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Abstract

In this paper we consider cooperative Cournot oligopoly games. Following Chander
and Tulkens (1997) we assume that firms react to a deviating coalition by choos-
ing individual best reply strategies. Lardon (2009) shows that if the inverse demand
function is not differentiable, it is not always possible to define a Cournot oligopoly
TU(Transferable Utility)-game. In this paper, we prove that we can always specify
a Cournot oligopoly interval game. Furthermore, we deal with the problem of the
non-emptiness of two induced cores: the interval γ-core and the standard γ-core. To
this end, we use a decision theory criterion, the Hurwicz criterion (Hurwicz 1951), that
consists in combining, for any coalition, the worst and the better worths that it can
obtain in its worth interval. The first result states that the interval γ-core is non-empty
if and only if the oligopoly TU-game associated with the better worth of every coalition
in its worth interval admits a non-empty γ-core. However, we show that even for a
very simple oligopoly situation, this condition fails to be satisfied. The second result
states that the standard γ-core is non-empty if and only if the oligopoly TU-game
associated with the worst worth of every coalition in its worth interval admits a non-
empty γ-core. Moreover, we give some properties on every individual profit function
and every cost function under which this condition always holds, what substantially
extends the γ-core existence results in Lardon (2009).

Keywords: Cournot oligopoly interval game; Interval γ-core; Standard γ-core; Hurwicz
criterion;

1 Introduction

Usually, cooperative oligopoly games1 are specified by oligopoly TU-games in which the
income that a cartel can obtain is unique. In order to define this class of games, one can
consider two approaches suggested by Aumann (1959): according to the first, every cartel
computes the income which it can guarantee itself regardless of what outsiders do; the
second approach consists in computing the minimal income for which outsiders can pre-
vent the firms in the cartel from getting more. With or without transferable technologies,2

∗A. Lardon (B) University of Saint-Etienne, CREUSET, CNRS, 6 rue Basse des Rives, 42023 Saint-
Etienne, France, e-mail: aymeric.lardon@univ-st-etienne.fr

1In the remainder of this paper we use the term "oligopoly" to refer to the Cournot oligopoly.
2We refer to Norde et al. (2002) for a detailed discussion of this distinction.
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Zhao (1999a,b) shows that these two approaches lead to the same oligopoly TU-game by
proving that the associated characteristic functions, called α- and β-characteristic functions
respectively, are equal. Henceforth, the continuity of every individual profit function and
the compacity of every individual strategy set are sufficient to ensure the uniqueness of the
income of every cartel.

Many results have been provided for these oligopoly TU-games. In oligopoly TU-games
with transferable technologies, Zhao (1999a) provides a necessary and sufficient condition
that establishes the convexity property when the inverse demand function and cost functions
are linear. Although these games may fail to be convex in general, Norde et al. (2002) show
that they are nevertheless totally balanced. Regarding oligopoly TU-games without trans-
ferable technologies, Zhao (1999b) proves that the β-core is non-empty if every individual
profit function is continuous and concave.3 Furthermore, Norde et al. (2002) show that
these games are convex in case the inverse demand function and cost functions are linear,
and Driessen and Meinhardt (2005) provide economically meaningful sufficient conditions
to guarantee the convexity property in a more general case.

All these articles share the assumption that outsiders minimize the income that a cartel
can obtain (α- and β-characteristic functions). However, this assumption can be questioned
since outsiders probably cause substantial damages upon themselves by increasing their out-
put at full capacity. A similar argument is developed by Rosenthal (1971). Lardon (2009)
proposes to consider an alternative blocking rule suggested by Chander and Tulkens (1997).
According to this blocking rule, outsiders choose their action individually as a best reply to
the coalitional action. This leads to consider the "partial agreement characteristic function"
or, for short, γ-characteristic function. Lardon (2009) shows that the continuity of every
individual profit function and the compacity of every individual strategy set are not sufficient
to guarantee the uniqueness of the income of every cartel. Therefore, in order to define
an oligopoly TU-game, he assumes the differentiability of the inverse demand function and
obtains two γ-core existence results. The first result establishes that oligopoly TU-games
are balanced, and therefore have a non-empty γ-core, if every individual profit function is
concave on the set of strategy profiles. The second result, restricted to the class of oligopoly
TU-games with linear cost functions and where firms have the same marginal cost, provides
a single-valued allocation rule in the γ-core, called NP(Nash Pro rata)-value, and charac-
terizes it by four axioms: efficiency, null player, monotonicity and weighted fairness.4

However, in many oligopoly situations the inverse demand function may not be differen-
tiable. Indeed, Katzner (1968) shows that demand functions derived from quite nice utility
functions, even of class C2, may not be differentiable everywhere.5 In this paper we focus
on oligopoly situations where the inverse demand function is continuous but not necessarily

3Zhao shows that the β-core is non-empty for general TU-games in which every strategy set is compact
and convex, every utility function is continuous and concave, and satisfying the strong separability condition
that requires that the payoff function of a coalition and each of its members’ utility functions have the same
minimizers. Zhao proves that oligopoly TU-games satisfy this latter condition.

4We refer to Lardon (2009) for a precise description of these axioms.
5In order to guarantee that demand functions are at least of class C1, many necessary and sufficient

conditions are provided by Katzner (1968), Debreu (1972, 1976), Rader (1973, 1979) and Monteiro et al.
(1996).
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differentiable. As mentioned above, with such an assumption we can not always define an
oligopoly TU-game since the worth of every coalition is not necessarily unique. However,
we show that we can always specify an oligopoly interval game. An interval game assigns to
every coalition a closed real interval that represents all its potential worths. Interval games
are introduced by Branzei et al. (2003) to handle bankruptcy situations.6 Regarding core
solution concepts of these game types, we consider two extensions of the core: the interval
core and the standard core.7 The interval core is specified in a similar way than the core for
TU-games by using the methods of interval arithmetic (Moore 1979). The standard core
is defined as the union of the cores of all TU-games for which the worth of every coalition
belongs to its worth interval. We deal with the problem of the non-emptiness of the interval
γ-core and of the standard γ-core. To this end, we use a decision theory criterion, the
Hurwicz criterion (Hurwicz 1951), that consists in combining, for any coalition, the worst
and the better worths that it can obtain in its worth interval. The first result states that
the interval γ-core is non-empty if and only if the oligopoly TU-game associated with the
better worth of every coalition in its worth interval admits a non-empty γ-core. However,
we show that even for a very simple oligopoly situation, this condition fails to be satisfied.
The second result states that the standard γ-core is non-empty if and only if the oligopoly
TU-game associated with the worst worth of every coalition in its worth interval admits a
non-empty γ-core. Moreover, we give some properties on every individual profit function
and every cost function under which this condition always holds, what substantially extends
the γ-core existence results in Lardon (2009).

The remainder of the paper is structured as follows. In section 2 we set up the framework
of TU-games and discuss the reasons why we can not always define an oligopoly TU-game
in γ-characteristic function form when the inverse demand function is continuous but not
necessarily differentiable. In section 3 we give the setup of interval games and prove that
we can always define an oligopoly interval game. In section 4, we introduce the Hurwicz
criterion and provide a necessary and sufficient condition for the non-emptiness of each of
the core solution concepts: the interval γ-core and the standard γ-core respectively. Section
5 gives some concluding remarks.

