− k

0
k

kk
+
k0j
kj
− k

0
l

kl
≤ 0

and

k0i,jkk,l − ki,jk
0
k,l = (xi − xj)2 (xk − xl)2 kikkkjkl

µ
k0i
ki
− k

0
k

kk
+
k0j
kj
− k

0
l

kl

¶
≤ 0 (B.5)

if k ≥ i and l ≥ j.
>From now on, let

ci,j,k,l ≡
³
k0i,jkk,l − ki,jk

0
k,l

´
(Mi,j −Mk,l) (B.6)

denote the generic term in the sums (B.4). In addition to (B.5), it is also the case thatMi,j ≤Mk,l ≤
0, hence Mi,j −Mk,l ≤ 0 for all (i, j, k, l) such that k ≥ i and l ≥ j. Therefore for such (i, j, k, l) we
have ci,j,k,l ≥ 0. Throughout the Þrst sum in (B.4), the indices satisfy k > i, and in the second sum

k = i. Thus as long as l ≥ j, the terms ci,j,k,l are nonnegative throughout the two sums in (B.4).

That l ≥ j will be the case for all the terms in the second sum in (B.4), where l ≥ j + 1, but not
necessarily in the Þrst sum where there are quadruplets (i, j, k, l) such that k ≥ i but l < j. For
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these, we cannot be sure that ci,j,k,l ≥ 0.
Consider such a quadruplet (i, j, k, l) in the sum

Pn−1
i=1

Pn
j=i+1

Pn−1
k=i+1

Pn
l=k+1 ci,j,k,l for which

nonnegativity of ci,j,k,l is not guaranteed. Such a quadruplet satisÞes i < k < l < j. The key

to the proof that these terms are not big enough to make the overall sum negative is to consider

this problematic quadruplet (i, j, k, l) together with the two permutations (i, k, l, j) and (i, l, k, j).

These two permutations are used up only with that particular quadruplet: any other problematic

quadruplet would not need to re-use the same permutations. For these two permutations, we have

ci,k,l,j ≥ 0 (since l > i and j > k) and ci,l,k,j ≥ 0 (since k > i and j > l) and it turns out that adding
these two terms to the problematic term produces a nonnegative result, that is

ci,j,k,l + ci,k,l,j + ci,l,k,j ≥ 0. (B.7)

To prove this, we now show that

ci,j,k,l + ci,k,l,j + ci,l,k,j =
³
k0i,jkk,l − ki,jk

0
k,l

´
(Mi,j −Mk,l) +

³
k0i,kkl,j − ki,kk

0
l,j

´
(Mi,k −Ml,j)

+
³
k0i,lkk,j − ki,lk

0
k,j

´
(Mi,l −Mk,j)

= kikjkkkl

µ
k0i
ki
ti +

k0j
kj
tj +

k0k
kk
tk +

k0l
kl
tl

¶
(B.8)

where
ti ≡ (xk − xi)(xl − xi)(xj − xi) {(Mi,j −Mi,l) (2xj − xk − xl) + (Mi,k −Mi,l) (2xk − xj − xl)}
tj ≡ (xj − xl)(xj − xk)(xj − xi) {(Mi,j −Mk,j) (2xi − xk − xl) + (Ml,j −Mk,j) (2xl − xi − xk)}
tk ≡ (xj − xk)(xl − xk)(xk − xi) {(Mi,k −Mk,l) (2xi − xj − xl) + (Mk,j −Mk,l) (2xj − xi − xl)}
tl ≡ (xj − xl)(xl − xk)(xl − xi) {(Mi,l −Mk,l) (2xi − xj − xk) + (Ml,j −Mk,l) (2xj − xi − xk)}

(B.9)

Note that  ti + tk = 2(xk − xi)2(xj − xl)2 (Mi,k −Ml,j)

tj + tl = 2(xk − xi)2(xj − xl)2 (Ml,j −Mi,k)
(B.10)

therefore 
ti + tk ≤ 0
tj + tl ≥ 0

ti + tk + tj + tl = 0

(B.11)

Recall now that we are dealing with a quadruplet (i, j, k, l) such that i < k < l < j : therefore we
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have 
Mi,k ≤Mi,l ≤Mi,j ≤Ml,j

Mi,k ≤Mk,l ≤Mk,j ≤Ml,j

Mi,l ≤Mk,l

(B.12)

These inequalities follow from repeated application of the fact that for any triplet (i, k, l) such that

i < k < l,

mk −mi

xk − xi ≤
ml −mi

xl − xi ≤
ml −mk

xl − xk (B.13)

which itself follows from

ml −mi

xl − xi =
µ
xk − xi
xl − xi

¶
mk −mi

xk − xi +
µ
1− xk − xi

xl − xi

¶
ml −mk

xl − xk
where 0 ≤ (xk − xi)/(xl − xi) ≤ 1. Thus the middle slope Mi,l is a weighted average of the extreme

slopes Mk,l and Mi,l.

