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ABSTRACT

A unified growth theory is developed that accounts for the roughly constant living standards
displayed by world economies prior to 1800 as well as the growing living standards exhibited by
modern industrial economies. Our theory also explains the industrial revolution, which is the
transition from an era when per capita incomes are stagnant to one with sustained growth. This
transition is inevitable given positive rates of total factor productivity growth. We use a standard
growth model with one good and two available technologies. The first, denoted the "Malthus"
technology, requires land, labor and reproducible capital as inputs. The second, denoted the "Solow"
technology, does not require land. We show that in the early stages of development, only the
Malthus technology is used and, due to population growth, living standards are stagnant despite
technological progress. Eventually, technological progress causes the Solow technology to become
profitable and both technologies are employed. At this point, living standards improve since
population growth has less influence on pér capita income growth. In the limit, the economy

behaves like a standard Solow growth model.
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1. Introduction

This paper provides a unified theory that can account for the secular properties, or
“growth facts,” of economic time series as observed in most, if not all, world economies prior to
1800 as well as the properties of time series observed in modern industrialized economies. Prior
to 1800, living standards were roughly constant; per capita wage income, output and
consumption did not grow. Modern industrial economies, on the other hand, enjoy seemingly
endless growth in living standards. In addition, the theory provided in this paper explains the
industrial revolution, which is the transition from an era when per capifa incomes are stagnant to
one with sustained growth. In our model, given that we have abstracted from institutions that
may inhibit technology adopticn, this transition is inevitable given positive rates of total factor
productivity growth. In particular, at the time of the transition, there is no change in the structure
of the economy (parameters describing preferences, technology and policy) and the equilibrium
implied by our theory is unique.

The model we construct combines features of a modern Solow growth model with one
that is Malthusian in spirit. The latter is a mode! that can account for the growth facts of a pre
1800 economy while the former describes properties of modern industrial economies. This is
done by introducing two technologies into a standard general equilibrium growth model (the
mode! of Diamond (1965)). The same good is produced by both technologies and total factor
productivity grows exogenously in both sectors. One of these, denoted the Malthus technology,
is a constant returns to scale production process with land, labor and reproducible capital as
inputs. Here, we are effectively modeling production as taking place on family farms and
workshops. An important feature is that land, unlike capital, is a fixed factor that cannot be
produced and does not depreciate. The second, denoted the Solow technology, is similar to the
first except that only labor and capital are used. Production in this sector can be interpreted as
being carried out in factories where entry or exit occurs depending on the profitability of

operating an additional factory.



We show that along the equilibrium growth path, only the Malthus technology is used in
the early stages of development when the stock of useable knowledge is small. During these
periods, assuming that population grows at the same rate as output, the living standard is
constant. Eventually, as useable knowledge grows, the Solow technology begins to be used.
That is, a portion of the available labor and capital are employed in this sector. At this point,
living standards begin to improve and population growth has less influence on the growth rate of
per capita income. In the limit, the economy behaves like a standard Sclow growth model,
which displays many of the same secular properties as modern industrial economies.

The inevitable transition from a land based agrarian economy to a modern industrial
economy requires, in our model, that the rate of total factor productivity growth in the Solow
sector be positive in periods prior to the adoption of this technology. That is, the Solow
technology must improve sufficiently over time so that it ultimately becomes profitable to shift
resources into this previously unused sector, Consistent with this idea, Mokyr {1990), who
documents technological progress over the past 25 centuries, notes that “much growth is derived
from the deployment of previously available information rather than the generation of altogether
new knowledge.”' The fact that living standards began to grow following the adoption of the
Solow technology has nothing to do, however, with the rate of technological progress in the
Solow sector relative to that in the Malthus sector. The existence of growing living standards
depends only on shifting away from the land intensive Malthus technology to one that is capital
intensive. The rate of increase in living standards does depend on the rate of technological
progress in the Solow sector.