2 Oligopoly TU-games: an inadequate approach

In this section, we discuss the reasons why we can not always define an oligopoly TU-
game in γ-characteristic function form when the inverse demand function is continuous but
not necessarily differentiable. The set of players is given by N = {1, . . . , n} where i
is a representative element. We denote by P(N) the power set of N and call a subset
S ∈ P(N), a coalition. A TU-game (N, v) is a set function v : P(N) −→ R with the
convention v(∅) = 0, which assigns a number v(S) ∈ R to every coalition S ∈ P(N). This
number v(S) is the worth of coalition S. For a fixed set of players N , we denote by GN

6We refer to Alparslan-Gok et al. (2009a) for an overview of recent developments in the theory of
interval games.

7We use the term "standard core" instead of the term "core" in order to distinguish this core solution
concept for interval games with the core for TU-games.
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the set of TU-games where v is a representative element of GN .
In a TU-game v ∈ GN , every player i ∈ N may receive a payoff σi ∈ R. A vector
σ = (σ1, . . . , σn) is a payoff vector. We say that a payoff vector σ ∈ Rn is acceptable if∑

i∈S σi ≥ v(S) for every coalition S ∈ P(N), i.e. the payoff vector provides a total payoff
to members of coalition S that is at least as great as its worth. We say that a payoff vector
σ ∈ Rn is efficient if

∑
i∈N σi = v(N), i.e. the payoff vector provides a total payoff to all

players that is equal to the worth of the grand coalition N . The core C(v) of a TU-game
v ∈ GN is the set of all payoff vectors that are both acceptable and efficient, i.e.

C(v) =

{
σ ∈ Rn : ∀S ∈ P(N),

∑
i∈S

σi ≥ v(S) and
∑
i∈N

σi = v(N)

}
(1)

Given a payoff vector in the core, the grand coalition can form and distribute its worth to
its members in such a way that no coalition can contest this sharing by breaking off from
the grand coalition.

Now, consider an oligopoly situation (N, (qi, Ci)i∈N , p) where N = {1, 2, . . . , n} is
the set of firms, qi ≥ 0 denotes firm i’s capacity constraint, Ci : R+ −→ R+, i ∈ N ,
is firm i’s cost function and p : R+ −→ R+ represents the inverse demand function.
Throughout this paper, we assume that:

(a) the inverse demand function p is continuous, strictly decreasing and concave;

(b) every cost function Ci is continuous, strictly increasing and convex.

The normal form oligopoly game (N, (Xi, πi)i∈N ) associated with the oligopoly situation
(N, (qi, Ci)i∈N , p) is defined as follows:

1. the set of firms is N = {1, 2, . . . , n};

2. for every i ∈ N , the individual strategy set is Xi = [0, qi] ⊆ R+ where xi ∈ Xi

represents the quantity produced by firm i;

3. the set of strategy profiles is XN =
∏
i∈N Xi where x = (xi)i∈N is a representative

element of XN ; for every i ∈ N , the individual profit function πi : XN −→ R is
defined as

πi(x) = p(X)xi − Ci(xi) (2)

where X =
∑

i∈N xi is the joint production.

Note that firm i’s profit depends on its individual output xi and on the total output of its
opponents

∑
j∈N\{i} xj .

Traditionally, there are two main ways of converting a normal form game into a TU-game
called game in α- and β-characteristic function form respectively (Aumann 1959). In the
first case, the worth of a coalition is obtained by computing the income which its members
can guarantee themselves regardless of what outsiders do. In the second case, the worth
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of a coalition can be derived by computing the minimal income such that outsiders can
prevent its members from getting more. Lardon (2009) supports that the resorting to the
α- and β-characteristic functions in order to define oligopoly TU-games can be questioned
since the minimization of the income of a deviating coalition implies that outsiders probably
cause substantial damages upon themselves by increasing their output at full capacity. As
in Chander and Tulkens (1997), Lardon proposes the alternative blocking rule for which
outsiders choose their action individually as a best reply to the coalitional action. This leads
to consider the γ-characteristic function. In order to define the γ-characteristic function, we
denote by XS =

∏
i∈S Xi the strategy set of coalition S ∈ P(N) and X−S =

∏
i 6∈S Xi

the set of outsiders’ strategy profiles where xS = (xi)i∈S and x−S = (xi)i 6∈S are
the representative elements of XS and X−S respectively. Furthermore, for every coalition
S ∈ P(N), define BS : X−S � XS the best reply correspondence of coalition S as

BS(z−S) = arg max
xS∈XS

∑
i∈S

πi(xS , z−S) (3)

Given a deviating coalition S ∈ P(N), we denote by x∗S(z−S) ∈ BS(z−S) a best reply
strategy of coalition S and by z̃−S(xS) = (z̃i(xS , z̃−S∪i))i 6∈S ∈

∏
i 6∈S B{i}(xS , z̃−S∪i) an

outsiders’ individual best reply strategy profile where S∪i stands for S∪{i}. Given the
normal form oligopoly game (N, (Xi, πi)i∈N ), the γ-characteristic function vγ : P(N) −→
R is defined as

vγ(S) =
∑
i∈S

πi(x
∗
S(z̃−S), z̃−S(x∗S)) (4)

The strategy profile (x∗S(z̃−S), z̃−S(x∗S)) ∈ XN is called a partial agreement equilibrium
under S. We denote by XS ⊆ XN the set of partial agreement equilibria under S.
For a fixed set of players N , we denote by GNo ⊆ GN the set of oligopoly TU-games.
Lardon (2009) provides an example in which the inverse demand function is continuous but
not differentiable and shows that for some S ∈ P(N), there exist some partial agreement
equilibria under S that lead to different worths for coalition S. Contrary to the α- and
β-characteristic functions, the continuity of the inverse demand function p and of every cost
function Ci, and the compacity of every individual strategy set Xi do not ensure the unique-
ness of the worth vγ(S) of every coalition S ∈ P(N)\{N}.8 Thus, under assumptions (a)
and (b) we can not always define an oligopoly TU-game in γ-characteristic function form.

Lardon (2009) shows that the differentiability of the inverse demand function p is sufficient
to guarantee the uniqueness of the worth vγ(S) of every coalition S ∈ P(N). This result
is summarized in the following proposition and will be useful later.

Proposition 2.1 (Lardon 2009) Let (N, (Xi, πi)i∈N ) be a normal form oligopoly game
associated with an oligopoly situation (N, (qi, Ci)i∈N , p) such that the inverse demand
function p is differentiable. Then, for every S ∈ P(N) it holds that

(i) there exists a partial agreement equilibrium under S;
8The worth of the grand coalition vγ(N) is always unique.
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(ii) for any two partial agreement equilibria (x∗S(z̃−S), z̃−S(x∗S)), (y∗S(t̃−S), t̃−S(y∗S)) ∈
XN , we have

- z̃−S(x∗S) = t̃−S(y∗S);

-
∑

i∈S x
∗
S,i(z̃−S) =

∑
i∈S y

∗
S,i(t̃−S);

-
∑

i∈S Ci(x
∗
S,i(z̃−S)) =

∑
i∈S Ci(y

∗
S,i(t̃−S)).

