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An Auction MechAnisM for the coMMons:
soMe extensions*

JuAn-PAblo Montero

Pontificia Universidad Católica de Chile

Efficient regulation of the commons requires information about the regulated firms 
that is rarely available to regulators (e.g., cost of pollution abatement). Montero 
(2008) proposes a simple mechanism for inducing firms to truthfully reveal their 
private information: a uniform price sealed-bid auction of an endogenous number 
of (transferable) licenses with a fraction of the auction revenues given back to firms. 
This paper discuses further properties of the mechanism including its extension to 
the possibility of private externalities and non-transferability of licences.

JEL: D44, D62, D82
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1. introduction

Regulatory authorities generally find that part of the information they 
need for implementing an efficient regulation is in the hands of those who are to 
be regulated. Regulating externalities such as access to common resources (e.g., 
clean air, water streams, fisheries, etc.) is not the exception. Environmental regula-
tors, for example, know little about firms’ pollution abatement costs, so without 
communicating with firms they would be unable to establish the efficient level of 
pollution. Different mechanisms have been proposed for inducing firms to reveal 
their private information but for different reasons, these mechanisms has been 
of limited use�. In a recent paper, Montero (2008) proposes a simpler and more 
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effective mechanism: a uniform price sealed-bid auction of an endogenous number 
of (transferable) licenses with a fraction of the auction revenues given back to 
firms2. The mechanism is developed under the additional assumption that firms 
know nothing about the other firms’ characteristics (they may be even unaware 
of the number of firms being regulated).

The auction’s main ingredients –endogenous supply of licenses and pay-
backs– enter into the uniform-price format in a way that the resulting auction 
mechanism is both ex-post efficient and strategy-proof (i.e., telling the truth is a 
dominant strategy). The supply curve of licenses reflects the cost to society (other 
than firms) from allocating these licenses to firms. Paybacks, on the other hand, 
are such that the total payment for licenses of each firm is exactly equal to the 
“damage” it exerts upon all the other agents (i.e., other regulated firms and the 
rest of society). Hence, the auction mechanism follows a Vickrey-Clarke-Groves 
(VCG) payoff rule in that it makes each firm to pay exactly for the externality it 
imposes on the other agents.

The purpose of this paper is to present some additional, yet important, 
properties of the mechanism not included in Montero (2008) and to show how the 
mechanism can be extended to other externality problems such as those involving 
non-uniformly mixed pollutants (i.e., firms’ pollutants are not perfect substitutes 
in the damage function) and private externalities. In so doing, the rest of paper is 
organized as follows. The next section provides a brief description of the auction 
mechanism of Montero (2008) and the following section presents the properties 
and extensions.

2. the Auction MechAnisM

This section, which closely follows Montero (2008), introduces the auction 
mechanism for the case of a classical pollution externality (i.e., homogeneous 
pollutant).

2.� Notation and first-best allocation

Consider n ≥ �  firms ( i n= �,..., ) to be regulated. All firms are assumed to 
have inverse demand functions for pollution of the form P xi i( )  with ′ <P xi i( ) 0, 
where xi  is firm i’s pollution level that is accurately monitored by the regulator 
(In some cases I will work with the demand function, which is denoted by X pi ( )  
with ′ <X pi ( ) 0 , where p is the price of pollution). Function Pi ( )⋅  is only known by 
firm i, neither by the regulator nor by the other firms. The aggregate demand curve 
for pollution is denoted by P(x), where x xi

n
i= ∑ =�  is total pollution. The social 

2 Licenses are generally refered to as permits or allowances in water and air pollution control, as 
rights in water supply management and as quotas in fisheries management. In this paper, I will use 
the term license throughout.
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damage caused by pollution x is D(x) with D(0) = 0, ′ >D x( ) 0  and ′′ ≥D x( ) 0  
′D x( ) can be interpreted more generally as the regulator’s supply function for 

licenses S(p), where ′ =D S p p( ( )) . We may want to assume that D(x) is publicly 
known but it is actually not necessary.