The issue addressed in this paper is related to that motivating Lucas (1998), but our

approach differs sharply from his. Lucas is concerned with explaining differences in population

! Mokyr (1990}, page 6. Of course, some technological advancements, the wheelbarrow for example, increased
total factor productivity in both sectors. The invention was employed in the agrarian sector long before the
industrial revolution. This invention did, however, improve the nascent (but as of yet unemployed) industrial sector
as well. As Mokyr and others have clearly documented, technological advancement did not begin with the industrial
revolution. Of course, once the Solow technology began to be used, the advantages of “learning by doing” and more
immediate economic payoff almost certainly increased the rate of technological growth in this sector.



dynamics that differentiate the pre-industrial revolution era from the modern era, and, as a result,
endogenous fertility and human capital accumulation play central roles in his analysis. In
particular, he constructs a model economy that, depending on the value of a certain parameter
governing the private return to human capital accumulation, can exhibit either Malthusian or
modern features. The approach taken by Lucas is related to that of Becker, Murphy and Tamura
(1990), who also emphasize the importance of fertility and human capital investment choices. In
their interpretation, the Mathusian and modern eras are different steady states of the same model.
In both of these papers, the transition from an economy with stable living standards to one with
growing living standards requires a change in the return to human capital accumulation. The
transition from Malthus to Solow is not an equilibrium property of these models as it is in our
theory.?

Laitner (1998) employs an approach similar to ours in order to explain why savings rates
tend to increase as an economy develops. Like us, he studies an economy that can display
equilibria in which a land intensive production process is used exclusively in the early stages of
development and, as technology improves, a capital intensive technology is eventually employed
as well. However, the transition to the capital intensive technology in Laitner’s model requires
that living standards grow prior to the transition. Hence, his early stage is not consistent with a
Malthusian equilibrium as we define it.

The rest of this paper is organized as follows. In the next section we discuss some
empirical facts concerning pre-industrial and post industrial economies. These facts are used
later to test our theory. In section 3, the model economy is presented and an equilibrium is
defined and characterized. The methods we use to compute an equilibrium path are described in
section 4. We simulate the transition from Malthus to Solow in section 4, and compare our
results with the facts discussed in section 2. Finally, some concluding comments are provided in

section 5.

2 Recent work by Galor and Weil (1998) and Tamura (1998} models the transition from a Malthusian to an
industrial economy using a theory emphasizing human capital accumulation and endogenous fertility.



2. The Behavior of the English Economy from 1250-2000

The Period 1264-1800

The Malthusian model describes well the behavior of the English economy from 1250 to
nearly 1800. In this period the real wages, and more generally the standard of living, displays
little or no trend. Increases in the stock of useable knowledge that increased production
possibilities gave rise to population growth, not to increases in standards of living. During this
period there was a large exogenous shock that reduced the population significantly below trend
for an extended period of time. The shock was the Black Death. For the extended period that
population was below trend, the real wage was significantly above its normal value. This
observation is just what Malthusian theory predicts. We now review evidence supporting these
statements.

Figure 1 plots the real farm wage for the period 1265-1800.7 This figure shows very little
trend in the real wage over this period. The Phelps-Brown and Hopkins (1956) price index we
use to deflate money wages is far from ideal. The weights used are 80 percent for food, 7.5
percent for lighting and heating and 12.5 percent for textiles. During the period these categories
of spending constituted most expenditures of the typical craftsman or laborer. There may have
been an additional modest rise in the real wage over this period due to a fall in the price of goods
not in the market basket of consumables used by Phelps-Brown and Hopkins (1956) and to
increase in quality of goods. However, a modest increase over a 535-year period is an

infinitesimal growth rate.

3 The English population series is from Clark (1998a) for 1265-1535 and from Wrigley et al. (1997) for 1545-1800.
The nominal farm wage series is from Clark (1998b) and the price index used to construct the real wage series is
from Phelps-Brown and Hopkins (1956). The data has been normalized to be 100 in 1265 and has been smoothed
using the Hodrick-Prescott filter with a smoothing parameter of 1000.
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This picture also shows dramatic opposite movements in the real wage and population.
There is a dip in population that bottoms out around 1500 that is accompanied by an increase in
the real wage. Once population begins to recover, the real wage falls. This observation is in
conformity with the Malthusian theory that a drop in the population due to factors such as plague
will result in a high labor marginal product, and therefore real wage, until the population
recovers.