For any two partial agreement equilibria (x∗S(z̃−S), z̃−S(x∗S)), (y∗S(t̃−S), t̃−S(y∗S)) ∈ XN it
follows from (ii) of proposition 2.1 that∑

i∈S
πi(x

∗
S(z̃−S), z̃−S(x∗S)) =

∑
i∈S

πi(y
∗
S(t̃−S), t̃−S(y∗S)),

and therefore by (4) the worth vγ(S) of every coalition S ∈ P(N) is unique. Moreover,
when the inverse demand function p is differentiable Lardon (2009) obtains two γ-core
existence results summarized in the following theorem.

Theorem 2.2 Let (N, (Xi, πi)i∈N ) be a normal form oligopoly game associated with an
oligopoly situation (N, (qi, Ci)i∈N , p) such that the inverse demand function p is differen-
tiable. Assume that

(c) either every individual profit function πi is concave on the set of strategy profiles XN ;

(d) or every cost function Ci is linear and every firm has the same marginal cost, i.e.

∃c ∈ R+ s.t. ∀i ∈ N, Ci(xi) = cxi.

Then the associated oligopoly TU-game vγ ∈ GNo has a non-empty γ-core.

3 Oligopoly interval games: a more general approach

In this section, we show that we can always define an oligopoly interval game when the
inverse demand function p is continuous but not necessarily differentiable. Let I(R) be the
set of all closed real intervals. Take J,K ∈ I(R) where J = [J, J ] and K = [K,K],
and k ∈ R+. Then,

(e) J +K = [J +K,J +K];

(f) kJ = [kJ, kJ ].

By (f) we see that I(R) has a cone structure.
An interval game (N,w) is a set function w : P(N) −→ I(R) with the convention w(∅) =
[0, 0], which assigns a closed real interval w(S) ∈ I(R) to every coalition S ∈ P(N). The
interval w(S) is the worth set (or worth interval) of coalition S denoted by [w(S), w(S)]
where w(S) and w(S) are the lower and the upper bounds of w(S) respectively. Thus,
an interval game fits all the situations where every coalition knows with certainty only the
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lower and upper bounds of its worth interval. For a fixed set of players N , we denote by
IGN the set of interval games where w is a representative element of IGN .9

There are two main ways of generalizing the definition of the core for interval games. The
first definition is due to Alparslan-Gok et al. (2008a). For every J = [J, J ],K = [K,K] ∈
I(R), we say that J is weakly better than K, which we denote J < K, if J ≥ K and
J ≥ K. We denote by I(R)n the set of n-dimensional interval vectors where I is a
representative element of I(R)n. In an interval game w ∈ IGN , every player i ∈ N may
receive a payoff interval Ii ∈ I(R). An interval vector I = (I1, . . . , In) is a payoff interval
vector. We say that a payoff interval vector I ∈ I(R)n is acceptable if

∑
i∈S Ii < w(S)

for every coalition S ∈ P(N), i.e. the payoff interval vector provides a total payoff interval
to members of coalition S that is weakly better than its worth interval. We say that a payoff
interval vector I ∈ I(R)n is efficient if

∑
i∈N Ii = w(N), i.e. the payoff interval vector

provides a total payoff interval to all players that is equal to the worth interval of the grand
coalition N . The interval core C(w) of an interval game w ∈ IGN is the set of all payoff
interval vectors that are both acceptable and efficient, i.e.

C(w) =

{
I ∈ I(R)n : ∀S ∈ P(N),

∑
i∈S

Ii < w(S) and
∑
i∈N

Ii = w(N)

}
(5)

Given a payoff interval vector in the interval core, the grand coalition can form and distribute
its worth interval to its members in such a way that no coalition can contest this sharing by
breaking off from the grand coalition.
The second definition is due to Alparslan-Gok et al. (2009b). Given an interval game
w ∈ IGN , a TU-game v ∈ GN is called a selection of w if for every S ∈ P(N) we have
v(S) ∈ w(S). We denote by Sel(w) the set of all selections of w ∈ IGN . The standard
core C(w) of an interval game w ∈ IGN is defined as the union of the cores of all its
selections v ∈ GN , i.e.

C(w) =
⋃

v∈Sel(w)

C(v) (6)

A payoff vector σ ∈ Rn is in the standard core C(w) if and only if there exists a TU-game
v ∈ Sel(w) such that σ belongs to the core C(v).

Now, we show that we can always convert a normal form oligopoly game (N, (Xi, πi)i∈N )
into an oligopoly interval game in γ-characteristic function form. To this end, we adopt
a more general approach in which any coalition structure can occur. Then, given a normal
form oligopoly game and a coalition structure, we construct an associated normal form
oligopoly game for which a Nash equilibrium represents the equilibrium aggregated outputs
of the coalitions embedded in the coalition structure.
A coalition structure P is a partition of the set of firms N , i.e. P = {S1, . . . , Sk},
k ∈ {1, . . . , n}. An element of a coalition structure, S ∈ P, is called an admissible

9Note that if every worth interval of an interval game w ∈ IGN is degenerate, i.e. w = w, then w
corresponds to the TU-game v ∈ GN where v = w = w. In this sense, the set of TU-games GN is included
in the set of interval games IGN .
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coalition in P. We denote by Π(N) the set of coalition structures.
Given the normal form oligopoly game (N, (Xi, πi)i∈N ) and the coalition structure P ∈
Π(N), we say that a strategy profile x̂ ∈ XN is an equilibrium under P if

∀S ∈ P, x̂S ∈ BS(x̂−S) (7)

where BS is the best reply correspondence given by (3). Thus, a partial agreement equilib-
rium under S ∈ P(N) corresponds to an equilibrium under the particular coalition structure
denoted by PS = {S} ∪ {{i} : i 6∈ S}.
Then, given the normal form oligopoly game (N, (Xi, πi)i∈N ) and the coalition structure
P ∈ Π(N), the normal form oligopoly game (P, (XS , πS)S∈P) is defined as follows:

1. the set of players (or admissible coalitions) is P;

2. for every S ∈ P, the coalition strategy set is XS = [0, qS ] ⊆ R+, qS =
∑

i∈S qi,
where xS =

∑
i∈S xi ∈ XS represents the quantity produced by coalition S;

3. the set of strategy profiles is XP =
∏
S∈P X

S where xP = (xS)S∈P is a represen-
tative element ofXP ; for every S ∈ P, the coalition cost function CS : XS −→ R+

is defined as

CS(xS) = min
xS∈A(xS)

∑
i∈S

Ci(xi) (8)

where A(xS) = {xS ∈ XS :
∑

i∈S xi = xS} is the set of strategies of coalition S that
permit it to produce the quantity xS ; for every S ∈ P, the coalition profit function
πS : XP −→ R is defined as

πS(xP) = p(X)xS − CS(xS) (9)

In order to define the best reply correspondence of the players (admissible coalitions), for
every S ∈ P, we denote by X−S = XP\{S} the set of outsiders’ strategy profiles
where x−S = xP\{S} is a representative element of XP\{S}. For every S ∈ P, define
BS : X−S � XS the best reply correspondence* of coalition S as

BS(z−S) = arg max
xS∈XS

πS(xS , z−S) (10)

