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1 Introduction

Diffusions and more generally continuous-time Markov processes are generally speciÞed in economics and

Þnance by their evolution over inÞnitesimal instants, that is, by writing down the stochastic differential

equation followed by the state vector. However, for most estimation techniques relying on discrete data, we

need to be able to infer the implications of the inÞnitesimal time evolution of the process for longer time

intervals, for instance the time interval at which the process is actually sampled, say daily or weekly. The

transition function plays a key role in that context. The transition function of a Markov process is the

conditional density for the values of the state variable at a Þxed future date, given the current level of the

state vector. It effectively gives a precise answer to the time aggregation problem inherent in the dichotomy

between the time scale of the model (continuous) and that of the observed data (discrete): if the process

evolves at each instant according to a given inÞnitesimal continuous-time equation, what is the distribution

of the values of the process after a Þnite amount of time has elapsed?

Continuous-time models in Þnance have long been predominantly univariate, whether the variable in an

asset price as in the Black-Scholes and Merton models, or an interest rate as in the Cox, Ingersoll and Ross

or Vasicek models. In recent years, however, the literature has naturally evolved towards the inclusion of

multiple variables in continuous-time diffusion models. Typical examples include asset pricing models with

multiple explanatory factors, term structure models with multiple yields or factors, and stochastic volatility

or stochastic mean reversion models (see Sundaresan (2000) for a recent survey).

In response to this trend towards multivariate models, this paper describes the construction of closed-

form approximations to the transition density of arbitrary multivariate diffusions, thereby extending to the

multivariate setting the results of Aït-Sahalia (2002). The form of the likelihood expansions derived here is

based on Hermite polynomials. While writing down a Hermite series can be done for any model, the key

idea is to exploit the speciÞcity afforded by the diffusion hypothesis in order to obtain the expressions for

the coefficients of the series fully explicitly, as functions of the state vectors at the present and future dates,

the time interval that separates them and the parameters of the assumed stochastic differential equation.

Other methods can be used to approximate the transition function, which involve solving numerically the

Fokker-Planck-Kolmogorov equation, simulating the process to Monte Carlo integrate the transition density

or approximating the process with binomial trees (see Aït-Sahalia (2002) for a review of the literature, and

Jensen and Poulsen (2002) for a comparison of the different methods). None however produces a closed form

approximation.

The extension from the univariate to the multivariate setting presents many challenges. Through judicious

use of Itô�s Lemma, every univariate diffusion can be transformed into one with unit diffusion, whose density

can then be approximated around a standard Normal. This is no longer the case for multivariate diffusions.

I therefore introduce the concept of reducibility for multivariate diffusions, which essentially characterizes

diffusions for which such a transformation exists. For reducible multivariate diffusions, the ideas introduced in

the univariate setting can be extended, leading to an expansion for the log-likelihood function in the form of a

Taylor series in the time variable, which is a particularly convenient way of gathering the Hermite terms. For

irreducible diffusions, however, one must proceed differently. The situation is more involved, yet still amenable
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to a closed-form result, but this time in the form of a double Taylor expansion in the time variable and the

state vector. Extensions of the results of Aït-Sahalia (2002) in two different univariate directions have also

recently been developed, for time-inhomogenous diffusions (Egorov, Li, and Xu (2001)) and for models driven

by Lévy processes other than Brownian motion (Schaumburg (2001)).

Once the expansion is computed for the diffusion model at hand, it can be immediately applied to the

estimation of parameters of the discretely sampled diffusion by maximum-likelihood, or to a variety of other

estimation methods which require an expression for the transition density of the state variables, such as

Bayesian methods where one wishes to obtain a posterior distribution for the parameters of a stochastic

differential equation. The method can also be applied to generate simulated data at the desired frequency

from the continuous-time model, or to serve as the instrumental or auxiliary model in indirect inference and

simulated or efficient moments methods. The point is that the explicit nature of the expansion as a function

of all the relevant variables makes these computations, whether maximization of the classical likelihood or

computation of posterior distributions, straightforward and computationally very efficient.

The paper is organized as follows. Section 2 sets up the model, notation and assumptions. In Section

3, I introduce the concept of reducibility of a diffusion and provide a necessary and sufficient condition for

the reducibility of a multivariate diffusion. When diffusions are reducible, the coefficients of the expansion

are obtained by a change of variable, which I show in Section 4. When the diffusion is not reducible, the

expressions for the coefficients are given in Section 5. Section 6 contains examples of multivariate diffusions

relevant for Þnancial econometrics and gives their corresponding likelihood expansions. Finally, Section 7

concludes. All proofs are in the Appendix.

2 Setup and Assumptions

Consider the multivariate diffusion

dXt = µ (Xt; θ) dt+ σ (Xt; θ) dWt (2.1)

where Xt and µ (Xt; θ) are m× 1 vectors, σ (Xt; θ) is an m×m matrix, θ is a p-dimensional parameter and

Wt is an m× 1 vector of independent Brownian motions. Independence of the components is without loss of
generality as arbitrary correlation structures between the shocks to the different equations can be modelled

through the inclusion of off-diagonal terms in the σ matrix. Note that σ need not be symmetric, and if

convenient attention can be restricted to triangular matrices by appropriate rotation of the m−dimensional
Brownian motion.

The objective of this paper is to derive closed-form approximations to the transition function pX (∆, x|x0; θ)
of the process X, that is the conditional density of Xt+∆ = x given Xt = x0 induced by the model (2.1).

Assume that we observe the process at dates {t = i∆ | i = 0, . . . , n}, where ∆ > 0 is Þxed. Bayes� rule

combined with the Markovian nature of (2.1), which the discrete data inherit, imply that the log-likelihood
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function has the simple form

0n (θ) ≡ n−1
Xn

i=1
lX
¡
∆,Xi∆|X(i−1)∆; θ

¢
(2.2)

where lX ≡ lnpX . In practice, the issue is that for most models of interest, the function pX , hence lX , is not
available in closed-form.

If the sampling interval ∆ is time-varying deterministically, say ∆i is the actual time interval between

the (i − 1)th and ith observations �Xi−1 and �Xi, then it suffices to replace ∆ in (2.2) by its actual value ∆i

when evaluating the transition density for the ith pair of observations. If the sampling interval is random

and either drawn independently of the X process or conditionally on �Xi−1, then one can write down the joint

likelihood function of the pair of observations and ∆i and utilize Bayes� rule to express it as the product

of the conditional density of �Xi given �Xi−1 and ∆i, times the marginal density d of ∆i given �Xi−1, that

is pX
³
∆i, �Xi| �Xi−1; θ

´
× d

³
∆i| �Xi−1;κ

´
where κ is a parameter vector parametrizing the sampling density

d. Aït-Sahalia and Mykland (2000) study the different effects resulting in the likelihood framework from

randomly and discretely spaced observations. In all cases, an expression is needed for lX , which is what this

paper delivers.

I will use the following notation. Let SX , a subset of Rm, denote the domain of the diffusion X and Θ ⊂ Rp
the open parameter space. SX can often be taken to be of the form of a product of m intervals with limits x

¯i

and x̄i, where possibly x¯i
= −∞ and/or x̄i = +∞. The intervals are closed at Þnite limits and open at inÞnite

limits. For simplicity, I will assume that Θ is such that SX is identical for each value of the parameter vector θ
in Θ. I will use T to denote transposition and, for a function η(x; θ) = (η1(x; θ), ..., ηd(x; θ))

T , differentiable in

x, I will write ∇η(x; θ) for the Jacobian matrix of η, i.e., the matrix ∇η(x; θ) = [∂ηi(x; θ)/∂xj ]i=1,...,d;j=1,...,m .
For x ∈ Rm, kxk denotes the usual Euclidean norm. The binomial coefficients will be denotedµ

k

j

¶
≡ k!

j!(k − j)! . (2.3)

If a = [aij ]i,j=1,...,m is a m×m invertible matrix then I write a−1 = [a−1ij ]i,j=1,...,m for the matrix inverse,

rather than using the tensor notation (note that a−1ij denotes the element (i, j) of the inverse matrix, not the

inverse of the element (i, j) of the original matrix). Det [a] and tr[a] denote the determinant of a and its trace,

respectively. If a = [ai]i=1,...,m is a vector, tr[a] denotes the sum of the elements of a. a = diag[ai]i=1,...,m

denotes the m ×m diagonal matrix with diagonal elements ai. When a function η(x; θ) is invertible in x, I

write ηinv(y; θ) for its inverse, i.e., the solution in x of the equation y = η(x; θ) is x = ηinv(y; θ). By the Inverse

Function Theorem (see e.g., Theorem 8.7.8 in Haaser and Sullivan (1991)), η(x; θ) is invertible in x at x = x0

if ∇η(x; θ) has a bounded matrix inverse at x = x0; the inverse function ηinv then inherits the smoothness

properties of η.

Let AX denote the inÞnitesimal generator of the processX, which is characterized by its action on functions

f (∆, x, x0; θ) in its domain:

AX ·f (∆, x, x0; θ) = ∂f (∆, x, x0; θ)

∂∆
+

mX
i=1

µi (x; θ)
∂f (∆, x, x0; θ)

∂xi
+
1

2

mX
i=1

mX
j=1

vij (x; θ)
∂2f (∆, x, x0; θ)

∂xi∂xj
. (2.4)
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The domain of AX includes at least functions that, for each (x0; θ) ∈ SX ×Θ, are once continuously differen-
tiable in ∆ in R+, twice continuously differentiable in x in SX and have compact support.

In some instances, it may be more natural to parametrize directly the inÞnitesimal variance-covariance

matrix of the process

v (x; θ) ≡ σ (x; θ)σT (x; θ) , (2.5)

that σ(x; θ) itself. In that case, σ (x; θ) is deÞned indirectly as the positive deÞnite square root of v (x; θ) ,

σ (x; θ) = v (x; θ)
1/2 .

σ can be obtained by the Cholesky decomposition of the matrix v (x; θ). While it is traditional to parametrize

the process by (µ, σ), every characterization of the process, such as its transition probability, depends in fact

on (µ, v). In particular, it can be shown that, should there exist a continuum of solutions in σ to the equation

(2.5), the transition probability of the process is identical for each one of these σ (see Remark 5.17 and Section

5.3 in Stroock and Varadhan (1979)). This is also quite clear from the deÞnition (2.4) of the inÞnitesimal

generator of the process, which is an equivalent characterization of the process, and depends on v rather than

σ. As this will pay a role in the likelihood expansions, deÞne

Dv (x; θ) ≡ 1

2
ln (Det[v(x; θ)]) . (2.6)

To avoid the issues associated with the multiple σ scenario, I assume from now on that σ is uniquely

determined, either directly as part of the assumed speciÞcation of the model (2.1) or indirectly as the unique

solution of (2.5), in which case the form of v is such that it yields a unique square root matrix. I will assume

that this matrix σ satisÞes the following regularity condition:

Assumption 1. The matrix σ (x; θ) is positive deÞnite for all x in the interior of SX and θ ∈ Θ.

Further assumptions are required to insure the existence and unicity of a solution to (2.1), and to make

the computation of likelihood expansions possible. I will assume the following:

Assumption 2. For each θ ∈ Θ, µ (x; θ) and σ (x; θ) are inÞnitely differentiable in x on SX .

Assumption 2 insures the unicity of solutions to (2.1). Indeed, Assumption 2 implies in particular that the

coefficients of the stochastic differential equation are locally Lipschitz under their assumed (once) differentia-

bility, by applying the mean value theorem. That is, for each C > 0, there exists a constant K > 0 such that

for every x and x0 in SX , kxk ≤ C and kx0k ≤ C, we have

|µi (x; θ)− µi (x0; θ)| ≤ K kx− x0k (2.7)

|σij (x; θ)− σij (x0; θ)| ≤ K kx− x0k (2.8)

for i, j = 1, ...,m. This insures that a solution, if it exists, will be unique (see e.g., Theorem 5.2.5 in Karatzas

and Shreve (1991)). The inÞnite differentiability assumption in x is unnecessary for that purpose, but it allows
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the computation of expansions of the transition density, which as we will see involve repeated differentiation

of the coefficient functions µ and σ.