Another prediction of Malthusian theory is that land rents rise and fall with population.
Figure 2 plots real land rents and population for England over the same 1265-1800 period in
Figure 1.* The observations are in striking conformity with the theory. When population was
falling in the first half of the sample, land rents fell. When population increased, land rents

increased.

* The English population series and the price index used to construct the real land rent series are the same as in
Figure 1. The nominal land rent series is from Clark (1998a). As in Figure 1, the data has been normalized to be
100 in 1265 and has been smoothed using the Hodrick-Prescott filter with a smoothing parameter of 1000.
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The period 1800-1989

Subsequent to 1800, the Solow mode! describes well the behavior of the English
economy. Labor productivity, which moves closely with the real wage, grew at a steady rate.
Population increases did not lead to falling standard of livings as the Malthusian theory predicts.
This is documented in Table 1, which reports British labor productivity and population for
selected years. The striking observation is that labor productivity increased by a factor of 22
between 1780 and 1989. This number may underestimate the increase in real wage because
labor share of product probably increased a little over the period. More important reasons why
the increase in real wage may be larger than this number are the difficulties in incorporating
improvements in quality and the introduction of new products in any cost of living index.
Nordhaus (1997) has a dramatic example of this. Using lumens as a measure of lighting,
Nordhaus finds that the price of lighting fell a thousand times more than conventional lighting
price indexes find. Lighting in the nineteenth century was an important component of household
consumption expenditures being almost 10 percent total expenditures. Nordhaus also finds that

the price of lighting was essentially constant between 1265 and 1800.



Table 1

UK Productivity Levels
Year GDP/Hour’ Population6
(1985 $ U.S.) (Million)
1700 0.82’ 8.4
1780 0.84 11.1
1820 1.21 21.2
1870 2.15 31.4
1890 2.86 37.5
1913 3.63 45.6
1929 4.58 45.7
1938 4.97 47.5
1960 8.15 52.4
1989 18.55 57.2

3 Source of GDP/Hour: Maddison (1991 pp. 276 and 274-275).
¢ Maddison (1991, pp. 230-239 and p. 227).

7 We added 5 percent to numbers with all of Ireland for years 1700, 1780 and 1820 to adjust for the fact that all of
Ireland is included in these earlier data. The motivation for using 5 percent is that for years 1870, 1890 and 1913
Maddison reports data with and without the inclusion of Southern Ireland. UK labor productivity without Southern
Ireland was 1.05 times the UK labor productivity with Southern Ireland.



The U.S. Economy 1870-1990
Another fact is that the value of farmland relative to the value of GDP has declined
dramatically since 1870, the first year the needed census data are available, and the decline

continues. Table 2 reports this ratio.
Table 2
U.S. Farm Land Value Relative to GDP®

Year Percent
1870 88
1900 78
1929 37
1950 20
1990 9

The decline since 1929 would have been greater if large agriculture subsidies had not been
instituted. The appropriate number from the point of view of our theory, where value is the
present value of marginal products, is probably less than 5 percent in 1990. The decline in
farmland value relative to annual GNP from 88 percent in 1870 to less than 5 percent in 1990 is a

large decline.
3. Model Economy

Technology
The model economy studied is a one good two-sector version of Diamond’s (1965)
overlapping generations model. In the first production sector, which we denote the “Malthus”

sector, capital, labor and land are combined to produce output. In the second sector, which we

¥ Sources: U.S. Department of Commerce , Bureau of the Census, 1975, Historical Statistics of the United States
Colonial Times to 1970, Part I pp. 224, 255, and 462. Farmland values for 1990 was provided by Ken Erickson
<erickson@mailbox.econ.ag.gov>. The 1870 value of land was obtained by taking 88 percent of the value of land
plus farm buildings not including residences. In 1900 the value of agriculture land was 88 percent of the value of
farm land plus structures.