Given the normal form oligopoly game (P, (XS , πS)S∈P), we say that a strategy profile
x̂P ∈ XP is a Nash equilibrium if

∀S ∈ P, x̂S ∈ BS(x̂−S) (11)

where BS is the best reply correspondence* given by (10). We denote by XP ⊆ XP the
set of Nash equilibria of the normal form oligopoly game (P, (XS , πS)S∈P).
It will be useful later to express the Nash equilibrium as the fixed point of a one-dimensional
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correspondence. Given a coalition structure P ∈ Π(N) and an admissible coalition S ∈ P
the coalition profit function* ψS : XS ×XS ×XN −→ R is defined as

∀xS ≤ X, ψS(yS , xS , X) = p(X − xS + yS)yS − CS(yS) (12)

and represents the income of S after changing its strategy from xS to yS when the joint
production was X. For every S ∈ P, define RS : XN � XS the best reply correspon-
dence** of coalition S as

RS(X) =

{
xS ∈ XS : xS ∈ arg max

yS∈XS
ψS(yS , xS , X)

}
(13)

For every P ∈ Π(N), the one-dimensional correspondence RP : XN � XN is defined
as

RP(X) =

{
Y ∈ XN : Y =

∑
S∈P

xS and ∀S ∈ P, xS ∈ RS(X)

}
(14)

Proposition 3.1 Let (P, (XS , πS)S∈P) be a normal form oligopoly game. Then, it holds
that x̂P ∈ XP if and only if X̂ ∈ RP(X̂) where X̂ =

∑
S∈P x̂

S .

Proof: [=⇒] Take x̂P ∈ XP and let X̂ =
∑

S∈P x̂
S . By (11), for every S ∈ P it holds

that

x̂S ∈ BS(x̂−S)⇐⇒ πS(x̂S , x̂−S) = max
yS∈XS

πS(yS , x̂−S)

⇐⇒ p(X̂ − x̂S + x̂S)x̂S − CS(x̂S) = max
yS∈XS

p(X̂ − x̂S + yS)yS − CS(yS)

⇐⇒ ψS(x̂S , x̂S , X̂) = max
yS∈XS

ψS(yS , x̂S , X̂)

⇐⇒ x̂S ∈ RS(X̂).

Hence, we conclude that X̂ ∈ RP(X̂).
[⇐=] Take X̂ ∈ RP(X̂). By (14), it holds that X̂ =

∑
S∈P x̂

S and for every S ∈ P,
x̂S ∈ RS(X̂). By the same argument to the one in the first part of the proof it follows that
for every S ∈ P we have x̂S ∈ BS(x̂−S), and therefore x̂P ∈ XP . �

When the inverse demand function p is differentiable Lardon (2009) proves that, for any
coalition structure P ∈ Π(N), the normal form oligopoly game (P, (XS , πS)S∈P) admits a
unique Nash equilibrium.

Proposition 3.2 (Lardon 2009) Let (P, (XS , πS)S∈P) be a normal form oligopoly game
associated with an oligopoly situation (N, (qi, Ci)i∈N , p) such that the inverse demand
function p is differentiable. Then, there exists a unique Nash equilibrium x̂P ∈ XP .

9
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Under assumptions (a) and (b), this uniqueness result does not hold anymore. Nevertheless,
the following proposition establishes some properties on the set of Nash equilibria XP .

Proposition 3.3 Let (P, (XS , πS)S∈P) be a normal form oligopoly game. Then

(i) the set of Nash equilibria XP is a polyhedron;

(ii) the equilibrium total output is the same for every Nash equilibrium, i.e.

∃X̄ ∈ XN s.t. ∀x̂P ∈ XP ,
∑
S∈P

x̂S = X̄;10

(iii) for every S ∈ P, the set of incomes of S enforced by XP , πS(XP), is a compact real
interval.

Proof: First, we show points (i) and (ii). For every S ∈ P, XS is compact and convex
and CS as in (8) is continuous, strictly increasing and convex.11 Moreover, the inverse
demand function p is continuous, strictly decreasing and concave. It follows from theorem
3.3.3 (page 30) in Okuguchi and Szidarovszky (1990) that XP is a polyhedron and that
the equilibrium total output X̄ is the same for every Nash equilibrium which proves points
(i) and (ii).
Then, we prove point (iii). From lemma 3.3.1 (page 27) in Okuguchi and Szidarovszky
(1990) we deduce for every S ∈ P and all X ∈ XN that RS(X) as defined in (13)
is a (possibly degenerate) closed interval which we denote by [αS(X), βS(X)]. By point
(ii), we know that there exists a unique equilibrium total output X̄. It follows that the
polyhedron XP can be represented as the intersection of the orthotope (hyperrectangle)∏
S∈P RS(X̄) =

∏
S∈P [αS(X̄), βS(X̄)] and the hyperplane

{
xP ∈ XP :

∑
S∈P x

S = X̄
}
,

i.e.

XP =

{
xP ∈ XP : ∀S ∈ P, xS ∈

[
αS(X̄), βS(X̄)

]
and

∑
S∈P

xS = X̄

}
.

The polyhedron XP is compact and convex as the intersection of two compact and convex
sets. Since a convex set is always connected, we deduce that the polyhedron XP is compact
and connected. Moreover, the continuity of the inverse demand function p and of every
coalition cost function CS implies that the coalition profit function πS as in (9) is continu-
ous. It follows that the set πS(XP) is compact and connected as the image of a compact
and connected set by a continuous function. Since a subset of R is connected if and only if it
is an interval, we conclude that πS(XP) is a compact real interval, which proves point (iii).�

In order to establish the proof of the corollary below we need the following result due to
Lardon (2009).

10This property implies that X̄ is the unique fixed point of the one-dimensional correspondence RP .
11The properties of the coalition cost function CS follow from the continuity, the strict monotonicity and

the convexity of every cost function Ci.
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Proposition 3.4 (Lardon 2009) Let (N, (Xi, πi)i∈N ) be a normal form oligopoly game,
P ∈ Π(N) a coalition structure and (P, (XS , πS)S∈P) the asociated normal form oligopoly
game. Then there exists a Nash equilibrium x̂P ∈ XP if and only if there exists an equilib-
rium under P, x̂N ∈ XN such that x̂S ∈ A(x̂S) for every S ∈ P.

Given the normal form oligopoly game (N, (Xi, πi)i∈N ), recall that a partial agreement
equilibrium under S corresponds to an equilibrium under PS = {S} ∪ {{i} : i 6∈ S}. We
deduce from (iii) of proposition 3.3 the following corollary.

Corollary 3.5 Let (N, (Xi, πi)i∈N ) be a normal form oligopoly game. Then for every
S ∈ P(N), the set of incomes of S enforced by the set of partial agreement equilibria XS ,∑

i∈S πi(X
S), is a compact real interval.