There exist models of interest in Þnance, such as Feller�s square-root diffusion used in the Cox, Ingersoll and

Ross model of the term structure, that fail to satisfy (2.8) since they violate the differentiabilty requirement of

Assumption 2 at a boundary of SX : for instance, σ(x; θ) = σ0x1/2 is not differentiable at the left boundary

0 of SX . Fortunately, it is possible to weaken Assumption 2 to cover such cases:

Assumption 3. (Yamada-Watanabe Conditions) Assumption 2 can be replaced by:

1. For each θ ∈ Θ, µ (x; θ) and σ (x; θ) are inÞnitely differentiable in x on the interior of SX .
2. There exist real-valued, continuous, positive and increasing functions ρ(u) and κ(u) deÞned on [0, C)

for some C > 0 such that ρ(0) = κ(0) = 0, ρ2(u)u−1 and κ(u) are concave and satisfy

lim
ε→0+

Z C

ε

u

ρ2(u)
du = +∞ (2.9)

lim
ε→0+

Z C

ε

1

κ(u)
du = +∞. (2.10)

Then

|µi (x; θ)− µi (x0; θ)| ≤ κ (kx− x0k) (2.11)

|σij (x; θ)− σij (x0; θ)| ≤ ρ (kx− x0k) (2.12)

for all (x, y) ∈ S2X such that kx− x0k < C and all i, j = 1, ...,m.

3. If σ(x; θ) is of the form σ(x; θ) = diag [σi (xi; θ)]i=1,..,m (this is always the case if m = 1), condition

(2.9) can be weakened to

lim
ε→0+

Z C

ε

1

ρ2(u)
du = +∞ (2.13)

with no concavity requirement.

4. If m = 2 and σ(x; θ) is of the isotropic form σ(x; θ) = diag [s (x; θ)]i=1,2 then condition (2.9) can be

weakened to

lim
ε→0+

Z C

ε

u ln(1/u)

ρ2(u)
du = +∞ (2.14)

provided that G(u) = u3 exp(2/u)ρ2(exp(−1/u)) is concave.

As in the case of Assumption 2, Assumption 3.1 is there for the purpose of computing likelihood expansions.

The fact that Assumption 3.2 insures unicity of the solution follows from Theorem 4 in Watanabe and Yamada

(1971); Assumption 3.3 from Theorem 1 in Yamada and Watanabe (1971); Assumption 3.4 from Theorem

3 in Watanabe and Yamada (1971). Examples of functions ρ that satisfy (2.9) are: ρ(u) = uα with α ≥ 1,

ρ(u) = u(ln(1/u))1/2. The functions ρ(u) = uα with α ≥ 1/2 satisfy (2.13). The functions ρ(u) = uα with

α ≥ 1/2 and ρ(u) = u ln(1/u) satisfy (2.14). A function σij satisfying condition (2.12) with ρ(u) = uα is said
to be Hölder-continuous of order α.
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Assumption 3.3 with ρ(u) = u1/2 allows us in particular to consider mutivariate Cox, Ingersoll and Ross

models where σ(x; θ) = diag
h
ηix

1/2
i

i
i=1,..,m

(see the term structure examples in Section 6.3). The issue with

these affine models (linear µ and v = σσT ) lies in the non-Lipschitz behavior of the σ function rather than

that of the µ function. In that case, Assumption 3 for µ with κ(u) = k.u reduces to the Lipschitz condition

(2.7) for the drift µ.

These conditions are essentially the best possible, in that examples where multiple solutions to the sto-

chastic differential equation (2.1) arise when they are violated. If m ≥ 3, take any subadditive ρ(u) (i.e.,

ρ(u+ v) ≤ ρ(u) + ρ(v)) such that

lim
ε→0+

Z C

ε

u

ρ2(u)
du < +∞,

for instance ρ(u) = u1/2, then the stochastic differential equation dXt = σ(Xt)dWt, X0 = 0, with isotropic

σ matrix σ(x) = diag [ρ (kxk)]i=1,...,m , has, apart from the solution Xt = 0, other non-zero solutions. Thus

condition (2.9) in Assumption 3.2 is sharp. In dimension m = 1, the famous example of Girsanov, dXt =

|Xt|αdWt, has a unique solution if α ≥ 1/2, namelyXt = 0, but that solution is no longer unique if 0 < α < 1/2;
hence condition (2.13) in Assumption 3.3 is also sharp. In Assumption 3.4 concerning the dimension m = 2,

the restriction that the matrix σ(x; θ) be of the isotropic form cannot be relaxed: a counterexample was

provided recently in Swart (2001). The condition (2.14) is also seen to be sharp, by forming a counterexample

with a subadditive ρ as in dimension m ≥ 3.
The next assumption restricts the growth behavior of the coefficients near the boundaries of the domain:

Assumption 4. The drift and diffusion functions satisfy linear growth conditions, that is, for each θ ∈ Θ
there exists a constant K such that for all x ∈ SX , and i, j = 1, ...,m :

|µi (x; θ)| ≤ K (1 + kxk) (2.15)

|σij (x; θ)| ≤ K (1 + kxk) . (2.16)

The role of Assumption 4 is to insure existence of a solution to the stochastic differential equation (2.1)

by preventing explosions of the process in Þnite expected time. While it can be relaxed in speciÞc examples,

it is not possible to do so in full generality as shown by the following counterexamples, illustrating the need

for restricting the growth of both µ and σ. The one-dimensional equation dXt = (1 + X2
t )dt, X0 = 0,

has the exploding solution Xt = tan(t). The three-dimensional equation dXt = (1 + kXtk2)dWt explodes

in Þnite time. In dimension one, however, Þner results are available (see the Engelbert-Schmidt criterion in

Theorem 5.5.15 in Karatzas and Shreve (1991)) allowing linear growth to be imposed only when the drift

coefficient pulls the process towards an inÞnity boundary (see Proposition 1 of Aït-Sahalia (2002)). Even in

higher dimensions, the condition can sometimes be reÞned in speciÞc examples (see Section 6.2 below). In all

dimensions, the linear growth condition in Assumption 4 is only an issue near the boundaries of SX . On any
compact set, the growth condition (boundedness, in fact) follows from differentiability of the functions and

the mean value theorem.

While nothing in this paper hinges upon the stationarity of the process X, it is useful to have a sufficient
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condition that would guarantee it, if need be. From Hasminskii (1980), for given θ ∈ Θ, there exists a unique
stationary distribution for the process X if there exists C > 0 and some positive deÞnite matrix V such that

µ(x; θ)V x+
1

2
tr [v (x; θ)V ] < −1 (2.17)

for all x in SX such that kxk > C. Then the stationary density of X is the solution π (x0; θ) of the equation

mX
i=1

∂

∂x0i
[µi (x0; θ)π (x0; θ)]−

1

2

mX
i=1

mX
j=1

∂2

∂x0i∂x0j
[vij (x0; θ)π (x0; θ)] = 0 (2.18)

that integrates to one. The process X will be stationary provided that the initial random variable X0 is

distributed with density π (x0; θ) . Of course, the process may be stationary for some values of θ in Θ and not

others. For example, in an Ornstein-Uhlenbeck process stationarity depends upon the positivity of the real

parts of the eigenvalues of the mean reversion matrix.

If the approximation to the function lX is to be used for maximum-likelihood estimation of the parameters

θ, then care must be taken to insure that all the parameters are identiÞed. The MLE is well-deÞned and

identiÞcation is achieved if we assume:

Assumption 5. For each x ∈ SX , µ (x; θ) and σ (x; θ) are three times continuously differentiable in θ on Θ,
and, if there exist (θ, θ0) ∈ Θ2 such that pX (∆, x|x0; θ) = pX

¡
∆, x|x0; θ0

¢
on a set of values of (x, x0) ∈ S2X of

non-zero measure, then θ = θ0.

More primitive conditions, not involving the function pX , can be given in speciÞc examples, see Section 6

below. This paper deals only with the construction of an approximation to lX , which can then be used for

purposes other than maximum likelihood estimation. In that case, there is no reason to assume Assumption

5.

One last remark. The diffusion process X is fully deÞned by the speciÞcation of the functions µ and σ

and its behavior at the boundaries of SX . In many examples, the speciÞcation of µ and σ predetermines the
boundary behavior of the process, but this will not be the case for models that represent limiting situations.

For instance, in Cox, Ingersoll and Ross processes with affine µ and v, the behavior at the 0 boundary depends

upon the values of the parameters θ in (µ, σ).When this situation occurs for a particular model, the behavior

of the likelihood expansion near such a boundary will be speciÞed exogneously to match that of the assumed

model.

3 Reducible Diffusions

Whenever possible, I will Þrst transform the diffusion X into one that is more amenable to the derivation of

an expansion for its transition density. For that purpose, I introduce the following deÞnition:

DeÞnition 1. (Reducibility) The diffusion X is said to be reducible to unit diffusion (or reducible, in short)

if and if only if there exists a one-to-one transformation of the diffusion X into a diffusion Y whose diffusion

matrix σY is the identity matrix. That is, there exists an invertible function γ (x; θ) , inÞnitely differentiable in
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X on SX and three times continuously differentiable in θ on Θ such that Yt ≡ γ (Xt; θ) satisÞes the stochastic
differential equation

dYt = µY (Yt; θ) dt+ dWt (3.1)

on the domain SY .

To avoid needless complications, I will assume that the domain of the transformed process, SY , is inde-
pendent of the parameter value θ. As discussed for SX already, in typical examples, SX and SY are both

products of intervals with lower limits x
¯i
and y

¯
i that are either −∞ or 0, and upper limits x̄i and ȳi that are

either 0 or +∞.
By Itô�s Lemma, when the diffusion is reducible, the change of variable γ satisÞes

∇γ(Xt; θ) = σ−1 (x; θ) . (3.2)

Every scalar (i.e., one-dimensional) diffusion is reducible, by means of the transformation

Yt ≡ γ (Xt; θ) =
Z Xt du

σ (u; θ)
(3.3)

and we have by Itô�s Lemma:

µY (y; θ) =
µ
¡
γinv (y; θ) ; θ

¢
σ (γinv (y; θ) ; θ)

− 1
2

∂σ

∂x

¡
γinv (y; θ) ; θ

¢
.

This transformation played a critical role in the derivation of closed-form Hermite approximations to the

transition density of univariate diffusions in Aït-Sahalia (2002). However, not every multivariate diffusion is

reducible. Whether or not a given multivariate diffusion is reducible depends on the speciÞcation of its σ

matrix, namely:

Proposition 1. (Necessary and Sufficient Condition for Reducibility) The diffusion X is reducible if and only

if the inverse diffusion matrix σ−1 =
£
σ−1i,j

¤
i,j=1,...,m

satisÞes on SX ×Θ the condition that

∂σ−1ij (x; θ)
∂xk

=
∂σ−1ik (x; θ)

∂xj
(3.4)

for each triplet (i, j, k) = 1, ...,m such that k > j.

In the bivariate case m = 2, the state vector is Xt = (X1t,X2t)T and the components of the µ vector and

σ matrix are  dX1t

dX2t

 =

 µ1 (Xt; θ)

µ2 (Xt; θ)

dt+
 σ11 (Xt; θ) σ12 (Xt; θ)

σ21 (Xt; θ) σ22 (Xt; θ)

 dW1t

dW2t

 (3.5)

and condition (3.4) reduces to

∂σ−111 (x; θ)
∂x2

− ∂σ
−1
12 (x; θ)

∂x1
=
∂σ−121 (x; θ)

∂x2
− ∂σ

−1
22 (x; θ)

∂x1
= 0. (3.6)
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Example 1. Diagonal Systems: If σ12 = σ21 = 0, then the reducibility condition becomes ∂σ−111 /∂x2 =

∂σ−122 /∂x1 = 0. Since σ
−1
ii = 1/σii in the diagonal case, reducibility is equivalent to the fact that σii depends

only on xi (and θ) for each i = 1, 2. This is true more generally in dimension m. Note that this is not the

case if off-diagonal elements are present.