will refer to as the “Solow” sector, just capital and labor are used to produce the same good. The

production functions for the two sectors are as follows:
Yo =V K N3y L™ (1)
Y =y KGNy, 2)

Here, the subscript M denotes the Malthus and S denotes Solow. The variables Y, K,, N, and
L, (j=M, S) refers to output produced, capital, labor and land employed in sector J,
respectively. The parameters ¥ ,, and ¥ are the total factor productivity growth factors in each
sector and are each greater than 1°

Implicit behind these aggregate production functions are technologies for individual
production units with the property that, given factor prices, the optimal unit size is small relative
to the size of the economy and both entry and exit are permitted. The Malthus production unit
can be thought of as a family farm. The Solow production unit, on the other hand, corresponds
to a factory. Hence, land is an important factor of production in the Malthus production process
and reproducible capital has relatively little importance. The Solow technology is one in which
the roles of these two inputs are reversed. Consistent with this interpretation, we assume that
6> ¢ . In fact, in our formulation of the Solow technology, land, at least when interpreted as a
fixed factor, does not affect production at all.

Output from either sector can be used for consumption or investment in capital. Capital
is assumed to depreciate fully at the end of each period.”® Hence, the resource constraint for the

economy is given by,

C +K,, =Y, +¥,. 3)

? In order to keep the model simple, we have assumed a constant rate of total factor productivity growth in each
sector. This assumption is not crucial to our argument. We do require a positive rate of TFP growth in the Solow
sector, but it need not be constant. For example, TFP in this sector may grow at a relatively slow rate prior to being
adopted and, due to learning by doing, may grow at a faster rate following the transition to an industrial economy.

% In the calibration exercises carried out in this paper, we interpret a period to be 35 years. Hence, the assumption
of 100 percent depreciation seems empirically plausible.



Land in this economy is in fixed supply; it cannot be produced and does not depreciate.
We normalize the total quantity of land to be 1. In addition, land has no alternative use aside
from being used for production in the Malthus sector.

Since the production functions exhibit constant returns to scale, we assume for analytical
convenience that there is just one competitive firm operating in each sector. Given a wage rate
(w), a rental rate for capital ( r, ), and a rental rate for land (7, ), the firm in sector j solves the

following problem:

max{Y,-wN,-r K, -r L}, j=M.S, 4)
subject to the production functions (1) and (2).

Preferences and Demographic Structure
Households live for two periods and have preferences that depend on consumption in
each period of life. In particular, a young individual born in period # has preferences summarized

by the following utility function:
Ulc,.cy,1) =loge, + Bloge,,,, - (5)

Here, c,, is consumption of a young household in period  and ¢,, is consumption of an old
household born in period -1.

The number of households born in period ¢ is denoted by N, , where
Nl+l = g(cl!)Nt * (6)

Following Malthus (1798), we assume that the population growth rate depends on the standard of
living, which we measure using consumption of a young household. The precise form of this

functional relationship will be described in section 5.1

11" A simple way to motivate a law of motion of this form is to allow young agents to choose how many children
they have. Let n_,, be the number of children chosen by a young household in period r and suppose that the utility

function of a household is given by Ufe, ,n,.,)+ BV (c,,..) , where U is increasing and concave in both arguments.
In addition, suppose that n,,, does not affect the budget constraint of the household. In this case, the optimality

condition determining #,, is U,(c,.n,,) = 0. This equation can be solved to obtain n,,, = g(c,), which implies

r+1

10



The initial old (period £, ) in this economy are endowed with X, / N, _, units capital and
L=1/N, , units of land. They rent the land and capital to firms and, at the end of the period,
they sell the land to the young households. Each young agent is endowed with one unit of time
that can be supplied as labor to the firm. The labor income earned by the young is used to
finance consumption and the purchase of capital and land, the return from which will finance
consumption when old. That is, the young households maximize (5) subject to the following
budget constraints:

c, k., +ql, =w

’ (7)

Cappr = Fieparkiay (i T @

t+1

The notation employed here is to use lower case letters, k and [, to denote the capital and land
owned by a particular household and upper case letter, K and L (L = 1), to denote the total stock

of capital and land available in the economy. The letter ¢ denotes the price of land.