Proof: Take a coalition S ∈ P(N). Consider the coalition structure PS ∈ Π(N) and the
normal form oligopoly game (PS , (XT , πT )T∈PS ). It follows from proposition 3.4 that the
set of incomes of S enforced by XS and the set of incomes of S enforced by XP

S
coincide,

i.e. ∑
i∈S

πi(X
S) = πS(XP

S
).12

Hence, from point (iii) of proposition 3.3 we conclude that
∑

i∈S πi(X
S) is a compact real

interval. �

Although the inverse demand function p is continuous and not necessarily differentiable,
it follows from corollary 3.5 that we can always specify an oligopoly interval game in γ-
characteristic function form denoted by (N,wγ) where wγ : P(N) −→ I(R) is a set
function defined as

wγ(S) =
∑
i∈S

πi(X
S) (15)

The worth interval wγ(S) of every coalition S ∈ P(N) is denoted by [wγ(S), wγ(S)]

where wγ(S) and wγ(S) are the minimal and the maximal incomes of S enforced by XS

respectively.13 For a fixed set of firms N , we denote by IGNo ⊆ IGN the set of oligopoly
interval games.

4 The non-emptiness of the interval γ-core and the stan-
dard γ-core

In this section we deal with the problem of the non-emptiness of the interval γ-core and
the standard γ-core. First, we introduce a decision theory criterion, the Hurwicz crite-

12The "if" part of proposition 3.4 implies that
∑
i∈S πi(X

S) ⊆ πS(XP
S

) while the "only if" part implies

that
∑
i∈S πi(X

S) ⊇ πS(XP
S

).
13Recall that the worth of the grand coalition N is unique. Hence, its worth interval wγ(N) is degenerate,

i.e. wγ(N) = wγ(N).
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rion (Hurwicz 1951), which permits to choose, for every wγ ∈ IGNo , any of its selection
vγ ∈ Sel(wγ). Then, we provide a necessary and sufficient condition for the non-emptiness
of each of the core solution concepts: the interval γ-core and the standard γ-core. The
first result states that the interval γ-core is non-empty if and only if the oligopoly TU-game
associated with the better worth of every coalition in its worth interval admits a non-empty
γ-core. However, we show that even for a very simple oligopoly situation, this condition
fails to be satisfied. The second result states that the standard γ-core is non-empty if and
only if the oligopoly TU-game associated with the worst worth of every coalition in its worth
interval admits a non-empty γ-core. Moreover, we give some properties on every individual
profit function and every cost function under which this condition always holds, what sub-
stantially extends the results in theorem 2.2.

4.1 The Hurwicz criterion

An oligopoly interval game wγ ∈ IGNo fits all the situations where every coalition S ∈ P(N)
knows with certainty only the lower and upper bounds wγ(S) and wγ(S) of all its potential
worths. Consequently, the expectations of every coalition S ∈ P(N) on its potential worths
are necessarily focused on its worth interval wγ(S). In order to define the expectations of
every coalition S ∈ P(N), we use a decision theory criterion, the Hurwicz criterion (Hurwicz
1951), that consists in doing a convex combination of the lower and upper bounds of all its
potential worths, i.e. µSwγ(S)+(1−µS)wγ(S) where µS ∈ [0, 1]. The number µS ∈ [0, 1]
can be regarded as the degree of pessimism of coalition S. A vector µ = (µS)S∈P(N) is
an expectation vector. To every expectation vector µ ∈

∏
S∈P(N)[0, 1], we associate the

oligopoly TU-game vµγ : P(N) −→ R defined as

vµγ (S) = µSwγ(S) + (1− µS)wγ(S) (16)

where vµγ ∈ Sel(wγ). Each of the two necessary and sufficient conditions is derived from a
particular selection of wγ , that is v0

γ = wγ and v1
γ = wγ respectively.

4.2 The non-emptiness of the interval γ-core

Following Alparslan-Gok et al.’s result (2008b), I-balancedness property is a necessary and
sufficient condition to guarantee the non-emptiness of the interval core. For every S ∈
P(N), eS ∈ Rn is the vector with coordinates equal to 1 in S and equal to 0 outside S. A
map λ : P(N)\{∅} −→ R+ is balanced if

∑
S∈P(N)\{∅} λ(S)eS = eN . An interval game

w ∈ IGN is strongly balanced if for every balanced map λ it holds that∑
S∈P(N)\{∅}

λ(S)w(S) ≤ w(N).

An interval game w ∈ IGN is I-balanced if for every balanced map λ it holds that

12
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∑
S∈P(N)\{∅}

λ(S)w(S) 4 w(N).14

Alparslan-Gok et al.’s results (2008b) are summarized in the following theorem.

Theorem 4.1 (Alparslan-Gok et al. 2008b) Let w ∈ IGN be an interval game. Then,
it holds that

(i) if the interval game w ∈ IGN is strongly balanced, then it is I-balanced;

(ii) the interval game w ∈ IGN has a non-empty interval core if and only if it is I-
balanced.

For every oligopoly interval game, the following result states that the interval γ-core is
non-empty if and only if the oligopoly TU-game associated with the minimum degree of
pessimism of every coalition S ∈ P(N) (µS = 0) admits a non-empty γ-core.

Theorem 4.2 The oligopoly interval game wγ ∈ IGNo has a non-empty interval γ-core if
and only if the oligopoly TU-game v0

γ ∈ Sel(wγ) as defined in (16) has a non-empty γ-core.

Proof: [=⇒] Assume that C(wγ) 6= ∅ and take a payoff interval vector I ∈ C(wγ). Then,
it holds that

∑
i∈N Ii = wγ(N) implying that

∑
i∈N Ii = wγ(N), and for every S ∈ P(N)

it holds that
∑

i∈S Ii < wγ(S) implying that
∑

i∈S Ii ≥ wγ(S). Let σ ∈ Rn be a payoff
vector such that σi = Ii for every i ∈ N . It follows from wγ = v0

γ that
∑

i∈N σi = v0
γ(N)

and
∑

i∈S σi ≥ v0
γ(S) for every S ∈ P(N). Hence, we conclude that σ ∈ C(v0

γ).
[⇐=] Assume that C(v0

γ) 6= ∅. By the balancedness property, it holds for every balanced
map λ that ∑

S∈P(N)\{∅}

λ(S)v0
γ(S) ≤ v0

γ(N) (17)

Since the worth interval of the grand coalition is always degenerate, we have v0
γ(N) =

wγ(N) = wγ(N). Hence, from v0
γ = wγ and by (17) we deduce that the oligopoly interval

game wγ ∈ IGNo is strongly balanced, i.e. for every balanced map λ it holds that∑
S∈P(N)\{∅}

λ(S)wγ(S) ≤ wγ(N).

By (i) and (ii) of theorem 4.1, we conclude that wγ ∈ IGNo is I-balanced, and therefore
has a non-empty interval γ-core. �

14A TU-game v ∈ GN is balanced if for every balanced map λ it holds that∑
S∈P(N)\{∅}

λ(S)v(S) ≤ v(N).

Thus, if all worth intervals are degenerate then strong balancedness and I-balancedness properties coincide
with balancedness property.
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One can ask what properties on every individual profit function πi or every cost function Ci
guarantee the non-emptiness of C(v0

γ). The following example shows that even for a very
simple oligopoly situation, this condition fails to be satisfied.