Another example is provided by the class of stochastic volatility models:

Example 2. Stochastic Volatility: If

σ (x; θ) =

 σ11(x2; θ) 0

0 σ22(x2; θ)


then the process is not reducible in light of the previous example, as this is a diagonal system where σ11 depends

on x2. However, if

σ (x; θ) =

 a(x1; θ) a(x1; θ)b(x2; θ)

0 c(x2; θ)


then the process is reducible as can be seen by applying (3.6).

The situation now is as follows. Whenever a diffusion is reducible, an expansion can be computed for

the transition density pX of X by Þrst computing it for the density pY of the reduced process Y and then

transforming Y back into X, proceeding essentially by extending the univariate method: see Section 4. When

a diffusion is not reducible, I explain below how to nevertheless derive a closed-form expansion directly for the

transition density pX : this is done in Section 5.

4 Closed-Form Expansion for the Transition Density of a Reducible

Diffusion

4.1 Form of the Hermite Series in the Univariate Case

As discussed above, every univariate diffusion is reducible. To motivate the approach in the multivariate case,

let me Þrst recall how one proceeds in the univariate case, summarizing brießy the results of Aït-Sahalia (2002).

To understand the construction of the sequence of approximations to the transition function pX , the following

analogy may be helpful. Consider a standardized sum of random variables to which the Central Limit Theorem

(CLT) apply. Often, one is willing to approximate the actual sample size n by inÞnity and use the N(0, 1)

limiting distribution for the properly standardized transformation of the data. If not, higher order terms of

the limiting distribution (for example the classical Edgeworth expansion based on Hermite polynomials) can

be calculated to improve the small sample performance of the approximation. The basic idea is to create an

analogy between this situation and that of approximating the transition density of a diffusion. Think of the

sampling interval ∆ as playing the role of the sample size n in the CLT. If we properly standardize the data,

then we can Þnd out the limiting distribution of the standardized data as ∆ tends to 0 (by analogy with what

9



happens in the CLT when n tends to ∞). Properly standardizing the data in the CLT means summing them
and dividing by n1/2; here it will involve transforming the original diffusion X into another one, called Z

below. In both cases, the appropriate standardization makes N(0, 1) the leading term. I will then reÞne this

N(0, 1) approximation by �correcting� for the fact that ∆ is not 0 (just like in practical applications of the

CLT n is not inÞnity), i.e., by computing the higher order terms. As in the CLT case, it is natural to consider

higher order terms based on Hermite polynomials, which are orthogonal with respect to the leading N(0, 1)

term.

So let pY denote the transition function of the process Y, whose dynamics are given by (3.1). As shown

in Aït-Sahalia (2002), the tails of pY have a Gaussian-like upper bound; but while Y is �closer� to a Normal

variable than X is, it is not practical to expand pY . This is due to the fact that pY gets peaked around

the conditional value y0 when ∆ gets small. And a Dirac mass is not a particularly appealing leading term

for an expansion. For that reason, a further transformation is performed, deÞning the �pseudo-normalized�

increment of Y as

Z∆ ≡ ∆−1/2 (Y∆ − y0) .

I then expand the density of Z around a N(0, 1), leading to an expansion for pY of the form:

ùp
(J)
Y (∆, y|y0; θ) = 1

(2π∆)1/2
exp

µ
−(y − y0)

2

2∆

¶XJ

j=0
η(j) (∆, y0; θ)Hj(∆

−1/2(y − y0)) (4.1)

where the Hermite coefficients η(j) (∆, y0; θ) are given by

η(j) (∆, y0; θ) = (1/j!)

Z +∞

−∞
Hj (z) pZ (z|y0,∆; θ) dz

= (1/j!)

Z +∞

−∞
Hj (z)∆

1/2pY

³
∆1/2z + y0

¯̄̄
y0,∆; θ

´
dz

= (1/j!)

Z +∞

−∞
Hj

³
∆−1/2 (y − y0)

´
pY (y|y0,∆; θ) dy

= (1/j!)E
h
Hj
³
∆−1/2 (Y∆ − y0)

´¯̄̄
Y0 = y0; θ

i
. (4.2)

To evaluate the conditional expectation (4.2), I use the Taylor expansion

EY1 [f(∆, Y∆, Y0; θ)|Y0 = y0] =
KX
k=0

∆k

k!
AkY · f(δ, y, y0; θ)| y=y0,δ=0 + O

¡
∆K+1

¢
(4.3)

where AY is the inÞnitesimal generator of the process, i.e., the operator whose action is deÞned by

AY · f (∆, y, y0; θ) = ∂f (∆, y, y0; θ)

∂∆
+ µY (y, θ0)

∂f (∆, y, y0; θ)

∂y
+
1

2

∂2f (∆, y, y0; θ)

∂y2
. (4.4)

In all cases, this expression is a proper Taylor series; whether the series is analytic at ∆ = 0 is not guaranteed,

although sufficient conditions can be given (see Proposition 4 in Aït-Sahalia (2002), who also discusses the

class of functions f, such as polynomials, for which this representation is admissible).

Applying (4.3) to f(∆, Y∆, Y0; θ) = Hj
¡
∆−1/2 (Y∆ − Y0)

¢
up to order K for the purpose of evaluating ηj
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in ùp(J)Y yields the expansion ùp(J,K)Y . Different ways of gathering the terms are available (as in the Central Limit

Theorem, where for example both the Edgeworth and Gram-Charlier expansions are based on a Hermite

expansion). One particularly convenient way of gathering the terms of the expansion consists in grouping

them in powers of ∆. This is then in the same spirit as the �small-time� expansions of Azencott (1984), except

that the expansions obtained here are fully explicit instead of relying of moments of functionals of Brownian

Bridges. Indeed, if we gather all the terms according to increasing powers of ∆ instead of increasing order of

the Hermite polynomials, and let p(K)Y ≡ ùp
(∞,K)
Y , we obtain an explicit representation of p(K)Y , given by:

p
(K)
Y (∆, y|y0; θ) = ∆−1/2φ

µ
y − y0
∆1/2

¶
exp

µZ y

y0

µY (w; θ) dw

¶XK

k=0
c
(k)
Y (y|y0; θ) ∆

k

k!
(4.5)

where φ (w) = exp(−w2/2)/(2π) is the N(0, 1) density function, c(0)Y = 1 and for all k > 1:

c
(k)
Y (y|y0; θ) = k (y − y0)−k

Z y

y0

(w − y0)k−1
n
λY (w; θ) c

(k−1)
Y (w|y0; θ)

+
³
∂2c

(k−1)
Y (w|y0; θ) /∂w2

´
/2
o
dw (4.6)

with

λY (y; θ) = −1
2

µ
µ2Y (y; θ) +

∂µY (y; θ)

∂y

¶
. (4.7)

Equation (4.6) allows the recursive computation of the coefficients, starting from c
(0)
Y = 1.

When we are interested in computing the logarithm of the transition function, an alternative form of the

Taylor series can be more amenable to the computation of the log-likelihood, and guarantee positivity of

the density. Indeed, the function lY (∆, y|y0; θ) can also be expressed directly as a series in ∆, namely by
Taylor-expanding ln(

PJ
j=0 c

(j)
Y (y|y0; θ) ∆j

j! ) in ∆. This yields the form

l
(K)
Y (∆, y|y0; θ) = −1

2
ln (2π∆) +

C
(−1)
Y (y|y0; θ)

∆
+
XK

k=0
C
(k)
Y (y|y0; θ) ∆

k

k!
(4.8)

and, by application of the Jacobian change of variable formula,

l
(K)
X (∆, x|x0; θ) = −1

2
ln
¡
σ2 (x; θ)

¢
+ l

(K)
Y (∆, γ (x; θ) |γ (x0; θ) ; θ) . (4.9)

The coefficients are given by

C
(−1)
Y (y|y0; θ) = − (y − y0)2 /2 (4.10)

C
(0)
Y (y|y0; θ) =

Z y

y0

µY (w; θ) dw (4.11)

C
(1)
Y (y|y0; θ) = c

(1)
Y (y|y0; θ) = (y − y0)−1

Z y

y0

λY (w; θ) dw (4.12)

Note that

C
(−1)
Y (y0|y0; θ) = 0, C

(0)
Y (y0|y0; θ) = 0, C

(1)
Y (y0|y0; θ) = λY (y0; θ) , (4.13)
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the last equation being a consequence of L�Hôpital�s Rule.

The other coefficients are obtained recursively. Given C(−1)Y , C
(0)
Y , ..., C

(k−1)
Y , the coefficient C(k)Y , k ≥ 2,

is given by:

C
(k)
Y (y|y0; θ) = k (y − y0)−k

Z y

y0

(w − y0)k−1
(
1

2

∂2C
(k−1)
Y (w|y0; θ)
∂w2

+
1

2

Xk−2
h=1

µ
k − 1
h

¶
∂C

(h)
Y (w|y0; θ)
∂w

∂C
(k−1−h)
Y (w|y0; θ)

∂w

)
dw. (4.14)

For consistency with the multivariate case to appear below, note for now that these expressions can also

be written in the form

C
(k)
Y (y|y0; θ) = k (y − y0)−k

Z y

y0

(w − y0)k−1G(k)Y (w|y0; θ) dw

= k

Z 1

0

G
(k)
Y (y0 + u (y − y0) |y0; θ)uk−1du (4.15)

where

G
(1)
Y (y|y0; θ) = −∂µY (y; θ)

∂y
− µY (y; θ)

∂C
(0)
Y (y|y0; θ)
∂y

+
1

2

∂2C
(0)
Y (y|y0; θ)
∂y2

+
1

2

"
∂C

(0)
Y (y|y0; θ)
∂y

#2
= λY (y; θ) (4.16)

and for k ≥ 2

G
(k)
Y (y|y0; θ) = −µY (y; θ)

∂C
(k−1)
Y (y|y0; θ)

∂y
+
1

2

∂2C
(k−1)
Y (y|y0; θ)
∂y2

+
1

2

Xk−1
h=0

µ
k − 1
h

¶
∂C

(h)
Y (y|y0; θ)
∂y

∂C
(k−1−h)
Y (y|y0; θ)

∂y
(4.17)

=
1

2

∂2C
(k−1)
Y (y|y0; θ)
∂y2

+
1

2

Xk−2
h=1

µ
k − 1
h

¶
∂C

(h)
Y (y|y0; θ)
∂y

∂C
(k−1−h)
Y (y|y0; θ)

∂y

4.2 Determination of the Coefficients in the Multivariate Reducible Case

In the case of a multivariate reducible diffusion, I proceed along the same lines. Hermite polynomials are

available in the multivariate case (see e.g., Chapter 5 of McCullagh (1987) or Withers (2000)). Let φ(x)

denote the density of the m−dimensional multivariate Normal distribution with mean zero and covariance
matrix κ = [κij ]i,j=1,..,m. The inverse of κ is κ−1 = [κ−1ij ]i,j=1,..,m, so that

φ(x;κ) = (2π)−m/2Det[κ]−1/2 exp(−
Xm

i=1

Xm

j=1
κ−1ij xixj).