In the absence of regulation firm i would emit xi
0, where P xi i( )0 0= . 

Hence, firm i’s cost of reducing emissions from xi
0  to some level x xi i< 0  is 

C x P z dzi i x
x

ii
i( ) ( )= ∫
0

 —note that − ′C xi i( ) ≡ P xi i( )— and the minimum total cost 
of achieving pollution level x x< 0  is C x P z dzx

x( ) ( )= ∫
0

.
The regulator’s objective is to minimize the sum of clean-up costs and 

damages from pollution, i.e., C(x) + D(x). Therefore, the socially optimal or first-
best pollution level x x∗ < 0  satisfies

(�) P x D x P x i ni i( ) ( ) ( ) ,...,∗ ∗ ∗= ′ = =for all �

But the regulator cannot directly implement the first-best allocation because 
he does not know the demand functions Pi ( )⋅ . He must then look for mechanisms 
in which it is in the firms’ best interest to communicate their private information 
to him. Montero’s (2008) auction scheme is one of such mechanisms.

2.2 The auction scheme

Consider n ≥ �  firms. The auction scheme operates as follows. Firms are 
informed in advance about the auction rules (including the way the auction clears 
and the paybacks are computed). Firm i (= �, 2, …, n) is asked to bid a non-increas-
ing inverse demand schedule ˆ ( )P xi i  (or, equivalently, a non-increasing demand 
schedule ˆ ( )).X pi  Based on this information, the regulator computes the residual 
supply function (i.e., residual marginal damage function) for each firm i using the 
other firms’ reported demand schedules, that is

(2) S p S p X pi i( ) ( ) ˆ ( )= − −

where ˆ ( ) ˆ ( )X p X pi j i j− ≠= ∑  and ′ = −D x S p( ) ( )� . As shown in Figure �, the residual 
marginal damage function ′ = −D x S pi i i( ) ( )�  is only defined at and above the point 
at which ′ = =− − −D x P x pi i i( ) ˆ ( ) ˆ . The regulator clears the auction by determining 
a price pi and number licenses li  for each bidder i according to

(3) p P l D li i i i i= = ′ˆ ( ) ( )

or, equivalently, l S p X pi i i i i= =( ) ˆ ( ) . Thus, firm receives li  licenses and pay pi 
for each license. Soon after the firm gets a fraction  ai(li) of the auction revenues 
back (i.e., payback is ai i i il p l( ) ).

Since the efficient equilibrium price, given ˆ ( )X pi−  and ˆ ( )X pi , solves 
ˆ ( ˆ) ( ˆ) ˆ ( ˆ)X p S p X pi i= − − , by making firm i face the marginal damage curve (2), 

we are basically informing the firm that for whatever demand report it chooses 
to submit to the regulator/auctioneer, its report, together with those of the other 
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firms, will be used efficiently. In addition, Montero (2008) shows that if ai il( ) 
is equal to

(4) ai i
i i

i i i

l
D l

D l l
( )

( )

( )
= −

′
�  

where D l D z dzi i
l

i
i( ) ( )= ∫ ′0  is i’s residual damage function, then it is optimal for 

each firm i to bid its true demand curve P xi i( )  regardless of what other firms 
bid. This efficient and strategy-proof result is not surprising in that the auction 
mechanism follows a VCG payoff rule: it makes each firm i pay for its (residual) 
damage D li i( )  to all other agents. This residual damage, which is the shaded area 
in Figure �, includes both the pecuniary externality imposed upon other regulated 
firms and the pollution externality imposed upon society.