Example 4.3

Consider the oligopoly interval game wγ ∈ IGNo associated with the oligopoly situation
(N, (qi, Ci)i∈N , p) where N = {1, 2, 3}, for every i ∈ N , qi = 5/3 and Ci(xi) = 97xi, and
the inverse demand function is defined as

p(X) =

{
103−X if 0 ≤ X ≤ 3

50(5−X) if 3 < X ≤ 5

Clearly, the inverse demand function p is continuous, piecewise linear and concave but it is
not differentiable at point X̄ = 3. Assume that coalition {2, 3} forms. We show that a
strategy profile x ∈ XN is a partial agreement equilibrium under {2, 3}, i.e. x ∈ X{2,3}, if
and only if it satisfies (i) X = X̄ and (ii) x2 + x3 ∈ [4/3, 147/50].
[⇐=] Take x ∈ XN satisfying (i) and (ii). By (i) we have

π1(x) = 3x1

and

π2(x) + π3(x) = 3(x2 + x3).

If player 1 increases his output by ε ∈ ]0, 5/3− x1], his new payoff will be

π1(x1 + ε, x2, x3) = (3− 50ε)(x1 + ε) (18)

Conversely, if he decides to decrease his output by δ ∈ ]0, x1], he will obtain

π1(x1 − δ, x2, x3) = (3 + δ)(x1 − δ) (19)

Similarly, if coalition {2, 3} increases its output by ε + ε′ ∈ ]0, 10/3− x2 − x3] where
ε ∈ [0, 5/3− x2] and ε′ ∈ [0, 5/3− x3], its new payoff will be

3∑
i=2

πi(x1, x2 + ε, x3 + ε′) =
(
3− 50(ε+ ε′)

)
(x2 + x3 + ε+ ε′) (20)

On the contrary, if it decreases its output by δ + δ′ ∈ ]0, x2 + x3] where δ ∈ [0, x2] and
δ′ ∈ [0, x3], it will obtain

3∑
i=2

πi(x1, x2 − δ, x3 − δ′) = (3 + δ + δ′)(x2 + x3 − δ − δ′) (21)

In all cases (18), (19), (20) and (21), given (ii), neither player 1 nor coalition {2, 3} can
improve their incomes. We conclude that every strategy profile x ∈ XN satisfying (i) and
(ii) is a partial agreement equilibrium under {2, 3}.
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[=⇒] Take x ∈ X{2,3}. By point (ii) of proposition 3.3 we know that X̄ = 3 is the unique
equilibrium total output. It follows that x ∈ X{2,3} is such that X = X̄. Moreover, given (i)
and by (18), (19), (20) and (21) we deduce that x ∈ X{2,3} satisfies x2+x3 ∈ [4/3, 147/50].
Hence, by (i) and (ii) we conclude that the worth interval of coalition {2, 3} is wγ({2, 3}) =
[4, 8.82].
In a similar way, we can compute the worth intervals of the other coalitions S ∈ P(N) given
in the following table:

S {i} {i, j} {1, 2, 3}
wγ(S) [0.18, 5] [4, 8.82] [9, 9]

We can check that
∑

i∈N v
0
γ({i}) = 15 > 9 = v0

γ(N), so the γ-core of v0
γ ∈ Sel(wγ) is

empty. It follows from theorem 4.2 that the interval γ-core is empty. This is a consequence
of the non-differentiability of the inverse demand function p at point X̄ = 3. Indeed,
at this point it is possible for a deviating coalition to obtain a large income on a partial
agreement equilibrium since it is no incentive for other firms to change their outputs on any
neighborhood of X̄ = 3. �

4.3 The non-emptiness of the standard γ-core

For every oligopoly interval game, the following result states that the standard γ-core is
equal to the γ-core of the oligopoly TU-game associated with the maximum degree of
pessimism of every coalition S ∈ P(N) (µS = 1).

Theorem 4.4 Let wγ ∈ IGNo be an oligopoly interval game and v1
γ ∈ Sel(wγ) be the

oligopoly TU-game as defined in (16). Then C(wγ) = C(v1
γ).15

Proof: First, it follows from v1
γ ∈ Sel(wγ) that C(v1

γ) ⊆
⋃
vµγ∈Sel(wγ)C(vµγ ) = C(wγ).

It remains to show that C(wγ) ⊆ C(v1
γ). If C(wγ) = ∅ we have obviously C(wγ) ⊆ C(v1

γ).
So, assume that C(wγ) 6= ∅ and take a payoff vector σ ∈ C(wγ). Thus, there exists an
expectation vector µ̄ such that σ ∈ C(vµ̄γ ), i.e.

∀S ∈ P(N),
∑
i∈S

σi ≥ vµ̄γ (S) and
∑
i∈N

σi = vµ̄γ (N) (22)

Since the worth interval of the grand coalition N is degenerate we have vµ̄γ (N) = v1
γ(N),

and therefore by (22),
∑

i∈N σi = v1
γ(N). Moreover, by (16) it holds that vµ̄γ ≥ v1

γ implying
by (22) that

∑
i∈S σi ≥ v1

γ(S) for every S ∈ P(N). Hence, we conclude that σ ∈ C(v1
γ)

15By defining the standard core* of an interval game w ∈ IGN as the intersection of the cores of all its
selections v ∈ GN , i.e.

C∗(w) =
⋂

v∈Sel(w)

C(v),

we obtain the opposite result to theorem 4.4, that is C∗(wγ) = C(v0γ).
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which proves that C(wγ) ⊆ C(v1
γ). �

It follows from theorem 4.4 that the oligopoly interval game wγ ∈ IGNo has a non-empty
standard γ-core if and only if the oligopoly TU-game v1

γ ∈ Sel(wγ) has a non-empty γ-core.

Once again, one can ask what properties on every individual profit function πi or every cost
function Ci guarantee the non-emptiness of C(v1

γ). In the remainder of this section, for
every oligopoly interval game wγ ∈ IGNo , we show that under assumptions (c) or (d) the
γ-core of v1

γ ∈ Sel(wγ) is non-empty, what substantially extends the results in theorem 2.2.
First, we denote by X the denumerable set of points where the inverse demand
function p is non-differentiable.16 The Weierstrass approximation theorem states that
every continuous function defined on a compact interval can be uniformly approximated
as closely as desired by a sequence of polynomial functions. In particular, we denote by
(pε)ε>0 a sequence of differentiable, strictly decreasing and concave inverse demand
functions that uniformly converges to the inverse demand function p0 = p,17 i.e. for every
ζ > 0, there exists ε′ > 0 such that for all ε < ε′, it holds that

∀X ∈ XN , |pε(X)− p(X)| < ζ.