For each vector h = (h1, ..., hm)T ∈ Nm, recall that tr[h] = h1+ ...+hm, I will denote by Hh(x) the associated
Hermite polynomials, which are deÞned by

Hh(x;κ) =
(−1)tr[h]
φ(x;κ)

∂tr[h]φ(x;κ)

dxh11 ...dx
hm
m

12



and can be computed explicitly to an arbitrary order tr[h]. The dual Hermite polynomials are

�Hh(x;κ) =
(−1)tr[h]
φ(x;κ)

∂tr[h]φ(z;κ)

dzh11 ...dz
hm
m

at z = κ−1x. We have that �Hh(x;κ) = Hh(κ−1x;κ−1). The polynomials are orthogonal with respect to their

duals in the sense that Z
Rm
Hh(x;κ) �Hk(x;κ)φ(x;κ)dx = h1!...hm!

if h = k and 0 otherwise.

The Hermite series approximation of pY is in the form

ùp
(J)
Y (∆, y|y0; θ) = ∆−m/2φ

³
∆−1/2 (y − y0) ; I

´X
h∈Nm:tr[h]≤J ηh (∆, y0; θ)Hh(∆

−1/2(y − y0); I) (4.18)

i.e., with κ = I, and the Hermite coefficients ηh (∆, y0; θ) can be computed as in the univariate case, by relying

on their orthogonality. Also as in the univariate case, the Hermite expansions can be written directly for the

log-density. The key question addressed in this paper is the computation of the coefficients, and this is where

I rely on the structure afforded by the diffusion hypothesis (note of course that I do not assume that the

characteristic function of the process is known).

The inÞnitesimal generator AY corresponding to the reduced diffusion Y in (3.1) is

AY · f (∆, y, y0; θ) = ∂f (∆, y, y0; θ)

∂∆
+

mX
i=1

µY i (y; θ)
∂f (∆, y, y0; θ)

∂yi
+
1

2

mX
i=1

mX
j=1

∂2f (∆, y, y0; θ)

∂yi∂yj
. (4.19)

Gathering again the coefficients in an expansion in increasing powers of ∆, the form of the expansion

analogous to (4.8) is then

l
(K)
Y (∆, y|y0; θ) = −m

2
ln (2π∆) +

C
(−1)
Y (y|y0; θ)

∆
+
XK

k=0
C
(k)
Y (y|y0; θ) ∆

k

k!
(4.20)

leaving us with the computation of the coefficients C(k)Y , k = −1, 0, 1, 2, ...,K. The following result gives an
explicit expression for each one of these coefficients:

Theorem 1. The coefficients of the log-density Taylor expansion l(K)Y (∆, y|y0; θ) are given explicitly by:

C
(−1)
Y (y|y0; θ) = −1

2

Xm

i=1
(yi − y0i)2 (4.21)

C
(0)
Y (y|y0; θ) =

Xm

i=1
(yi − y0i)

Z 1

0

µY i (y0 + u (y − y0) ; θ) du (4.22)

and, for k ≥ 1,

C
(k)
Y (y|y0; θ) = k

Z 1

0

G
(k)
Y (y0 + u (y − y0) |y0; θ)uk−1du (4.23)
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where

G
(1)
Y (y|y0; θ) = −

Xm

i=1

∂µY i (y; θ)

∂yi
−
Xm

i=1
µY i (y; θ)

∂C
(0)
Y (y|y0; θ)
∂yi

+
1

2

Xm

i=1

∂2C(0)Y (y|y0; θ)
∂y2i

+

"
∂C

(0)
Y (y|y0; θ)
∂yi

#2 (4.24)

and for k ≥ 2

G
(k)
Y (y|y0; θ) = −

Xm

i=1
µY i (y; θ)

∂C
(k−1)
Y (y|y0; θ)

∂yi
+
1

2

Xm

i=1

∂2C
(k−1)
Y (y|y0; θ)
∂y2i

+
1

2

Xm

i=1

Xk−1
h=0

µ
k − 1
h

¶
∂C

(h)
Y (y|y0; θ)
∂yi

∂C
(k−1−h)
Y (y|y0; θ)

∂yi
. (4.25)

To obtain an expansion for the density pY instead of the log-density lY , one can either take the exponential

of l(K)Y , yielding

p
(K)
Y (∆, y|y0; θ) = (2π∆)−m/2 exp

Ã
C
(−1)
Y (y|y0; θ)

∆
+
XK

k=0
C
(k)
Y (y|y0; θ) ∆

k

k!

!
(4.26)

or alternatively, given the coefficients Ck for the log-density, the coefficients ck for the density expansion can

be obtained by matching the coefficients in the two Taylor expansions l(K)Y and p(K)Y .

4.3 Change of Variable

Given an expansion for the density pY of Y, an expansion for the density pX of X can be obtained by a direct

application of the Jacobian formula. DeÞne the Jacobian matrix ∇γ(x; θ). Then the transition density of X
is related to that of Y by

pX (∆, x|x0; θ) = Det [∇γ(x; θ)] pY (∆, γ (x; θ) | γ (x0; θ) ; θ) . (4.27)

Then from (3.2) and (2.6), we have

Det [∇γ(x; θ)] = Det £σ−1(x; θ)¤ = Det [v(x; θ)]−1/2 . (4.28)

Then, replacing pY on the right-hand-side of (4.27) by p
(K)
Y yields an expansion p(K)X for pX .

In terms of log-densities, we have

lX (∆, x|x0; θ) = −1
2
ln (Det [v(x; θ)]) + lY (∆, γ (x; θ) |γ (x0; θ) ; θ)

= −Dv (x; θ) + lY (∆, γ (x; θ) |γ (x0; θ) ; θ) (4.29)
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which I mimic at the level of the approximations of order K in ∆, thereby deÞning l(K)X

l
(K)
X (∆, x|x0; θ) = −Dv (x; θ) + l(K)Y (∆, γ (x; θ) |γ (x0; θ) ; θ)

= −m
2
ln (2π∆)−Dv (x; θ) (4.30)

+
C
(−1)
Y (γ (x; θ) |γ (x0; θ) ; θ)

∆
+
XK

k=0
C
(k)
Y (γ (x; θ) |γ (x0; θ) ; θ) ∆

k

k!

from l
(K)
Y given in (4.20), using the coefficients C(k)Y , k = −1, 0, ...,K given in Theorem 1. This fully describes

the construction of the expansion of lX for a reducible diffusion.

4.4 Independent Variables

An important special case occurs when the m variables in (2.1) are independent. In that case, the multivariate

transition density pX is simply the product of the m univariate transition densities, and the log-likelihood lX

is the sum of the univariate ones. The following proposition shows that the expansion shares this feature:

Proposition 2. Suppose that for each i = 1, ...,m, µi(x; θ) and σii(x; θ) depend on xi only, and that σij(x; θ) =

0 for j 6= i. Then the diffusion is reducible and we have

l
(K)
X (∆, x|x0; θ) =

Xm

i=1
l
(K)
X (∆, xi|x0i; θ) (4.31)

where l(K)X (∆, xi|x0i; θ) is the univariate expansion corresponding to the ith variable, deÞned in (4.9).

5 Closed-Form Expansion for the Transition Density of an Irre-

ducible Diffusion

I now turn to the irreducible case. Mimicking the form of the Taylor expansion in ∆ obtained in the reducible

case, namely (4.30), leads to postulating the following form for an expansion of the log likelihood

l
(K)
X (∆, x|x0; θ) = −m

2
ln (2π∆)−Dv (x; θ) + C

(−1)
X (x|x0; θ)

∆
+
XK

k=0
C
(k)
X (x|x0; θ) ∆

k

k!
. (5.1)

The idea now is to derive an explicit Taylor approximation in (x − x0) of the coefficients C(k)X (x|x0; θ) ,
k = −1, 0, ...,K. SpeciÞcally, I calculate a Taylor series in (x − x0) of each coefficient C(k)X , at order jk in

(x − x0). Such an expansion will be denoted by C(jk,k)X . A Taylor series in (x − x0) is the form that arises

directly from the representation of the Hermite series ùp(J)X as in the univariate case (4.1), with the order J

of the truncation of the series now representing the order of the polynomial term in (x − x0) as opposed to
the order of the Hermite polynomials (which are polynomials in (x− x0)). In the reducible case, we are able
to expand that series in powers of ∆, gather the terms as the coefficient of the term ∆k in the series, take

the limit of the series as the number of Hermite polynomials increase and obtain an explicit expression for
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C
(k)
X = C

(∞,k)
X , so that we obtained the coefficients C(k)X with no need to Taylor-expand them in (x−x0). This

last step is what�s no longer possible when the diffusion is irreducible.

However, it is still possible to compute the Taylor expansions C(jk,k)X explicitly. Before describing how

to compute such a coefficient, one remaining question to solve is the choice of the order jk (in (x − x0))
corresponding to a given order k (in ∆). For that purpose, recall that x− x0 = Op

¡
∆1/2

¢
so that¯̄̄

C
(k)
X (x|x0; θ)∆k −C(jk,k)X (x|x0; θ)∆k

¯̄̄
= Op

¡
(x− x0)jk∆k

¢
= Op(∆

jk/2+k) (5.2)

and setting jk/2 + k = K, i.e.,

jk = 2(K − k) (5.3)

for k = −1, 0, ...,K, will therefore provide an approximation error due to the Taylor expansion in (x− x0) of
the same order ∆K for each one of the terms in the series (5.1).

The resulting expansion will then be

�l
(K)
X (∆, x|x0; θ) = −m

2
ln (2π∆)−Dv (x; θ) + C

(j−1,−1)
X (x|x0; θ)

∆
+
XK

k=0
C
(jk,k)
X (x|x0; θ) ∆

k

k!
. (5.4)

This double Taylor expansion (in ∆ and in (x−x0)) can be viewed as a Taylor expansion in ∆ only, in light of
(5.2). In general, the function need not be analytic at ∆ = 0, hence the expansion is to be interpreted strictly

as a Taylor expansion.

What remains to be done is to compute explicitly the Taylor expansion C(jk,k)X of each coefficient C(k)X .

As I will now show, this involves solving a cascade of differential equations, starting with C(j−1,−1)X , then use

that solution to determine C(j0,0)X , etc. Fortunately, each one of these differential problems has a closed-form

solution as we will now see in Section 5.2.

5.1 The Leading Term: Geometric Interpretation

While the leading term C
(−1)
X in the case of a reducible diffusion is simply

C
(−1)
X (x|x0; θ) = C(−1)Y (γ (x; θ) |γ (x0; θ) ; θ) ,

with C(−1)Y (y|y0; θ) = −1
2 ky − y0k2 (see (4.21) and (4.30)), the situation is more involved when the diffusion

X is not reducible.

Consider the set Ω (x|x0) of m−dimensional differentiable paths ω(τ), starting at x0 at time 0 and ending
at x at time 1. An example of such a path is the straight line ω(τ) = x0 + τ(x − x0). Consider now the

Riemannian metric derived from the coefficients of the matrix v(x; θ)−1, that is the distance between points

x and x+ dx deÞned by

ds =
³Xm

i,j=1
v−1ij (x; θ) dxidxj

´1/2
. (5.5)
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With this metric, the length of any differentiable path ω is

d(ω; θ) =

Z 1

0

µXm

i,j=1
vij (ω(τ); θ)

dωi(τ)

dτ

ωj(τ)

dτ

¶1/2
dτ.

Varadhan (1967) has shown that

lim
∆→0

−2∆ lX (∆, x|x0; θ) = inf
ω∈Ω(x|x0)

d(ω; θ)2.

Since from (5.1)

lim
∆→0

∆ l
(K)
X (∆, x|x0; θ) = C

(−1)
X (x|x0; θ)

the appropriate leading term of the expansion (5.1) ought to be

C
(−1)
X (x|x0; θ) = −1

2
inf

ω∈Ω(x|x0)
d(ω; θ)2 (5.6)

that is, minus one half the square of the shortest distance from x to x0 in the metric induced in Rm by the

matrix v(x; θ)−1.