Figure � also helps to see that the auction scheme implements the first-best 
with each firm facing the same price at the margin (i.e., p pi = ∗  for all i) and get-
ting exactly the first-best allocation of licenses (i.e., l xi i= ∗ ): if ˆ ( ) ( )P x P xi i i i=  
and ˆ ( ) ( )P x P xi i i i− − − −= , then l xi i= ∗, l x= ∗  and p̂ p= ∗. Although in principle 
the regulator goes bidder after bidder determining individual prices pi , these 
prices are all the same regardless of how truthful firms are (in terms of Figure �: 
p p pn� = = =... ˆ ). But unless firms have identical demand curves, final prices, 

i.e., ( )�− ai p, will differ across firms (in and off equilibrium).

)(ˆ
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AUCTIoN EqUILIBRIUM PRICES, LICENSES AND PAyMENTS
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3. extensions

This section presents some additional properties of the mechanism, 
not discused in Montero (2008), and then shows how the mechanism easily 
accommodates to other externality problems such as those involving non-uniformly 
mixed pollutants (i.e., firms’ pollutants are not perfect substitutes in the damage 
function) and private externalities.

3.� Evolution of paybacks

As we increase the number of firms, firm  i has virtually no effect on the 
equilibrium price, so ′ ≈ ′∗D x Di i i( ) ( )0  and ai il( ) ≈ 0 ; hence, the auction scheme 
has converged to the Pigouvian principle for taxing externalities.

To illustrate how rapidly the auction’s payment rule approaches Pigou, 
let us consider a numerical example. Suppose there are  n symmetric firms with 
linear demand curves. The aggregate demand curve is P x p x x( ) ( / )= −� 0 , where  
p  is the choke price (i.e., the price at which demand goes to zero) and x0  is the 

unregulated level of pollution. The marginal damage function is ′ =D x hx( ) . 
Solving as a function of the number of firms, we obtain

(5) a( )
( )

n
p

n hx np
=

− +
�

2 � 0

If we further let the slopes of the aggregate demand and marginal 
damage curves be the same (i.e., ˆ ( )X p l� �= ∗ ), then equation (5) reduces to 
a( ) / ( )n n= −� 4 2 , where n ≥ �. The rebate for three firms is �0 percent, for ten 
firms is 2.6 percent, and for �00 firms is less than 0.3 percent.

3.2 off-equilibrium behavior

If we have a single firm (i = �) to be regulated and this firm knows D(x), 
it should be noticed that the firm does not need to truthfully bid its entire demand 
schedule but only the portion relevant to the auction clearing. It could for instance 
submit the perfectly inelastic demand schedule around its first-best allocation, i.e., 
ˆ ( )X p l� �= ∗. In the context of multiple firms (i = �, …, n), however, it is in each 

firm’s best interest to bid truthfully not only that portion of the demand curve 
around its first-best allocation xi

∗  but rather a large portion of its demand curve. 
Even if a firm knows  D(x), it can no longer anticipate l xi i

∗ ∗=  with precision 
because it does not know other firms’ demand curves P xi i− −( )  (it may be even 
unaware of the number of firms being regulated). To be more precise, a firm will 
only find it strictly optimal to bid truthfully the portion of its demand curve that 
is relevant for the auction clearing. Thus, if firms assign zero probability to the 
event that the clearing price will fall below some value, say p , firms can just 
bid an almost perfectly elastic (or inelastic for that matter) demand curve for 
p p≤ . While this off-equilibrium behavior has no consequences on the clearing 
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price, and hence, on implementing the first-best allocation, it does have an effect 
on firms’ total payments. But because demand schedules are non-increasing in 
p, a firm’s total payment will never be greater (and generally smaller) than the 
Pigouvian payment.