Then, we generalize some definitions above. Given the sequence (pε)ε>0, the coalition
structure P ∈ Π(N) and an admissible coalition S ∈ P, for each ε > 0 define

- the individual profit function πεi : XN −→ R as

πεi (x) = pε(X)xi − Ci(xi);

- the coalition profit function πεS : XP −→ R as

πεS(xP) = pε(X)xS − CS(xS);

- the coalition profit function* ψεS : XS ×XS ×XN −→ R as

∀xS ≤ X, ψεS(yS , xS , X) = pε(X − xS + yS)yS − CS(yS);

- the best reply correspondence** RεS : XN � XS as

RεS(X) =

{
xS ∈ XS : xS ∈ arg max

yS∈XS
ψεS(yS , xS , X)

}
;

- the one-dimensional correspondence RεP : XN � XN as

RεP(X) =

{
Y ∈ XN : Y =

∑
S∈P

xS and ∀S ∈ P, xS ∈ RεS(X)

}
;

16The concavity of the inverse demand function p ensures that X is at most denumerable.
17Proposition 6.1 in the appendix states that such a sequence always exists.
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- the γ-characteristic function vεγ : P(N) −→ R as

vεγ(S) =
∑
i∈S

πεi (x
∗
S(z̃−S), z̃−S(x∗S))

where (x∗S(z̃−S), z̃−S(x∗S)) ∈ XN is a partial agreement equilibrium of the normal form
oligopoly game (N, (Xi, π

ε
i )i∈N ). For each ε > 0, since the inverse demand function pε is

differentiable, it follows from proposition 2.1 that the worth of every coalition S ∈ P(N),
vεγ(S), is unique. We denote by XS

ε ⊆ XN the set of partial agreement equilibria under
S of the normal form oligopoly game (N, (Xi, π

ε
i )i∈N ) and by XPε ⊆ XP the set of Nash

equilibria of the normal form oligopoly game (P, (XS , πεS)S∈P).

In the following, for each ε > 0 we denote by x̂Pε ∈ XPε the unique Nash equilibrium of
the normal form oligopoly game (P, (XS , πεS)S∈P).18 Moreover, from (ii) of proposition
3.3 we denote by X̄ the unique equilibrium total output of the normal form oligopoly game
(P, (XS , πS)S∈P).

Lemma 4.5 Let P ∈ Π(N) be a coalition structure, (pε)ε>0 a sequence that uniformly
converges to p and (x̂Pε )ε>0 the associated sequence of Nash equilibria. If the sequence
(x̂Pε )ε>0 converges to a strategy profile x̂P0 ∈ XP then it holds that

(i)
∑

S∈P x̂
S
0 = X̄;

(ii) ∀S ∈ P, x̂S0 ∈ RS(X̄);

(iii) x̂P0 ∈ XP .

Proof: From proposition 3.1, for each ε > 0 we have
∑

S∈P x̂
S
ε = X̂ε ∈ RεP(X̂ε). By the

definitions of RεS and RεP it holds that

∀ε > 0, ∀S ∈ P, ψεS(x̂Sε , x̂
S
ε , X̂ε) = max

yS∈XS
ψεS(yS , x̂Sε , X̂ε) (23)

For every S ∈ P, the uniform convergence of the sequence (pε)ε>0 to p implies that the
sequence (ψεS)ε>0 uniformly converges to ψS . This result, the continuity of every coalition
profit function* ψεS , ε > 0, and (23) imply for every S ∈ P that

lim
ε−→0

ψεS(x̂Sε , x̂
S
ε , X̂ε) = lim

ε−→0
max
yS∈XS

ψεS(yS , x̂Sε , X̂ε)

⇐⇒ lim
ε−→0

ψεS

(
x̂Sε , x̂

S
ε ,
∑
T∈P

x̂Tε

)
= max

yS∈XS
lim
ε−→0

ψεS

(
yS , x̂Sε ,

∑
T∈P

x̂Tε

)
⇐⇒ ψS

(
x̂S0 , x̂

S
0 ,
∑
T∈P

x̂T0

)
= max

yS∈XS
ψS

(
yS , x̂S0 ,

∑
T∈P

x̂T0

)
⇐⇒ x̂S0 ∈ RS

(∑
T∈P

x̂T0

)
(24)

18This uniqueness result is established in proposition 3.2.
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It follows from (24) that
∑

S∈P x̂
S
0 ∈ RP(

∑
S∈P x̂

S
0 ). From (ii) of proposition 3.3, X̄ is the

unique fixed point of RP . Hence, we deduce that
∑

S∈P x̂
S
0 = X̄, and therefore by (24)

x̂S0 ∈ RS(X̄) for every S ∈ P which proves points (i) and (ii).
Finally, point (iii) is a consequence of points (i) and (ii) by proposition 3.1. �

Lemma 4.6 Let S ∈ P(N) be a coalition, (pε)ε>0 a sequence that uniformly converges
to p and (x̂P

S

ε )ε>0 the associated sequence of Nash equilibria. If the sequence (x̂P
S

ε )ε>0

converges to a strategy profile x̂P
S

0 ∈ XPS then it holds that limε−→0 v
ε
γ(S) ∈ wγ(S).

Proof: Take ε > 0. By proposition 3.4 we know that the set of incomes of S enforced by
XS
ε and the set of incomes of S enforced by XP

S

ε are equal, i.e.
∑

i∈S πi(X
S
ε ) = πS(XP

S

ε ).
Hence, for each ε > 0 it holds that

vεγ(S) =
∑
i∈S

πεi (x
∗
S(z̃−S), z̃−S(x∗S))

= πεS(x̂P
S

ε )

where x̂P
S

ε ∈ XP
S

ε is the unique Nash equilibrium of the normal form oligopoly game
(PS , (XT , πεT )T∈PS ). The uniform convergence of the sequence (pε)ε>0 to p implies that
the sequence (πεS)ε>0 uniformly converges to πS . It follows from this result and the conti-
nuity of πS that

lim
ε−→0

vεγ(S) = lim
ε−→0

πεS(x̂P
S

ε )

= πS(x̂P
S

0 )
(25)

From (iii) of lemma 4.5 we know that x̂P
S

0 ∈ XP
S

ε . Hence, by (25) we have limε−→0 v
ε
γ(S) ∈

πS(XP
S
). By proposition 3.4, we know that the set of incomes of S enforced by XS and

the set of incomes of S enforced by XP
S
are equal. Thus, by (15) it holds that

πS(XP
S
) =

∑
i∈S

πi(X
S)

= wγ(S).

Hence, we conclude that limε−→0 v
ε
γ(S) ∈ wγ(S). �

Theorem 4.7 Let wγ ∈ IGNo be an oligopoly interval game and (pε)ε>0 a sequence that
uniformly converges to p. If for each ε > 0, the oligopoly TU-game vεγ ∈ GNo admits a
non-empty γ-core then it holds that C(wγ) 6= ∅.
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Proof: By (1), for each ε > 0 there exists a payoff vector σε ∈ Rn such that

∀S ∈ P(N),
∑
i∈S

σεi ≥ vεγ(S) and
∑
i∈N

σεi = vεγ(N) (26)

By (26), the sequence (σε)ε>0 is bounded in Rn. Thus, there exists a subsequence of (σε)ε>0

that converges to a point σ0 ∈ Rn. Without loss of generality we denote by (σε)ε>0 such
a subsequence.
First, take an arbitrary coalition S ∈ P(N) and consider the coalition structure PS =
{S} ∪ {{i} : i 6∈ S}. By the compacity of every coalition strategy set XT , T ∈ PS , there
exists a subsequence of (x̂P

S

ε )ε>0 denoted by (x̂P
S

εk
)εk>0, k ∈ N, that converges to a strategy

profile x̂P
S

0 ∈ XP
S
by point (iii) of lemma 4.5. Thus, by (26) it holds that

lim
εk−→0

∑
i∈S

σεki ≥ lim
εk−→0

vεkγ (S)⇐⇒
∑
i∈S

σ0
i ≥ lim

εk−→0
vεkγ (S).