An important special case occurs when σ, hence ν, is the identity matrix. In this case, the distance (5.5)

reduces to the usual Euclidean distance, the inÞmum in (5.6) is achieved by the straight line, and we have

C
(−1)
Y (y|y0; θ) = −1

2
ky − y0k2 = −1

2

Xm

i=1
(yi − y0i)2

which is the result obtained in the reducible case for the reduced diffusion Y : see equation (4.21).

But, for any v(x; θ), the distance (5.6) is invariant under coordinate transformations. This applies in

particular to the transformation from X to Y ≡ γ (X; θ) when the diffusion is reducible. In this situation, we
have

C
(−1)
X (x|x0; θ) = −1

2
kγ (x; θ)− γ (x0; θ)k2 .

In dimension m = 1, where every diffusion is reducible, this can be recovered directly. We already know

from the univariate case that

C
(−1)
X (x|x0; θ) = −1

2

µZ x

x0

1

σ (w; θ)
dw

¶2
. (5.7)

Now, the only way to move on the real line (including the shortest distance path) is to stay on that straight

line. Suppose, without loss of generality, that x ≥ x0. With ω(τ) = x0 + τ(x− x0), we have

d(ω; θ) =

Z 1

0

1

σ (ω(τ); θ)

µ
dω(τ)

dτ

¶
dτ

= (x− x0)
Z 1

0

1

σ (x0 + τ(x− x0); θ)dτ

=

Z x

x0

1

σ (w; θ)
dw
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with the last equality resulting from the change of variable τ 7→ w = x0 + τ(x− x0). Since γ is given by (3.3)
when m = 1, we indeed recover (5.7) from the general formula (5.6).

5.2 Determination of the Coefficients in the Multivariate Irreducible Case

I now turn to the determination of a closed-form expression for the Taylor expansions C(jk,k)X of the coefficients

C
(k)
X . Essentially, the coefficients are determined one by one, starting with the leading term C

(j−1,−1)
X . Given

C
(j−1,−1)
X , the next term C

(j0,0)
X is calculated explicitly, and so on. The orders of the Taylor expansions j−1,

j0, etc., are chosen to control the order of the remainder terms, setting each jk according to (5.3). This

means in particular that the highest order term (k = −1) is Taylor-expanded to a higher degree of precision
than the successive terms. This is to be expected, given that C(j−1,−1)X in a input to the differential equation

determining C(j0,0)X , and so on.

In order to state the main result pertaining to the closed-form solutions C(jk,k)X , I deÞne the following

functions of the coefficients and their derivatives:

G
(0)
X (x|x0; θ) =

m

2
−
Xm

i=1
µi (x; θ)

∂C
(−1)
X (x|x0; θ)
∂xi

+
Xm

i=1

Xm

j=1

∂vij (x; θ)

∂xi

∂C
(−1)
X (x|x0; θ)
∂xj

+
1

2

Xm

i=1

Xm

j=1
vij (x; θ)

∂2C
(−1)
X (x|x0; θ)
∂xi∂xj

(5.8)

−
Xm

i=1

Xm

j=1
vij (x; θ)

∂C
(−1)
X (x|x0; θ)
∂xi

∂Dv (x; θ)

∂xj
,

G
(1)
X (x|x0; θ) = −

Xm

i=1

∂µi (x; θ)

∂xi
+
1

2

Xm

i=1

Xm

j=1

∂2vij (x; θ)

∂xi∂xj

−
Xm

i=1
µi (x; θ)

Ã
∂C

(0)
X (x|x0; θ)
∂xi

− ∂Dv (x; θ)
∂xi

!

+
Xm

i=1

Xm

j=1

∂vij (x; θ)

∂xi

Ã
∂C

(0)
X (x|x0; θ)
∂xj

− ∂Dv (x; θ)
∂xj

!
(5.9)

+
1

2

Xm

i=1

Xm

j=1
vij (x; θ)

(
∂2C

(0)
X (x|x0; θ)
∂xi∂xj

− ∂
2Dv (x; θ)

∂xi∂xj

+

Ã
∂C

(0)
X (x|x0; θ)
∂xi

− ∂Dv (x; θ)
∂xi

!Ã
∂C

(0)
X (x|x0; θ)
∂xj

− ∂Dv (x; θ)
∂xj

!)
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and for k ≥ 2 :

G
(k)
X (x|x0; θ) = −

Xm

i=1
µi (x; θ)

∂C
(k−1)
X (x|x0; θ)

∂xi
+
Xm

i=1

Xm

j=1

∂vij (x; θ)

∂xi

∂C
(k−1)
X (x|x0; θ)

∂xj

+
1

2

Xm

i=1

Xm

j=1
vij (x; θ)

∂2C
(k−1)
X (x|x0; θ)
∂xi∂xj

(5.10)

+
1

2

Xm

i=1

Xm

j=1
vij (x; θ)

(
2

Ã
∂C

(0)
X (x|x0; θ)
∂xi

− ∂Dv (x; θ)
∂xi

!
∂C

(k−1)
X (x|x0; θ)

∂xj

+
Xk−2

h=1

µ
k − 2
h

¶
∂C

(h)
X (x|x0; θ)
∂xi

∂C
(k−1−h)
X (x|x0; θ)

∂xj

)
.

Note that the computation of each function G(k)X requires only the ability to differentiate the previously

determined coefficients C(−1)X , ..., C
(k−1)
X . The same applies to their Taylor expansions. Let i ≡ (i1, i2, ..., im)

denote a vector of integers and

Ik = {i ≡ (i1, i2, ..., im) ∈ Nm : 0 ≤ tr[i] ≤ jk} (5.11)

so that the form of C(jk,k)X is

C
(jk,k)
X (x|x0; θ) =

X
i∈Ik

γ
(k)
i (x0; θ) (x1 − x01)i1 (x2 − x02)i2 ... (xm − x0m)im . (5.12)

The following theorem can now describe how the coefficients C(jk,k)X , i.e., the coefficients γ(k)i , i ∈ Ik, are
determined:

Theorem 2. For each k = −1, 0, ...,K, the coefficient C(k)X (x|x0; θ) in (5.1) solves the equation

f
(k−1)
X (x|x0; θ) = 0 (5.13)

where

f
(−2)
X (x|x0; θ) = −2C(−1)X (x|x0; θ)−

Xm

i=1

Xm

j=1
vij (x; θ)

∂C
(−1)
X (x|x0; θ)
∂xi

∂C
(−1)
X (x|x0; θ)
∂xj

(5.14)

f
(−1)
X (x|x0; θ) = −

Xm

i=1

Xm

j=1
vij (x; θ)

∂C
(−1)
X (x|x0; θ)
∂xi

∂C
(0)
X (x|x0; θ)
∂xj

−G(0)X (x|x0; θ) . (5.15)

and for k ≥ 1

f
(k−1)
X (x|x0; θ) = C

(k)
X (x|x0; θ)−

Xm

i=1

Xm

j=1
vij (x; θ)

∂C
(−1)
X (x|x0; θ)
∂xi

∂C
(k)
X (x|x0; θ)
∂xj

−G(k)X (x|x0; θ) . (5.16)

where the functions G(k)X , k = 0, 1, ...,K are given above. G(k)X involves only the coefficients C(h)X for h =

−1, ..., k−1, so this system of equation can be utilized to solve recursively for each coefficient at a time, meaning
that the equation f (−2)X = 0 determines C(−1)X ; given C(−1)X , G

(0)
X becomes known and the equation f(−1)X = 0

determines C(0)X ; given C(−1)X and C(0)X , G
(1)
X becomes known and the equation f (0)X = 0 then determines C(1)X ,
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etc.

Each one of these equations can be solved explicitly in the form of the Taylor expansion C(jk,k)X of the

coefficient C(k)X , at order jk in (x−x0). The coefficients γ(k)i (x0; θ) , i ∈ Ik of C(jk,k)X are determined by setting

the Taylor expansion f(jk,k−1)X of f(k−1)X to zero. The key feature that makes this problem solvable in closed

form is that the coefficients solve a succession of systems of linear equations: Þrst determine γ(k)i for tr[i] = 0,

then γ(k)i for tr[i] = 1, and all the way to tr[i] = jk.

Note in particular, for k = −1 : γ(−1)i = 0 for tr[i] = 0, 1 (i.e., the polynomial has no constant or linear

terms) and the terms corresponding to tr[i] = 2 (with of course j−1 ≥ 2) are:

X
i∈I−1:tr[i]=2

γ
(−1)
i (x0; θ) (x1 − x01)i1 (x2 − x02)i2 ... (xm − x0m)im = −1

2
(x− x0)T v−1(x0; θ)(x− x0).

which is the anticipated term given the Gaussian limiting behavior of the transition density when ∆ is small.

Thus with j−1 ≥ 3, we only need to determine the terms γ(−1)i corresponding to tr[i] = 3, ..., j−1.

For k = 0 : γ(0)i = 0 for tr[i] = 0, so the polynomial has no constant term. For k ≥ 1, the polynomials have
a constant term (for k ≥ 1, γ(k)i 6= 0 for tr[i] = 0 in general).

5.3 Applying the Irreducible Method to a Reducible Diffusion

Theorem 2 is more general than Theorem 1 in that it does not require that the diffusion be reducible. In

exchange for that generality, the coefficients are available in closed form only in the form of a Taylor series

expansion in (x− x0). The following proposition describes the relationship between these two methods when
Theorem 2 is applied to a diffusion that is in fact reducible:

Proposition 3. Suppose that the diffusion X is reducible, and let l(K)X denote its log-likelihood expansion

calculated by applying Theorem 1. Suppose now that we also calculate its log-likelihood expansion, �l(K)X ,

without Þrst transforming X into the unit diffusion Y, that is by applying Theorem 2 to X directly. Then

each coefficient C(jk,k)X (x|x0; θ) from �l
(K)
X is a Taylor expansion in (x − x0) at order jk of the coefficient

C
(k)
X (x|x0; θ) = C

(k)
Y (γ (x; θ) |γ (x0; θ) ; θ) from l

(K)
X .

In other words, applying the irreducible method to a diffusion that is in fact reducible involves replacing

(needlessly) the exact expression for C(k)X (x|x0; θ) by its Taylor series in (x−x0). Of course, there is no reason
to do so when the diffusion is reducible.

6 Examples

In this section, I apply the results above to three examples of multivariate diffusion processes of interest in

Þnancial econometrics.
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6.1 The Bivariate Ornstein-Uhlenbeck Model

Consider the model dX1t

dX2t

 =

 β11 (α1 −X1t) + β12 (α2 −X2t)
β21 (α1 −X1t) + β22 (α2 −X2t)

dt+
 σ11 σ12

σ21 σ22

 dW1t

dW2t

 (6.1)

where the parameter vector is θ = (α1, α2, β11, β12, β21, β22, σ11, σ12, σ21, σ22)
T . Let

α =

 α1

α2

 , β =
 β11 β12

β22 β22

 , σ =
 σ11 σ12

σ21 σ22


so that dXt = β (α−Xt) dt+ σdWt, and assume that β has full rank (as well as σ, recall Assumption ??.3).

This is the most basic model capturing mean reversion in the state variables.

Consider the matrix equation

βλ+ λβT = σσT (6.2)

whose solution in the bivariate case is the 2× 2 symmetric matrix λ given by

λ =
1

2tr [β]Det [β]

³
Det [β]σσT + (β − tr [β])σσT (β − tr [β])T

´
. (6.3)

When the process is stationary, i.e., when the eigenvalues of the matrix β have positive real parts, λ is the

stationary variance-covariance matrix of the process. That is, the stationary density of X is the bivariate

Normal density with mean α and variance-covariance λ.