As a consequence of (B.12), we have tk ≥ 0 and tj ≥ 0. Combined with (B.11), it follows that: ti ≤ −tk ≤ 0
−tj ≤ tl ≤ 0

(B.14)

We can now return to equation (B.8). The sign of its right hand side is determined by the sign ofµ
k0i
ki
ti +

k0j
kj
tj +

k0k
kk
tk +

k0l
kl
tl

¶
and since i < k < l < j, we have

k0i
ki
≤ k0k
kk
≤ k0l
kl
≤ k0j
kj

by the log-concavity of the kernel function. Since tk ≥ 0,
k0i
ki
tk ≤ k0k

kk
tk ⇒ k0i

ki
ti +

k0k
kk
tk ≥ k0i

ki
(ti + tk)

and since tj ≥ 0,
k0j
kj
tj ≥ k0l

kl
tj ⇒ k0j

kj
tj +

k0l
kl
tl ≥ k0l

kl
(tl + tj) .

Since now tl + tj ≥ 0,
k0l
kl
≥ k0i
ki

⇒ k0l
kl
(tl + tj) ≥ k0i

ki
(tl + tj)
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from which it follows thatµ
k0i
ki
ti +

k0j
kj
tj +

k0k
kk
tk +

k0l
kl
tl

¶
≥ k0i
ki
(ti + tk + tl + tj) = 0 (B.15)

hence the result (B.7).

Hence �m0
1,1(x) ≥ 0, as desired. Setting �m(1)(x) = �m1,1(x) and �m(2)(x) = �m0

1,1(x) we therefore

have estimators of the slope and state-price density that will always satisfy the constraints in sample.
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Estimator p Violation Frequency

Nadaraya-Watson 0 242/242

Locally Linear 1 130/242

Locally Quadratic 2 205/242

Locally Cubic 3 241/242

Constrained Locally Linear 0/242

Table 1: Occurrence of Arbitrage Restriction Violations during 1999

This table reports the percentage of trading days during year 1999 when the various estimators of the SPD
violated the arbitrage constraints (i.e., positivity of the SPD). By construction, our constrained estimator will
always satisfy the arbitrage restrictions. These results are for S&P500 index options with 30 to 90 (calendar)
days to expiration, and every day during year 1999 when such options are traded. Each day, we select the
25 most actively traded strikes, relying on put-call-parity as required to complete the range of traded in-the-
money calls on the basis of out-of-the-money put prices (which are more actively traded). For each estimator,
we used the bandwidths determined to be optimal in a sample of n = 25 strikes on the basis of our Monte
Carlo simulations reported earlier. The options data came from the CBOE.
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Figure 1:  Nadaraya-Watson Estimator
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Figure 2:  Locally Linear Estimator
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Figure 3:  Locally Quadratic Estimator
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Figure 4:  Locally Cubic Estimator
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Figure 5:  Constrained Estimator
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Figure 6:  Global Root Mean Squared Error and Bandwidth Selection
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Figure 6 continued

Panel B:  Square Root of the Integrated Mean Squared Error of the First Strike-Derivative Estimators
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Figure 7:  Bias-Variance Trade-Off for the Constrained SPD Estimator
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Figure 8:  Comparison with Two Parametric Estimators
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Figure 8 continued
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Figure 9:  S&P 500 Options, July Expiration on May 13, 1999

Constrained estimator

Nadaraya�Watson

Locally linear

Locally quadratic

Locally cubic

Panel A:  Price Function Estimates

1000 1200 1400 1600 1800
strike

0

50

100

150

200

250

300

350

o
p
t
i
o
n

p
r
i
c
e



Figure 9 continued

Panel B: First Strike-Derivative Estimates
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