It follows from lemma 4.6 that limεk−→0 v
εk
γ (S) ∈ wγ(S) for every S ∈ P(N). From this

result, we deduce that there exists an expectation vector µ̄ such that

∀S ∈ P(N),
∑
i∈S

σ0
i ≥ vµ̄γ (S) (27)

Then, consider the grand coalition N ∈ P(N). By a similar argument to the one in the
first part of the proof and (26) it holds that

lim
εk−→0

∑
i∈N

σεki = lim
εk−→0

vεkγ (N)⇐⇒
∑
i∈N

σ0
i = lim

εk−→0
vεkγ (N).

It follows from lemma 4.6 that limεk−→0 v
εk
γ (N) ∈ wγ(N). As the worth interval of the

grand coalition is degenerate, it holds that∑
i∈N

σ0
i = vµ̄γ (N) (28)

By (27) and (28) we conclude that σ0 ∈ C(vµ̄γ ) ⊆ C(wγ) since vµ̄γ ∈ Sel(wγ). �

We deduce from theorems 2.2 and 4.7 the following theorem.

Theorem 4.8 Let wγ ∈ IGNo be an oligopoly interval game and (pε)ε>0 a sequence that
uniformly converges to p such that for all ε > 0 assumption (c) or (d) is satisfied. Then, it
holds that C(wγ) 6= ∅.

Theorem 4.8 is an extension of theorem 2.2. Indeed, if the inverse demand function p
is differentiable, all worth intervals of wγ ∈ IGNo are degenerate, i.e. wγ = {vγ} where
vγ ∈ GNo . Thus, the standard γ-core of wγ is equal to the γ-core of vγ . It remains to take
the constant sequence (p̄ε)ε>0 where p̄ε = p for each ε > 0 in order to obtain an equivalent
formulation of theorem 2.2.
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5 Concluding remarks

In this paper, we have focused on oligopoly interval games in γ-characteristic function form.
When a coalition forms, the underlying assumption is that external agents choose their
action individually as a best reply to the coalitional action. Lardon (2009) shows that the
continuity of the inverse demand function is not sufficient to guarantee the uniqueness of the
worth of every coalition. However, we show that we can always specify an oligopoly interval
game. As far as we know this is the first time that this game type is modeled. Afterwards,
we have studied two extensions of the core: the interval γ-core and the standard γ-core.
We have provided a necessary and sufficient condition for the non-emptiness of each of
these core solution concepts. The first result states that the interval γ-core is non-empty
if and only if the oligopoly TU-game associated with the better worth of every coalition
in its worth interval admits a non-empty γ-core. However, we show that even for a very
simple oligopoly situation, this condition fails to be satisfied. The second result states that
the standard γ-core is non-empty if and only if the oligopoly TU-game associated with the
worst worth of every coalition in its worth interval admits a non-empty γ-core. Moreover,
we give some properties on every individual profit function and every cost function under
which this condition always holds, what substantially extends the results in theorem 2.2.
Many economic situations such that an economy with environmental externalities (Helm
2001) can be described by interval games. It is likely that similar conditions on agents’
utility functions will be sufficient to guarantee the non-emptiness of the interval γ-core and
the standard γ-core of such models.

6 Appendix

Given a continuous, strictly decreasing and concave inverse demand function p, we construct
a sequence of differentiable, strictly decreasing and concave inverse demand functions de-
noted by (pε)ε>0 that uniformly converges to p by using Bézier curves (Bézier 1976).
A Bézier curve is a parametric curve defined through specific points called control points.
A particular class of Bézier curves are quadratic Bézier curves defined with three control
points X0, X1 and X2 as illustrated by the following figure:

X0

X1

X2
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Formally, this quadratic Bézier curve is the path traced by the function B : [0, 1] −→ R2

defined as

B(t) = (1− t)2X0 + 2(1− t)tX1 + t2X2 (29)

Proposition 6.1 Let p be a continuous, strictly decreasing and concave inverse demand
function. Then, there exists a sequence of differentiable, strictly decreasing and concave
inverse demand functions (pε)ε>0 that uniformly converges to p.

Proof: First, for every X ∈ X and each ε > 0, we define a quadratic Bézier curve. The
steps of this construction are illustrated by the following figure:

X0

X2

X1

GεX

Y

p(Y )

X − ε X X + ε

p(X)

f εX(X)

︸ ︷︷ ︸
Nε(X)

For every X ∈ X , define Nε(X) the neighborhood of X with radius ε as

Nε(X) = {Y ∈ R+ : |Y −X| < ε}.

Since X is at most denumerable, there exists ε̄ > 0 such that for all ε < ε̄ it holds that

∀X,X ′ ∈ X , Nε(X) ∩Nε(X
′) = ∅.

In the remainder of the proof, we assume everywhere that ε < ε̄. Take X ∈ X . For
each ε > 0, in order to construct the quadratic Bézier curve, we consider three control
points given by X0 = (inf Nε(X), p(inf Nε(X))), X2 = (supNε(X), p(supNε(X))) and
X1 defined as the intersection point between the tangent lines to the curve of p at points
X0 and X2 respectively. Given these three control points, the quadratic Bézier curve is the
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path traced by the function Bε
X : [0, 1] −→ R2 defined as in (29). It is well-known that

the quadratic Bézier curve Bε
X can be parametrized by a polynomial function denoted by

f εX : Nε(X) −→ R+ where Nε(X) is the closure of Nε(X).
Then, for each ε > 0 we define the inverse demand function pε : R+ −→ R+ as

pε(Y ) =

{
f εX(Y ) if for some X ∈ X , Y ∈ Nε(X),
p(Y ) otherwise.

(30)

By the construction of control points X0, X1 and X2, it follows from the properties of
the inverse demand function p and of the quadratic Bézier curves defined above that pε as
defined in (30) is differentiable, strictly decreasing and concave.
It remains to show that the sequence (pε)ε>0 uniformly converges to p. Take ζ > 0 and
assume that Y 6∈ X . It follows that there exists ε1 > 0 such that for each ε < ε1 and for
every X ∈ X we have Y 6∈ Nε(X). Hence, by (30) for each ε < ε1 we have pε(Y ) = p(Y ),
and so |pε(Y )− p(Y )| = 0 < ζ. Then, assume that Y ∈ X . For each ε > 0 we denote by
GεY the convex hull of the set of control points {X0, X1, X2}, i.e.

GεY = co{X0, X1, X2}.

By the construction of control points X0, X1 and X2 it holds that

lim
ε−→0

GεY = {(Y, p(Y ))} (31)

Moreover, recall that Bε
Y is defined as a convex combination of control points X0, X1 and

X2. Hence, for each ε > 0 we have Bε
Y ⊆ GεY , and therefore (Y, f εY (Y )) ∈ GεY . By (31)

we deduce that there exists ε2 > 0 such that for each ε < ε2, we have

|pε(Y )− p(Y )| = |f εY (Y )− p(Y )| < ζ.

Finally, take ε3 = min{ε1, ε2}. It follows for each ε < ε3 that

∀Y ∈ R+, |pε(Y )− p(Y )| < ζ

which proves that the sequence (pε)ε>0 uniformly converges to p. �
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