The transition density of X is the bivariate Normal density

pX (∆, x|x0; θ) = (2π)−1Det[Ω (∆; θ)]−1/2 exp(− (x−m (∆, x0; θ))T Ω−1 (∆; θ) (x−m (∆, x0; θ))) (6.4)

where

m (∆, x0; θ) = α+ exp (−β∆) (x0 − α) (6.5)

Ω (∆; θ) = λ− exp (−β∆)λ exp(−βT∆) (6.6)

and exp applied to a matrix denotes the matrix exponential (which does not in general reduce to the exponential

of each term of the matrix).

I now discuss the identiÞcation of the continuous time parameters from the discrete data. This presence of

the matrix exponential exp (−β∆) provides a clear insight into the aliasing phenomenon as it applies to this
model. From the form of the transition function (6.4) with conditional mean and variance (6.5)-(6.6), discrete

data sampled at time interval ∆ may not distinguish between two sets of parameters β and β0 such that

exp (−β∆) = exp
¡−β0∆¢ . The eigenvalues of β are either both real, or both complex conjugates. If they

are complex, then for any given B, there are countably many solutions in β to the equation exp (−β∆) = B.
This phenomenon was noted by Philips (1973). If the eigenvalues of β are a pair of distinct complex conjugate
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numbers that do not differ by an integer multiple of 2πi/∆, let β = TΛT−1 where T and Λ are respectively

the matrices of eigenvectors and eigenvalues of β. Then for any integer g, the matrix β0 deÞned by

β0 = β +
2πi

∆
T · diag(g,−g) · T−1

satisÞes exp
¡−β0∆¢ = exp (−β∆) = B. The phenomenon does not occur if the eigenvalues of β are all real

because β0 would then have complex elements since the eigenvalues of β0 are Λ + (2πi/∆) diag(g,−g) with
T and T−1 real in that case.

This does not necessarily mean that β is not identiÞed, because the conditional variance (6.6) conveys

identifying information about β. Indeed, while the matrix exp (−β∆) and exp(−βT∆) = exp(−β∆)T are
identical for β and β0, the λ matrix may be different and as a result the conditional variances Ω (∆; θ)

corresponding to β and β0 may be different. To lose identiÞcation, we would need to Þnd a pair (β0, σ0) which

produce the same (m,Ω) as (β, σ). Let v = σσT and v0 = σ0σ0T . Identical conditional variances under both

sets of parameters would require that

v0 = v +
2πi

∆

¡
T · diag(g,−g) · T−1 · λ+ λ · T · diag(g,−g) · T−1¢ .

Such a matrix v0 always exist but, as pointed out by Hansen and Sargent (1983), except in degenerate

cases, there is at most a Þnite number of integers g for which v0 is positive deÞnite (which is necessary since

v0 = σ0σ0T ). Hence the identiÞcation problem is not as severe as it Þrst seems from looking at the inÞnite

number of solutions to the equation exp (−β∆) = B when β has complex eigenvalues.

But in any event, if we wish to identify the parameters in θ from discrete data sampled at the given time

interval ∆, then we must restrict the set of admissible parameter values Θ. For instance, we may restrict Θ

in such a way that that the mapping β 7→ exp (−β∆) is invertible, for instance by restricting the admissible
parameter matrices β to have real eigenvalues. This will be the case for example if we restrict attention to

matrices β which are triangular (and of course have real elements). For the rest of this discussion, I will

assume that Θ has been restricted in such a way.

By applying Proposition 1, we see that the process X is reducible, and that γ (x; θ) = σ−1x so

dYt =
¡
σ−1βα− σ−1βσYt

¢
dt+ dWt

= σ−1βσ
¡
σ−1α− Yt

¢
dt+ dWt

≡ κ (γ − Yt) dt+ dWt (6.7)

where

γ = σ−1α =

 γ1

γ2

 , κ = σ−1βσ =
 κ11 κ12

κ21 κ22

 .
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One can therefore apply Theorem 1 which gives:

C
(−1)
Y (y|y0; θ) = −1

2 (y1 − y01)2 − 1
2 (y2 − y02)2

C
(0)
Y (y|y0; θ) = −1

2 (y1 − y01) ((y1 + y01 − 2γ1)κ11 + (y2 + y02 − 2γ2)κ12)
− 1

2 (y2 − y02) ((y1 + y01 − 2γ1)κ21 + (y2 + y02 − 2γ2)κ22)

C
(1)
Y (y|y0; θ) = 1

2

³
κ11 − ((y01 − γ1)κ11 + (y02 − γ2)κ12)2 + κ22 − ((y01 − γ1)κ21 + (y02 − γ2)κ22)2

´
− 1

2 (y1 − y01)
¡
(y01 − γ1)

¡
κ211 + κ

2
21

¢
+ (y02 − γ2) (κ11κ12 + κ21κ22)

¢
+ 1

24 (y1 − y01)2
¡−4κ112 + κ122 − 2κ12κ21 − 3κ221¢

− 1
2 (y2 − y02)

¡
(y01 − γ1) (κ11κ12 + κ21κ22) + (y02 − γ2)

¡
κ212 + κ

2
22

¢¢
+ 1

24 (y2 − y02)2
¡−4κ222 + κ221 − 2κ12κ21 − 3κ212¢

− 1
3 (y1 − y01) (y2 − y02) (κ11κ12 + κ21κ22)

C
(2)
Y (y|y0; θ) = − 1

12

³
2κ211 + 2κ

2
22 + (κ12 + κ21)

2
´

+ 1
6 (y1 − y01) (κ12 − κ21)

¡
(y01 − γ1) (κ11κ12 + κ21κ22) + (y02 − γ2)

¡
κ212 + κ

2
22

¢¢
+ 1

12(y1 − y01)2 (κ12 − κ21) (κ11κ12 + κ21κ22)
+ 1

6 (y2 − y02) (κ21 − κ12)
¡
(y01 − γ1)

¡
κ211 + κ

2
21

¢
+ (y02 − γ2) (κ11κ12 + κ21κ22)

¢
+ 1

12(y2 − y02)2 (κ21 − κ12) (κ11κ12 + κ21κ22)
+ 1

12 (y1 − y01) (y2 − y02) (κ12 − κ21)
¡
κ222 + κ

2
12 − κ211 + κ221

¢
Because this is one of the few multivariate models with a known closed-form density, the Ornstein-

Uhlenbeck process can serve as a useful benchmark to examine the accuracy of the expansions. Table 1

reports the results of 1,000 Monte Carlo simulations comparing the distribution of the maximum-likelihood

estimator �θ
(EXACT )

based on the exact transition density for this model, around the true value of the para-

meters θ0, to the distribution of the difference between the exact MLE �θ
(EXACT )

and the approximate MLE
�θ
(2)
based on the expansion with K = 2 terms shown above. The results in the table show that the difference

�θ
(EXACT )− �θ(2) is several orders of magnitude smaller than the difference �θ(EXACT )− θ0 due to the sampling
noise.

6.2 A Stochastic Volatility Model

Consider as a second example the prototypical stochastic volatility model dX1t

dX2t

 =

 µ

κ (α−X2t)

 dt+
 γ11 exp(X2t) 0

0 γ22

 dW1t

dW2t

 (6.8)

where X1t plays the role of the log of an asset price and exp(X2t) is the stochastic volatility variable. While

the term exp(X2t) violates the linear growth condition, it does not cause explosions due to the mean reverting

nature of the stochastic volatility. This model has no closed-form solution.

The diffusion (6.8) is in general not reducible, so I will apply the method of Theorem 2 to derive the

23



expansion. The expansion at order K = 3 is given by (5.1), with the coefficients C(jk,k)X , k = −1, 0, ..., 3 given
by:

C
(8,−1)
X (x|x0; θ) = −1

2
(x1−x01)2
e2x02γ211

− 1
2
(x2−x02)2

γ222
+ (x1−x01)2(x2−x02)

2e2x02γ211
− (x1−x01)2(x2−x02)2

6e2x02γ211
+ (x1−x01)4γ222

24e4x02γ411

− (x1−x01)4(x2−x02)γ222
12e4x02γ411

+ (x1−x01)2(x2−x02)4
90e2x02γ211

+ (x1−x01)4(x2−x02)2γ222
15e4x02γ411

− (x1−x01)6γ422
180e6x02γ611

− (x1−x01)4(x2−x02)3γ222
45e4x02γ411

+
(x1−x01)6(x2−x02)γ422

60e6x02γ611

− (x1−x01)2(x2−x02)6
945e2x02γ211

− (x1−x01)4(x2−x02)4γ222
630e4x02γ411

− 3(x1−x01)6(x2−x02)2γ422
140e6x02γ611

+ (x1−x01)8γ622
1120e8x02γ811

C
(6,0)
X (x|x0; θ) = µ(x1−x01)

e2x02γ211
+ (x2 − x02)

³
1
2 +

κ(α−x02)
γ222

´
− µ(x1−x01)(x2−x02)

e2x02γ211
− (x1−x01)2γ222

12e2x02γ211
− (x2−x02)2(6κ+γ222)

12γ222

+ µ(x1−x01)(x2−x02)2
3e2x02γ211

− µ(x1−x01)3γ222
6e4x02γ411

+ (x1−x01)2(x2−x02)γ222
12e2x02γ211

+ (x2−x02)4
360 +

µ(x1−x01)3(x2−x02)γ222
3e4x02γ411

− (x1−x01)2(x2−x02)2γ222
45e2x02γ211

+
7(x1−x01)4γ422
720e4x02γ411

− µ(x1−x01)(x2−x02)4
45e2x02γ211

− 4µ(x1−x01)3(x2−x02)2γ222
15e4x02γ411

− (x1−x01)2(x2−x02)3γ222
180e2x02γ211

+
µ(x1−x01)5γ422
30e6x02γ611

− 7(x1−x01)4(x2−x02)γ422
360e4x02γ411

− (x2−x02)6
5670 +

4µ(x1−x01)3(x2−x02)3γ222
45e4x02γ411

+
(x1−x01)2(x2−x02)4γ222

315e2x02γ211

− µ(x1−x01)5(x2−x02)γ422
10e6x02γ611

+ 223(x1−x01)4(x2−x02)2γ422
15120e4x02γ411

− 71(x1−x01)6γ622
45360e6x02γ611

C
(4,1)
X (x|x0; θ) = −(12e

2x02α2κ2γ211−24e2x02ακ2x02γ211+12e2x02κ2x02γ211+12µ2γ222−12e2x02κγ211γ222+e2x02γ211γ422)
24e2x02γ211γ

2
22

+ µ(x1−x01)γ222
6e2x02γ211

− (x2−x02)(−e2x02ακ2γ211+e2x02κ2x02γ211−µ2γ222)
2e2x02γ211γ

2
22

− µ(x1−x01)(x2−x02)γ222
6e2x02γ211

− (x1−x01)2(−30e2x02ακ2γ211+30e2x02κ2x02γ211−90µ2γ222−e2x02γ211γ422)
360e4x02γ411

+
(x2−x02)2(−60e2x02κ2γ211−60µ2γ222+e2x02γ211γ422)

360e2x02γ211γ
2
22

+ 2µ(x1−x01)(x2−x02)2γ222
45e2x02γ211

− 7µ(x1−x01)3γ422
180e4x02γ411

− (x1−x01)2(x2−x02)(15e2x02κ2γ211+30e2x02ακ2γ211−30e2x02κ2x02γ211+180µ2γ222+e2x02γ211γ422)
360e4x02γ411

+ µ(x1−x01)(x2−x02)3γ222
90e2x02γ211

+ 7µ(x1−x01)3(x2−x02)γ422
90e4x02γ411

− (x2−x02)4(−42µ2+e2x02γ211γ222)
3780e2x02γ211

+
(x1−x01)2(x2−x02)2(98e2x02κ2γ211+56e2x02ακ2γ211−56e2x02κ2x02γ211+1008µ2γ222+e2x02γ211γ422)