Competitive Equilibrium
Given N, _, k, and [ (where N, | =1), acompetitive equilibrium in this economy
o 0 o a 0
consists of a sequences for ¢ > ¢, of prices, { g,,w,,%, ¥, }; firm allocations,

(K, K N, . Ng Y, Y, }; and household allocations, { ¢, ¢, &, 4,y } such that:

M +1 T+l

1. Given the sequence of prices, the firm allocation solves the problems specified in
equation (4).
2. Given the sequence of prices, the household allocation maximizes (5) subject to (7).

3. Markets clear: K, + K, = N,_|k,

NMt +NSr = Nz
Nl =1
Yy +Y, = Ney, +N 6+ Nrkm

4' N[+1 = g(CI.‘)NI

In characterizing an equilibrium, we make use of the following results:

that N, = N, = g(c,)N,. We have found it convenient to model g as an exogenous function since we plan to

P £t

calibrate the population dynamics to match historical data.

11



Proposition 1. For any wage rate w and capital rental rate r, it is profitable to operate the
Malthus sector. That is, Y, >0 for all 1.

Proof: Given w and r,, solving problem (4) for the Malthus sector, maximum profits are equal

to,

I, (wre} = yﬁh(l—rﬂ—u){_‘?’_] N GLV_] ,

which is clearly positive for all ¢.

A similar argument applied to the Solow sector gives the following result:

Proposition 2. Given a wage rate w and capital rental rale r,, maximized profit per unit output
in the Solow sector is positive if and only if,

, e 6 w -0
o)) v

It follows that, given K, N and t, both sectors are operated in equilibrium (Y, and Y,
will be positive) if and only if (8) is satisfied when w and r, are set equal to their
equilibrium values in an economy with only a Malthus technology.
Given an aggregate quantity of capital and labor equal to K and N, Proposition 2 is
applied by first computing the Malthus-only wage and rental rate. These are,
w, = uy KN
o = 97 KN ©)
e = (1"_¢_ nu)y’KfNr#

If equation (8) is NOT satisfied, these are also the equilibrium wage and rental rates for the two-
sector economy. If equation (8) is satisfied, both sectors are operated and these are not the

equilibrium factor prices.

12



By the First Welfare Theorem, an equilibrium allocation has the property that resources
are efficiently allocated across the two sectors. Hence, when both sectors are operated the

following problem is solved:'?

Y(K,N,1)= OsnglsxK{ny(K— KO (N=N)* +7KINg} (10)

0SNg<N

The constraint set is compact given that the choice variables K and N are constrained to
closed intervals. This, and the fact the objective function is continuous, insures the existence of
an optimum. The convexity of the constraint set and strict concavity of the objective insures
uniqueness of the solution. In this case, the equilibrium wage and rental rates for the two-sector
economy become,
W, = Uy Kiy Nig' = (- 0)Y s K§, N§/
re = 0V K/ Nig, =0V K N, an
r, == 9= Wy, Ky, Nji,
Given values for K, N and ¢, the above equations determine total output, the equilibrium
wage rate and factor rental rates, and the allocation of resources across the two sectors,
(K, .Ki,Ny . Ng).
We now consider the household’s optimization problem, which is to maximize (5)
subject to (7). The first order necessary conditions for I, and k,,, can be arranged to yield the

following expressions:

¢, =—— (12)

G =9k ~ P (13)

In addition, the budget constraints and market clearing conditions imply,

12 Of course factor allocations must solve this maximization problem whether or not both sectors are operated.
However, if equation (8) is not satisfied, the optimal K; and ~, are equal to 0.