3.3 Budget balancing

The auction mechanism is, like any other VCG mechanism, a non-budget-
balanced mechanism both in and off equilibrium (unless ˆ ( )X pi = 0  for all i). 
Although there is no efficiency reasons for balancing the budget there may be 
political economy reasons for doing so (Tietenberg, 2003)3. As first pointed 
out by Groves and Ledyard (�977), if there are at least three agents it should be 
possible to balance the budget for a variety of mechanisms. The basic idea is 
to distribute the surplus or deficit generated by each agent (Di(li) in our case) 
among the other agents in some lump-sum manner as to avoid any incentive 
effects. Behind this idea lies an implicit “separability” condition that in our 
case would allow us to either make the payment (Di(li) independent of some 
firm j ’s report (i.e., ˆ ( )P xj j ), as in Duggan and Roberts (2002), or to perfectly 
disentangle the contribution of each firm j i≠ ’s report to firm i’s payment, as in 
Varian (�994). By construction, the auction mechanism lacks of such separability; 
hence, there is no way in which the mechanism can be modified to achieve perfect 
budget-balancing while retaining its first-best properties4.

There exists, however, an approximate solution. Building upon the idea of 
Groves and Ledyard (�977), let denote by D lj

i
j

i− −( )  the total payment that firm  
j would have hypothetically faced under the same auction mechanism but in the 
absence of firm i’s demand schedule, where l j

i−  is the corresponding number of 
licenses allocated to j. The regulator can thus fashion a lump-sum compensation 
refunding Ri for firm i using these influence-free hypothetical payments. For 
example, 

(6) R
n

D l ni
j i

j
i

j
i=

−
≥

≠

− −∑�

�
2( ) where

This solution assures a perfectly balanced budget (i.e., i
n

i i
n

i iR D l= =∑ = ∑� � ( ))  
only in the limiting case of a large number of firms; otherwise, Σ Ri  could be 
smaller, greater or equal than Σ D li i( ). The ratio r ≡ Σ ΣR D li i i/ ( ) will ultimately 
depend on the number of firms and shape of the demands and marginal damage 
curves. For linear curves, for example, it can be shown that for three (symmetric) 

3 We may also want to take into consideration the general equilibrium reasons of Bovenberg and 
Goulder (�996) for not balancing the budget.
4 The reason why the mechanisms of Duggan and Roberts (2002) and Varian (�994) can balance the 
budget is because they are based on discrete announcements by firms. In the former firms announce 
quantities while in the latter they announce prices. In the auction mechanism firms announce a con-
tinuum of quantity-price pairs. 
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firms r can be anywhere between 0.60 and �.50, for ten firms anywhere between 
0.90 and �.�� and for �00 firms anywhere between 0.99 and �.0�. Thus, a regulator 
that cannot run a deficit, i.e., constrained to return at most ∑D li i( )  to firms, can 
inform in advance that it will return only some fixed fraction of the total ∑D li i( )  
(in the case of �0 firms this fraction could be 90 percent).

3.4 Imperfect substitutability of licenses

Consider the case in which social damage is no longer a function of 
total pollution but, as in Dasgupta et al. (�980) and Duggan and Roberts (2002), 
of the firms’ pollution vector. There are n ≥ 2  firms with (privately known) 
demand and cost functions P xi i( )  and C xi i( ) , respectively, where i = �, …, n. 
Pollution damages are denoted by the differentiable and convex function D(x), 
where x = (x�, …, xn) is the pollution vector. Without perfect substitutability of 
pollutants, and hence of licenses, we do not want to insist on a uniform-price auc-
tion because it may be socially optimal that each firm faces a different price for 
licenses at the margin. For the same reason the regulator wants to make licenses 
to be firm-specific as to prevent any trading of licenses after the auction.

Let x∗ ∗ ∗= ( ,..., )x xn�  be the first-best allocation vector (which is interior 
and unique); then x* satisfies the first-order conditions 

(7) − ′ ≡ = ∂
∂

=∗ ∗
∗

C x P x
D

x
ii i i i

i

( ) ( )
( )

,.for all
x

� ..., .n

For the auction mechanism to deliver the first-best allocation, the payment 
rule identified in Section 2 implies that firm i’s residual damage curve as a func-
tion of xi must be

(8) D x
D x y x y y x y

i i
i i( )

( ( ),..., ( ), , ( ),.≡ ∂ ∗
−

∗
+

∗
� � � ..., ( ))x y

y
dyn

xi ∗

∂∫
0

where x yj
∗( )  is the first-best allocation to firm j ≠ i when y licenses are allo-

cated to firm i. It is easy to see that if firm i ’s total payment is given by (8), the 
solution to firm i ’s problem, i.e., find the number of licenses li that minimizes 
C l D li i i i( ) ( )+ , satisfies the first-order condition (7).