2520e4x02γ411

− (x1−x01)4γ222(42e2x02κ2γ211+112e2x02ακ2γ211−112e2x02κ2x02γ211+840µ2γ222+5e2x02γ211γ422)
10080e6x02γ611

C
(2,2)
X (x|x0; θ) = −30e2x02κ2γ211−30e2x02ακ2γ211+30e2x02κ2x02γ211−30µ2γ222+e2x02γ211γ422

180e2x02γ211

+
(x2−x02)(e2x02κ2γ211+2µ2γ222)

12e2x02γ211
− µ(x1−x01)(30e2x02ακ2γ211−30e2x02κ2x02γ211+30µ2γ222+e2x02γ211γ422)

90e4x02γ411

+
µ(x1−x01)(x2−x02)(15e2x02κ2γ211+30e2x02ακ2γ211−30e2x02κ2x02γ211+60µ2γ222+e2x02γ211γ422)

90e4x02γ411

− (x1−x01)2γ222(−105e2x02κ2γ211−21e2x02ακ2γ211+21e2x02κ2x02γ211−441µ2γ222+4e2x02γ211γ422)
3780e4x02γ411

− (x2−x02)2(−21e2x02κ2γ211−42e2x02ακ2γ211+42e2x02κ2x02γ211+168µ2γ222+4e2x02γ211γ422)
3780e2x02γ211

C
(0,3)
X (x|x0; θ) = 1890µ4γ422+126e

2x02µ2γ211γ
2
22(30κ2(α−x02)+γ422)+e4x02γ411(1890κ4(x02−α)2−63κ2(1−2α+2x02)γ422−16γ822)

7560e4x02γ411γ
2
22

Finally, while in many instance Þnancial econometricians are willing to let X2t denote an observable

volatility variable (option-implied from the underlying asset�s option price, direct observation of volatility

derivatives contracts such as the VIX, or other sources), if the variable X2t is not observable (latent) then
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the transition density pX cannot be used directly in (2.2). Instead, the latent variable must be integrated out

from the joint likelihood of prices and volatility in order to obtain the likelihood function to be maximized.

Alternatively, Bayesian methods can make use of pX .

6.3 Multivariate Term Structure Models

Aït-Sahalia and Kimmel (2002) apply the method of this paper to the class of affine yield models for the term

structure of interest rates. They derive the likelihood expansions for the nine canonical models of Dai and

Singleton (2000). For instance, in dimension m = 3, the four canonical models are respectively
dX1t

dX2t

dX3t

 =


κ11 0 0

κ21 κ22 0

κ31 κ32 κ33



−X1t
−X2t
−X3t

dt+

dW1t

dW2t

dW3t



dX1t

dX2t

dX3t

 =


κ11 0 0

κ21 κ22 κ23

κ31 κ32 κ33



θ1 −X1t
−X2t
−X3t

dt+

X
1/2
1t 0 0

0 (1 + β21X1t)
1
2 0

0 0 (1 + β21X1t)
1
2



dW1t

dW2t

dW3t



dX1t

dX2t

dX3t

 =


κ11 κ12 0

κ21 κ22 0

κ31 κ32 κ33



θ1 −X1t
θ2 −X2t
−X3t

dt+

X
1/2
1t 0 0

0 X
1/2
2t 0

0 0 (1 + β31X1t + β32X2t)
1
2



dW1t

dW2t

dW3t



dX1t

dX2t

dX3t

 =


κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33



θ1 −X1t
θ2 −X2t
θ3 −X3t

 dt+

X
1/2
1t 0 0

0 X
1/2
2t 0

0 0 X
1/2
3t



dW1t

dW2t

dW3t

 .
Likelihood expansions for all these models are given in Aït-Sahalia and Kimmel (2002), as well as a Monte

Carlo investigation of the properties of maximum-likelihood estimators of the parameters derived from these

expansions. They show that error due to replacing the exact transition density (for the models where it is

known) with this paper�s approximation is again several orders of magnitude smaller than the uncertainty in the

parameter estimates due to the sampling noise, and that maximum-likelihood estimates are substantially more

efficient (as expected from standard asymptotic theory and the Cramer-Rao lower bound) than alternative

estimates for these models.

7 Conclusions

This paper provides a method to derive closed-form expansions to the likelihood function of arbitrary mul-

tivariate diffusions. The multivariate diffusion setting presents many challenges, including the fact that not

all diffusions are reducible. Nevertheless, the paper provides a method that delivers closed form likelihood
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expansions whether the diffusion is reducible or not. I hope that this will contribute to making maximum-

likelihood the method of choice for estimating diffusion models with discretely sampled data, as is the case for

other time series models.
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Appendix: Proofs

A Proof of Proposition 1

Suppose that a transformation γ (x; θ) = (γ1 (x; θ) , ..., γm (x; θ))
T exists and deÞne Yt ≡ γ (Xt; θ). By Itô�s

Lemma, the diffusion matrix of Y is

σY (Yt; θ) = ∇γ(Xt; θ)σ (Xt; θ) .

For σY to be Id, it must therefore be that

∇γ(Xt; θ) = σ−1 (x; θ) .

Thus

σ−1ij (x; θ) =
∂γi (x; θ)

∂xj
, (A.1)

hence
∂σ−1ij (x; θ)

∂xk
=

∂

∂xk

µ
∂γi (x; θ)

∂xj

¶
=

∂

∂xj

µ
∂γi (x; θ)

∂xk

¶
=
∂σ−1ik (x; θ)

∂xj

for all (i, j, k) = 1, ...,m. Continuity of the second order partial derivatives is required for the order of differ-
entiation to be interchangeable. Here, we have inÞnite differentiability.
Conversely, suppose that σ−1 satisÞes (3.4). Then, for each i = 1, ...,m, use row i of the matrix σ−1,

σ−1i· =
£
σ−1i,j

¤
,j=1,...,m

, to deÞne the differential 1−form

ωi =
mX
j=1

σ−1ij dxj

and calculate its differential, the differential 2−form dωi. We have that

dωi =
mX
j=1

d(σ−1ij ) ∧ dxj =
mX
j=1

(
mX
k=1

∂σ−1ij
∂xk

dxk

)
∧ dxj

=
mX
j=1

mX
k=j+1

(
∂σ−1ij
∂xk

− ∂σ
−1
ik

∂xj

)
dxk ∧ dxj

since dxj ∧ dxk = −dxk ∧ dxj and dxj ∧ dxj = 0 (for notation and deÞnitions of differential forms, see e.g.,
Chapter V in Edwards (1973)).
Thus condition (3.4) implies that dωi = 0, that is the differential 1−form ωi is closed on SX . Note also that

because of its form, the domain SX is open and star-shaped (meaning that there exists a point w in its interior
such that for every x ∈ SX the line segment from x to w is contained in SX). Therefore by Poincaré�s Lemma
(see e.g., Theorem V.8.1 in Edwards (1973)) the form ωi is exact, i.e., there exists a differential 0−form γi
such that dγi = ωi. In other words, for each row i of the matrix σ

−1 there exists a function γi deÞned by

γi (x; θ) =

Z xj

σ−1ij (x; θ) dxj

(the choice of the index j is irrelevant) which satisÞes (A.1), the required differentiability properties and is
invertible. The function γ is then deÞned by each of its d components γi, i = 1, ...,m. By construction,
Yt ≡ γ (Xt; θ) has unit diffusion and therefore X is reducible.
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B Proof of Theorem 1

The expression for the coefficients is obtained by computing a Taylor expansion using the multivariate generator
(4.19), in effect extending the approach used in the univariate case by Aït-Sahalia (2002). This process establish
the form of the solution. But as is often the case when a differential operator is involved, it is easier to verify
that a given functional form (in this case established using the generator) is the right solution. Indeed, to show
that (4.20) with the coefficients given in the statement of Theorem 1 represent indeed the Taylor expansion in
∆ of the log-density function lY , at order K − 1, it suffices to verify that the difference between the left and
right hand sides in the Fokker-Planck-Kolmogorov (FPK) forward and backward partial differential equations
is of order ∆K .
The forward and backward FPK equations for pY are respectively:

∂pY (∆, y|y0; θ)
∂∆

= −
mX
i=1

∂

∂yi
{µY i (y; θ) pY (∆, y|y0; θ)}

+
1

2

mX
i=1

mX
j=1

∂2

∂yi∂yj
{vij (y; θ) pY (∆, y|y0; θ)} (B.1)

∂pY (∆, y|y0; θ)
∂∆

=
mX
i=1

µY i (y0; θ)
∂pY (∆, y|y0; θ)

∂y0i
+
1

2

mX
i=1

mX
j=1

∂2pY (∆, y|y0; θ)
∂y0i∂y0j

(B.2)

DeÞne FY (∆, y|y0; θ) (resp. BY (∆, y|y0; θ)) as the the difference left and right hand sides of (B.1) (resp.
(B.2)), divided by pY (∆, y|y0; θ); let F (K)Y and B(K)Y denote the analogous quantities when pY is replaced by
the expansion

p
(K)
Y (∆, y|y0; θ) = (2π∆)−m/2 exp

Ã
C
(−1)
Y (y|y0; θ)

∆
+
XK

k=0
C
(k)
Y (y|y0; θ) ∆

k

k!

!
(B.3)

obtained by exponentiation of (4.20).
Starting with the Gaussian leading term (4.21), tedious but otherwise straightforward computations show

that:

F
(K)
Y (∆, y|y0; θ) =

XK−1
k=−1 f

(k)
Y (y|y0; θ) ∆

k

k!
+O

¡
∆K

¢
(with the convention that (−1)! = 0! = 1). The Þrst term is

f
(−1)
Y (y|y0; θ) = −

Xm

i=1
(yi − y0i)µY i (y; θ) +

Xm

i=1
(yi − y0i) ∂C

(0)
Y (y|y0; θ)
∂yi

.

Solving the equation
f
(−1)
Y (y|y0; θ) = 0

for C(0)Y (y|y0; θ) with the boundary condition that C(0)Y be Þnite when going through the axes yj = yj0 for all
j = 1, ...,m yields the solution (4.22). The boundary condition serves to set the generic integration constants
α
(0)
ij in the full solution

C
(0)
Y (y|y0; θ) =

Xm

i=1
(yi − y0i)

Z 1

0

µY i (y0 + u (y − y0) ; θ) du+
Xm

i,j=1, j 6=i α
(0)
ij

yi − y0i
yj − y0j

to zero.
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The next term is

f
(0)
Y (y|y0; θ) = C

(1)
Y (y|y0; θ) +

Xm

i=1
(yi − y0i) ∂C

(1)
Y (y|y0; θ)
∂yi

+
Xm

i=1

∂µY i (y; θ)

∂yi
+
Xm

i=1
µY i (y; θ)

∂C
(0)
Y (y|y0; θ)
∂yi

−1
2

Xm

i=1

∂2C(0)Y (y|y0; θ)
∂y2i

+

"
∂C

(0)
Y (y|y0; θ)
∂yi

#2
= C

(1)
Y (y|y0; θ) +

Xm

i=1
(yi − y0i) ∂C

(1)
Y (y|y0; θ)
∂yi

−G(1)Y (y|y0; θ)

where G(1)Y is given in (4.24) and depends on the previously determined C(−1)Y and C(0)Y . Solving the equation

f
(0)
Y (y|y0; θ) = 0

for C(1)Y , including generic integration constants α(1)ij , the explicit solution is

C
(1)
Y (y|y0; θ) =

Z 1

0

G
(1)
Y (y0 + u (y − y0) |y0; θ) du+

Xm

i,j=1, j 6=i α
(1)
ij

yi − y0i
(yj − y0j)2

which reduces to (4.23) after accounting for the same boundary condition as for C(0)Y .
More generally, the term f

(k−1)
Y , k ≥ 1, is given by

f
(k−1)
Y (y|y0; θ) = C(k)Y (y|y0; θ) + 1

k

Xm

i=1
(yi − y0i) ∂C

(k)
Y (y|y0; θ)
∂yi

−G(k)Y (y|y0; θ)

where G(k)Y is given in (4.25) and depends on the previously determined C(−1)Y , C
(0)
Y , ..., C

(k−1)
Y . Solving the

equation
f
(k)
Y (y|y0; θ) = 0

for C(k)Y (with the same boundary condition as for C(0)Y and C(1)Y ) yields the explicit solution (4.23). In this
case, the full solution including generic integration constants αij is

C
(k)
Y (y|y0; θ) = k

Z 1

0

G
(k)
Y (y0 + u (y − y0) |y0; θ)uk−1du+

Xm

i,j=1, j 6=i α
(k)
ij

yi − y0i
(yj − y0j)k+1

.