13



Kt+l = Nr(wt _Clr)wq: (14)

Given values for ¢, K,, N,, and g,, equations (11), (12), (6), and (14) are used to

obtainw,, ry,, 7, N, and K,,,. Next, given these results, (11) and (13) arc used to obtain

e €

:
g,.,- Given values for f,, K, , N, ,and g, , this procedure can, in principle, be used to obtain a
sequence of endogenous variables of any length. The first three of these initial conditions can be
chosen arbitrarily, although specific criteria, which we describe in the next subsection, were
employed in choosing values for these. The value of g, is not arbitrary, however, and must be

chosen so that the resulting sequence, {Qr}it , results in a sequence of feasible allocations. We
~to

discuss the numerical procedure employed in computing an equilibrium path in section 4.

Malthus-Only Economy

Values for 7, and K, (N, is arbitrarily set equal to 1) are chosen, following actual
historical experience, so that the artificial economy is initially using only the Malthus
technology. In particular, K, is set equal to the stock of capital at time f, along the asymptotic
erowth path of a one-sector economy with only a Malthus technology. This growth path 1s
constructed so that individual consumption (¢, and ¢,,) is constant in the face of productivity
growth (7 ,, >0). This requires that the growth rate of population be equal to y e In
addition, aggregate output, capital, consumption, the price of land, and the rental rate of land also
grow at this rate. The wage rate and capital rental rate are constant. In this case, productivity
increases translate directly into population increases and there is no improvement in individual
living standards. This mimics the long run growth path (abstracting from plagues and other
disturbances) that actual economies experienced for centuries prior to the industrial revolution.

Let c,,, be the value of ¢, along this Malthus-only asymptotic growth path. For the two-
sector economy, we choose the function g(¢,,) in equation (6} so that g(c,,, ) = y Y= Since
the wage and rental rate are constant along a Malthus only balanced growth path, the Solow

technology will eventually be used as long as ¥ ¢ >1 [see equation (8)]. Once this happens,

living standards will begin to improve and the population growth rate will change according to

14



the function g(c,) in equation (6). Over time, as the economy develops, the fraction of labor and
capital assigned to the Malthus sector, along with the price of land, will asymptotically approach

zero. At this point, the economy will behave essentially like a Solow-only economy. That is, the
economy will converge to a growth path along which ¢, ¢,,, K,/N,, ¥,/N, and w, all grow at

the rate ¥ /'~ —1 and r,, is constant. Unlike the Malthus growth path, living standards

continue to improve along this asymptotic path.

We summarize this discussion with the following proposition:

Proposition 3. Given that g(c,,) =Y VM“"‘ = there exists some date t such that equation (8) is

satisfied and the Solow technology is employed.

Hence, the transition from Malthus to Scolow is inevitable.

4. Computational Issues

The set of equations discussed above are sufficient for determining the sequence of
endogenous variables given initial values for the state variables N and K, as well as a value for
the price, g, . In this section, we describe how we obtain ¢, , as well as an entire sequence

{q }t" that satisfies the definition of an equilibrium price sequence. This requires, in particular,
tdt=ty

choosing ¢, so that g, is nonnegative for all 7 and so that K,

417

as determined by equation (14),
does not fall below zero. The solution method that we employ is an iterative procedure designed
to converge to a value of ¢, that satisfies these properties. Hence, as long as an equilibrium
exists, which can be established using standard arguments, this solution procedure is able to
approximate it subject to the accuracy of the computer.

The solution procedure used is a shooting algorithm that is implemented as follows.
Setting K, and N, as described above and letting g, =§, , where g, is the steady state value
along the Malthus-only growth path, we use equations derived in the previous section to obtain a
sequence {Z;:“,,I?,,N,};‘ . The simulation stops (7 is determined) once g, either becomes negative
or becomes so large that K, is negative. If §, becomes negative, we repeat the procedure with

a larger value for § . If § becomes too large, we repeat the procedure with a lower value.
g 4q., q, g P p

15



Through a process of iterating in this manner, we eventually bound the true value of g, withina
very small interval. The value of g, that is obtained once the interval is sufficiently small is
stored as the first element of the sequence {q,}i”:to ; that is, we set g, =g, .
Although equation (13) could, in principle, be used to obtain the subsequent elements of
this sequence, this procedure would magnify the numerical errors introduced by the finite
accuracy of the computer. Hence, in order to correct as much as possible for these inaccuracies,
we obtain the subsequent elements of the ¢ sequence by following a procedure similar to that

~ 7

used to obtain the first element. In particular, we repeatedly form the sequence {FL K ,N,} _in

order to narrow the upper and lower bound of g, ., using the shooting algorithm just described.