To compute firm i ’s residual damage curve the auctioneer/regulator will 
use the bids from the remaining n – � firms to solve a system of n – � irst-order 
conditions 

(9) ˆ ( )
( ,..., , , ,..., )

P x
D x x x x x

xj j
i i i n

j

= ∂
∂

− +� � �

for j = �, …, n and j ≠ i. Solving the system of equations (9) leads to n – � functions 
of the form x xj i

∗( )  for all j ≠ i. These functions are then entered into D x xi i i( , ( ))x−
∗  

to finally obtain firm i ’s residual damage function (8).
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Given definition (8), the auction works exactly as before. The regulator 
clears the auction by determining a price pi and number licenses li for each bidder 
i according to

(�0) p P l D l
D l l

li i i i i
i i i

i

= = ′ ≡ ∂
∂

−ˆ ( ) ( )
( , ( ))x

and soon after gives i a rebate of ai i i il p l( ) , where ai i i i i i il D l l D l( ) ( ) / ( )= − ′�  
with 0 �≤ ≤ai il( ) .

3.5 Private externalities

Consider now the case in which firms not only impose costs on society but 
also impose costs (or benefits) on other firms. Fishing in open sea and grazing 
goats in public land are two “commons” examples but the analysis here applies 
more generally to any private externality problem. There are n ≥ 2  firms. Firm 
i ’s production is denoted by xi and its (differentiable) profit function by where 
Π Πi i n i ix x x x( ,..., ,..., ) ( ) /� 0where and∂ ⋅ ∂ > ∂ ⋅ ∂ <2 2 0Πi ix( ) / .  For concreteness, 
let us focus on the case of pure private negative externalities, i.e., ∂ ⋅ ∂ <Πi jx( ) / 0  
for all j ≠ i (it is relatively straightforward to generalize the scheme to the presence 
of both social and private externalities).

Let x∗ ∗ ∗= ( ,..., )x xn�  be the first-best or joint-profit-maximizing allo-
cation vector (which is interior and unique); then x* satisfies the first-order 
conditions

(��) 
∂

∂
+

∂
∂

= =
∗

≠

∗

∑Π Πi

i j i

j

ix x
i

( ) ( )
,..

x x
0 �for all ..,n

Had the regulator known the size of the externality exerted by each firm at 
the first-best level, i.e., j i j ix≠

∗∑ ∂ ∂Π ( ) /x , he would have just charged a Pigouvian 
tax equal to τ τi j i ij j i j ix∗

≠
∗

≠
∗≡∑ ≡∑ ∂ ∂Π ( ) /x  to firm i ’s output, where τ ij

∗  measures 
the (first-best) marginal damage that i imposes on j. But since regulators 
generally do not have such information, Varian (�994) has provided them with the 
following simple multistage mechanism. First, all firms simultaneously announce 
the magnitude of the vector of Pigouvian taxes to be faced by each firm (including 
itself). Then the regulator uses firms’ announcements to compute transfers from/to 
firms as a function of the production vector x. Finally, output x is decided. Varian 
shows that transfers can be structured in a way that the (unique) subgame-perfect 
equilibrium of this game is that each firm reports the first-best Pigouvian tax vector 
and that x = x*.As explained by Varian (�994) in the concluding paragraph of 
his paper, however, the main problem with this multistage mechanism is that it 
requires complete information by the firms.