Thus by construction, the solution C(k)Y , k = −1, 0, ...,K given in the statement of the theorem is such that

F
(K)
Y (∆, y|y0; θ) = O

¡
∆K

¢
which along with the linearity of (B.1) in pY insures that (4.20) is a Taylor expansion of order K − 1 of lY .
Similar calculations show that

B
(K)
Y (∆, y|y0; θ) = O

¡
∆K

¢
.

C Proof of Proposition 2

To establish that l(K)X is the sum of the univariate components, it suffices to establish that each multivariate
coefficient C(k)X of the expansion is the sum of the corresponding univariate coefficients. Further, it suffices
to establish this for the coefficients CkY , since the reducibility transformation γ (x; θ) involves each component
separately:

γ (x; θ) = (γ1 (x1; θ) , ..., γm (xi; θ))
T
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where γi (xi; θ) is given from σii(x; θ) by equation (3.3). Therefore, we need to establish that

C
(k)
Y (y|y0; θ) =

Xm

i=1
C
(k)
Y (yi|y0i; θ) (C.1)

for k = −1, 0, ...,K.
From (4.21), it can be seen that (C.1) is always satisÞed for k = −1 (whether the variables are independent

or not). For k = 0, we have from (4.22) that

C
(0)
Y (y|y0; θ) =

Xm

i=1
(yi − y0i)

Z 1

0

µY i (y0 + u (y − y0) ; θ) du

=
Xm

i=1
(yi − y0i)

Z 1

0

µY i (y0i + u (yi − y0i) ; θ) du

=
Xm

i=1

Z yi

y0i

µY i (w; θ) dw

=
Xm

i=1
C
(0)
Y (yi|y0i; θ) .

For k = 1, we have

G
(1)
Y (y|y0; θ) = −

Xm

i=1

∂µY i (yi; θ)

∂yi
−
Xm

i=1
µY i (y; θ)

∂C
(0)
Y (yi|y0i; θ)
∂yi

+
1

2

Xm

i=1

∂2C(0)Y (yi|y0i; θ)
∂y2i

+

"
∂C

(0)
Y (yi|y0i; θ)
∂yi

#2
=

Xm

i=1
G
(1)
Y (yi|y0i; θ)

and for k ≥ 2

G
(k)
Y (y|y0; θ) = −

Xm

i=1
µY i (yi; θ)

∂C
(k−1)
Y (yi|y0i; θ)

∂yi
+
1

2

Xm

i=1

∂2C
(k−1)
Y (yi|y0i; θ)

∂y2i

+
1

2

Xm

i=1

Xk−1
h=0

µ
k − 1
h

¶
∂C

(h)
Y (yi|y0i; θ)
∂yi

∂C
(k−1−h)
Y (yi|y0i; θ)

∂yi

=
Xm

i=1
G
(k)
Y (yi|y0i; θ)

Therefore, for k ≥ 1, we have

C
(k)
Y (y|y0; θ) = k

Z 1

0

G
(k)
Y (y0 + u (y − y0) |y0; θ)uk−1du

= k
Xm

i=1

Z 1

0

G
(k)
Y (y0i + u (yi − y0i) |y0i; θ)uk−1du

=
Xm

i=1
C
(k)
Y (yi|y0i; θ) .
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D Proof of Theorem 2

This proof proceed along the same lines as that of Theorem 1. The forward and backward FPK equations for
pX are respectively:

∂pX (∆, x|x0; θ)
∂∆

= −
mX
i=1

∂

∂xi
{µi (x; θ) pX (∆, x|x0; θ)}

+
1

2

mX
i=1

mX
j=1

∂2

∂xi∂xj
{vij (x; θ) pX (∆, x|x0; θ)} (D.1)

∂pX (∆, x|x0; θ)
∂∆

=
mX
i=1

µi (x0; θ)
∂pX (∆, x|x0; θ)

∂x0i
+
1

2

mX
i=1

mX
j=1

vij (x0; θ)
∂2pX (∆, x|x0; θ)

∂x0i∂x0j
(D.2)

DeÞne FX (∆, x|x0; θ) (resp. BX (∆, x|x0; θ)) as the the difference left and right hand sides of (D.1) (resp.
(D.2)), divided by pX (∆, x|x0; θ); let F (K)X and �F

(K)
X (resp. B

(K)
X and �B

(K)
X ) and denote the analogous

quantities when pX is replaced by the expansions

p
(K)
X (∆, x|x0; θ) = (2π∆)−m/2 exp

Ã
− lnDv (x; θ) + C

(−1)
X (x|x0; θ)

∆
+
XK

k=0
C
(k)
X (x|x0; θ) ∆

k

k!

!
(D.3)

and

�p
(K)
X (∆, x|x0; θ) = (2π∆)−m/2 exp

Ã
− lnDv (x; θ) + C

(j−1,−1)
X (x|x0; θ)

∆
+
XK

k=0
C
(jk,k)
X (x|x0; θ) ∆

k

k!

!
(D.4)

respectively, obtained by exponentiation of (5.1) and (5.4) respectively.
We have

F
(K)
X (∆, x|x0; θ) =

XK−1
k=−2 f

(k)
X (x|x0; θ) ∆

k

k!
+O

¡
∆K

¢
(with the convention that (−2)! = 2 and (−1)! = 0! = 1). The highest order term is f (−2)X given by (5.14) and
the coefficient function C(−1)X is such that it sets f (−2)X to zero. Then we have successively C(0)X determined
by setting f (−1)X in (5.15) to zero, and more generally, given C(−1)X , C

(0)
X , ..., C

(k−1)
X , the expression (5.16) for

f
(k−1)
X is deÞned and can be set to zero to determine the next coefficient C(k)X .

To determine the Taylor expansions in x− x0 for each coefficient C(k)X , k ≥ −1, replace C(k)X by C(jk,k)X in
each equation in turn, starting with (5.14). calculate a Taylor expansion of �f (−2)X in (x − x0) to order j−1.
This determines a system of equations in the unknown coefficients γ(−1)i , i ∈ I−1 (which appear when C(−1)X

is Taylor expanded as in (5.12)). By construction, there are as many equations as unknowns (both are given
by the number of elements in I−1). This system of equation can always be solved explicitly because it has the
following form.
First, γ(−1)i = 0 for tr[i] = 0, 1 (i.e., the polynomial has no constant or linear terms) and the terms

corresponding to tr[i] = 2 (with of course j−1 ≥ 2) are:X
i∈I−1:tr[i]=2

γ
(−1)
i (x0; θ) (x1 − x01)i1 (x2 − x02)i2 ... (xm − x0m)im = −(x− x0)Tv−1(x0; θ)(x− x0).

which is the anticipated term given the Gaussian limiting behavior of the transition density when ∆ is small.
Thus with j−1 ≥ 3, we only need to determine the terms γ(−1)i corresponding to tr[i] = 3, ..., j−1.
Then, the next order coefficients in (x− x0) , i.e., the coefficients corresponding to tr[i] = 3, each appear

linearly in a separate equations. That is, we have a system

M
(−1)
3 (x0; θ) · γ(−1)3 (x0; θ) = b

(−1)
3 (x0; θ)
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whose explicit solution is given by γ(−1)3 (x0; θ) = Inv[M
(−1)
3 (x0; θ)] · b(−1)3 (x0; θ) , and so on. Given the

previously determined coefficients corresponding to tr[i] = 0, ..., r, the equations determining the coefficients
for tr[i] = r + 1 are given by a linear system:

M
(−1)
r+1 (x0; θ) · γ(−1)r+1 (x0; θ) = b

(−1)
r+1 (x0; θ)

where the matrix M (−1)
r+1 and the vector b(−1)r+1 are functions of the previously determined coefficients γ

(−1)
i for

tr[i] = 0, ..., r, and of course x0 and the parameters θ of the process.
The same principle applies to all values of k. For k = 0 : γ(0)i = 0 for tr[i] = 0, so the polynomial has no

constant term. For k ≥ 1, the polynomials have a constant term (for k ≥ 1, γ(k)i 6= 0 for tr[i] = 0 in general).
The same principle applies to each equation in turn: once C(j−1,−1)X is determined, a Taylor expansion of (5.15)
determines the coefficients γ(0)i , i ∈ I0, etc.
Finally, note that the term Dv (x; θ) which arose in the reducible case from the Jacobian transformation is

independent of ∆ and so could be built into the C(0)X coefficient. Doing so however would subject it to being
Taylor-expanded in x − x0, which is unnecessary anyway since Dv (x; θ) is known. If Dv (x; θ) were being
Taylor-expanded along with C(j0,0)X in (D.4), we would lose the property that �p(K)X also solves the backward
FPK equation (D.2) to order K − 1 in ∆. Hence the form of the log-likelihood I adopted in (5.1) with Dv
kept separate from C

(0)
X is essential to obtain

�B
(K)
X (∆, x|x0; θ) = O

¡
∆K

¢
in addition to �F (K)X (∆, x|x0; θ) = O

¡
∆K

¢
.

E Proof of Proposition 3

If the diffusion X is reducible, then C(k)X (x|x0; θ) = C(k)Y (γ (x; θ) |γ (x0; θ) ; θ) . By construction (see the proof
of Theorem 2), the coefficients C(jk,k)X are Taylor expansions of the coefficients C(k)X (which are the expressions
solutions of the equations f(k−1)X = 0).
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Parameter θ(TRUE) �θ
(MLE) − θ(TRUE) �θ

(MLE) − �θ(2)

Mean Stnd. Dev. Mean Stnd. Dev.

γ1 0 −0.0013 0.069 −0.0000015 0.000035

γ2 0 0.00070 0.033 0.00000012 0.000016

κ11 5 0.52 1.17 0.012 0.0085

κ12 1 −0.066 1.74 0.0087 0.017

κ22 5 0.35 1.50 0.069 0.029

Table 1: Monte-Carlo Simulations for the Bivariate Ornstein-Uhlenbeck Model

This table reports the results of 1,000 Monte Carlo simulations comparing the distribution of the maximum-likelihood

estimator �θ
(MLE)

based on the exact transition density for this model, around the true value of the parameters θ0, to

the distribution of the difference between the exact MLE �θ
(MLE)

and the approximate MLE �θ
(2)
based on the expansion

with K = 2 terms, for the process (6.7). To insure full identiÞcation, the off-diagonal term κ21 is constrained to be zero.
As discussed in the text, this guarantees that the eigenvalues of the mean reversion matrix are both real and avoids the
aliasing problem altogether. The constraints κ11 > 0 and κ22 > 0 are imposed to insure stationarity of the process. The
true values of the parameter vector θ = (γ1, γ2, κ11, κ12, κ22) used to generate the data are θ

(TRUE) = (0, 0, 5, 1, 5). Each
of the 1,000 samples is a series of n = 500 weekly observations (∆ = 1/52), generated using the exact discretization

of the process. The results in the table show that the difference �θ
(MLE) − �θ(2) is several orders of magnitude smaller

than the difference �θ
(MLE) − θ(TRUE) due to the sampling noise.
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