The values for K., and N

fot+l

.1 1N these sequences are set equal to the values of I?,OH and ZV%H
found in the final iteration of the previous step. The procedure is repeated until the entire
sequence {qf}:”:ro has been computed. Given this sequence, the remaining equilibrium prices and
quantities can be computed using the equations described in the previous section.

An advantage of our shooting algorithm is that uniqueness or lack thereof can be
determined for the particular economy being analyzed. This is the case because the search is
one-dimensional over possible initial prices of land.” For the economies we studied, we find
that for initial ¢ outside a very narrow range, the generated paths become inconsistent with
equilibrium. Given existence, equilibrium initial land price must be in this computationally
determined narrow rage. Given continuity of the functions used in our shooting algorithm,
equilibrium K, and N,,, have been determined to a high degree of accuracy.

t+1 t+l

5. Quantitative Findings
Calibration

Assuming that the economy is initially in a Malthus-only steady state, we simulate the

equilibrium path for a number of periods unti! essentially all of the available capital and labor are

3 The equilibrium conditions restrict ¢, to the closed interval [0,w, 6/(1 + /]

16



employed in the Solow sector.'* The model is calibrated so that (1) the Malthus-only economy is
consistent with the growth facts describing the English economy prior to 1800; (2) the Solow-
only economy matches the growth facts describing post World War Il industrialized economies;
(3) the population growth rate reacts to changing living standards as reported in Lucas (1998);
and (4) the implied annual real interest rates are reasonable given available data.

Requirement (1) is used to calibrate y,, ¢ and p; while (2) is used to assign values to
v, and 6. Given that we did not have good data on factor shares for the earlier period, we
chose to set labor’s share equal to .6 in both sectors, which implies values for u and 8 equal to
.6 and .4, respectively. We experimented with various low values for ¢, and use a value of .1 in
the experiment reported here. This implies that land’s share in the Malthus-only economy is .3.

In the pre 1800 period, we found, based on data reported in Lucas (1998), that population
grew about .3 percent per year on average. In order that per capita income is constant in the
Malthus-only economy, and given that a period in our model is interpreted to be 35 years, we set
¥, = 1032 . We calibrated y ; to match the growth rate of per capita GDP in the postwar
period. This led us to choose y, =1518.

We set the discount factor B8 equal to 1. This value implied annual interest rates that
vary from about 2 percent in the Malthus era to between 4 and 4.5 percent in periods when the
Solow technology is heavily used.

Lucas (1998) provides data on population growth rates along side per capita GDP for
various regions of the world from 1750 to the present. We use this information to calibrate the
population growth function, g(c,). In particular, population growth rates appear to increase
linearly in ¢, from the Malthus steady state to a point where population is doubling each period
(every 35 years). Over this period of rising population growth rates, living standards (¢, in our
model) double from the Malthus steady state. After this, the population growth rate decreases

linearly in ¢, until living standards are approximately 18 times what they were in the Malthus

'* Proposition 1 implies that some fraction of total resources will always be employed in the Malthus sector,
although this fraction can (and does in our simulations) converge to zero in the limit.
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steady state. We assume that population is constant as ¢; grows beyond this point

the following form for the function g(c)):

g(cl):j

The following figure graphs the function g(c,) against values of ¢ /c1 o

M

2—

1

.