The auction mechanism proposed in this paper does not require firms 
to possess any such information. It assumes that Πi ( )x  is firm i ’s private 
information. In the specific context of private externalities, the auction mechanism 
operates as follows. Firms are asked to submit (non-increasing) demand 
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schedules ˆ ( ,..., ,..., )P x x xi i n�  for i = �, …, n5. The regulator/auctioneer uses that 
information to recover “reported” profit functions

(�2) ˆ ( , ) ˆ ( ,..., , , ,...,Πi i i

x

i i ix P x x y x
i

x− − += ∫ 0 � � � xx dyn )

which then he uses to compute the residual damage functions as dictated by 
Proposition 4 

(�3)  D x x x xi i
j i

j i i( ) ˆ ( ,..., , , ,...≡
≠

∗∗
−

∗∗
+

∗∗∑Π � � �0 ,, ) ˆ ( ( ),..., ,..., ( ))x x x x x xn
j i

j i i n i
∗∗

≠

∗ ∗− ∑Π �

for all j = �, …, n and j ≠ i.
The first sum in (�3) is the “reported” first-best profits of all firms but i 

in the absence of firm i and the second sum is the first-best profits of all firms 
but  i when firm i is allowed to produced xi > 0. As in the basic model, expres-
sion (�3) tracks down the (first-best) profit losses that the presence of firm i, as 
measured by xi , causes on all other agents. Again, it is not difficult to see that if 
firm i’s total payment is given by (�3), the solution to firm i’s problem, i.e., find 
the number of licenses li = xi that maximizes Πi i i i il D l( , ) ( )x− − , satisfies the 
first-order condition (��). The computation of functions x xj i

∗( )  for all j ≠ i is as 
in the previous section: the auctioneer will use the bids from the j ≠ i firms and 
solve the n – �  first-order conditions as a function of xi.

A simple example may help here (to make it more interesting I will allow 
for corner solutions). Consider two firms � and 2 (or j and i) with profit functions 
Πi i j i i j ix x x x x( , ) ( )= − − ≥θ 0, where the value of θi  is firm i’s private informa-
tion. For θ θi j>  the socially optimal solution is

(�4) x xi
i

j
∗ ∗= =

θ
2

0and

(and for θ θ θi j= =  the efficient solution is x xi j
∗ ∗+ = θ / 2).

In the absence of regulation, firms will produce beyond this joint-profit 
maximizing level (we may have a total collapse of the resource in that θi i jx x< +  
for i = �, 2)6. The auction mechanism corrects the externalities as follows. Firms 
are asked to report their demand curves or types to the auctioneer, say θ̂�  and 
θ̂2 , knowing beforehand that the regulator/auctioneer will use this information 
to determine allocations

(�5) li
i i j

i j

=
>

<







ˆ / ˆ ˆ

ˆ ˆ

θ θ θ

θ θ

2

0

if

if

5 Note that in many commons problems these demand schedules will reduce to ˆ ( , )P x xi i i− , where 
x xi j i j− ≠≡∑ .
6 Suppose that is common information that θi ’s are i.i.d. over the support [ , ]θ θi i , the Bayesian Nash 
equilibrium is

x
E E

i
i i j= −

−θ θ θ
2

2

6

[ ] [ ]

for i = �, 2 and where E[ ]⋅  is the expected value operator.
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and total payments

(�6) Di
j i j

i j

=
>

<







ˆ / ˆ ˆ

ˆ ˆ

θ θ θ

θ θ

2 4

0

if 

if  

for i = �, 2. If ˆ ˆ ˆθ θ θi j= =  the regulator flips a coin for deciding who gets the ˆ /θ 2  
licenses for a total payment of ˆ /θ 2 4  (we assume that the winning firm opts to 
produce despite making zero profits).

By letting firm i face a payment equal to firm j’s (first-best) profits had firm 
i not existed (i.e., Π j j= θ 2 4/ ), it is in firm i’s best interest to submit a truthful 
bid (i.e., θ̂ θi i= ) regardless of what firm j bids. This is not surprising since the 
auction mechanism has collapsed to a single-object second-price auction7.
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