Y(l-p—g) (2 - C_l} + 2[-9— - 1] forc¢, < 2¢,,,
Clau Cim

c, —2¢,,

160, for 2¢,,, <¢, £18¢,,

for ¢, > 18¢,,,

. This gives us

Findings

We simulated the economy beginning with period 7, = =5 for eleven periods at which

Population Growth Function: g(c1/c1M)
2.5
2
1.5 /
| /
0.5
0 : ‘ ;
5 10 15 20
cl/c1M
Figure 3

(15)

point the transition to the Solow technology was effectively complete. Figure 4 shows how the

transition takes place by indicating the fraction of productive inputs (capital and labor) employed

in the Malthus sector each period. The transition takes three generations from the point when the

Solow technology is first used until over 99 percent of the resources are allocated to the Solow

sector.
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Only the Malthus technology is used from periods -5 to Q. During this time, as shown in
Figure 5, output per worker remains constant. Once the industrial revolution begins in period L,
output per worker grows at increasingly higher rates. Eventually, the rate of growth will

converge to the constant rate characterizing the steady state of a Solow-only economy.

Output per Worker

7.00

6.00 /
5.00 /
4.00 /
3.00 / —
2.00 /
1.00 /

0.00 r 1 . T ‘ '

Period

Figure 5
During the periods when only the Malthus technology is being used, population grows at
the same rate as output and the wage stays constant. After period 0, population growth increases,
and the real wage increases as well (see Figure 6, where the wage has been normalized to one in

the Malthus steady state). This fits the pattern found in post 1800 England, as shown in Table 1.
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Wage and Population
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In addition, Figure 7 shows that the value of land relative to output decreases after the
industrial revolution. Again, this is roughly consistent with the behavior of farmland values in

the U.S. in the twentieth century (see Table 2).

f

Value of Land Relative to Output
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-5 -4 -3 -2 -1 0 1 2 3 4 5
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Figure 7
Finally, Figure 8 shows the population growth factor. It increases at the beginning of the
industrial revolution to a maximum level with population doubling every 35 year period. Then
the population growth rate declines as the standard of living increases until 5 periods or a 175

years after the start of the industrial revolution.
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5. Conclusion

Most of the existing literature on economic growth is consistent with features of modern
industrial economies, but inconsistent with the growth facts describing pre-industrial economies.
This includes both models based on exogenous technical progress, such as Solow (1957), as well
as more recent models with endogenous growth like Romer (1986) and Lucas (1988). There also
exist examples of theories consistent with facts describing the early period, yet inconsistent with
features of the later period [see Lucas (1998)]. In this paper we have presented a growth theory
that is consistent with the growth facts from both periods. The transition from a pre-industrial to
industrial economy, the industrial revolution, is a property of the equilibrium path associated
with our theory.

We have chosen to cast our theory in the context of the overlapping generations model of
Diamond (1965). We found this to be a natural way to model population growth in an
equilibrium setting. We see no reason, however, why our results should not generalize to an
infinite horizon context like that used in much of the growth literature—an optimal growth
model with exogenous technology and population growth, for example. Our main results, as
summarized in Propositions 1-3, depend primarily on properties of the technology and not at all

on the length of an agent’s life span.
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Thomas Malthus theorized that when living standards improve, population growth rates
increase. This feature is present in early stages of development as summarized in our function
g(c,) in equation (15). However, population growth rates eventually fall and appear to level off
as living standards improve after the industrial revolution. Our theory is silent as to why this
occurs. Some economists, such as Becker (1960) and Lucas (1998), have argued that this may
be due to a quantity-quality trade-off between the number of children a family produces versus
the amount of human capital invested in each child. Other possibilities, perhaps more relevant in
our context, include that the Solow technology might offer market opportunities that cause
households to substitute out the home production sector into the market sector. That is, the same
sorts of economic incentives that lured women into the workforce in the 1970°s and 1980°s may
be responsible for the fall in population growth rates as living standards improve. We leave it to
future work to explore these ideas.

Similarly, we have not explored the role policy might play in determining how quickly
the Solow technology is adopted. For example, Parente and Prescott (1997) have studied how
policy can affect the level of the total factor productivity parameter in the Solow technology. By
keeping this parameter small, policy can affect when equation (8) is satisfied and, hence, when
(if ever) the industrial revolutions occurs. The fact that the industrial revolution happened first in
England in the early 19" century rather than in China, where the stock of useable knowledge
may have actually been higher, is due perhaps to the institutions and policies in place in these

two countries.
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