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Abstract

We are settling a longstanding quarrel in quantitative fieaby proving the
existence of trends in financial time series thanks to a gmeatue to P. Cartier
and Y. Perrin, which is expressed in the language of nonatanahalysislate-
gration over finite setd~. & M. Diener (Eds):Nonstandard Analysis in Practice
Springer, 1995, pp. 195-204). Those trends, which mightisbith some al-
tered random walk paradigm and efficient market hypothesiem nevertheless
difficult to reconcile with the celebrated Black-Scholesdelb They are esti-
mated via recent techniques stemming from control and kitpeary. Several
quite convincing computer simulations on the forecast oiowss financial quan-
tities are depicted. We conclude by discussing the roleabability theory.
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1 Introduction

Our aim is to settle a severe and longstanding quarrel betwee

1. the paradigm ofandom walk$ and the relateefficient market hypothedi5]
which are the bread and butter of modern financial mathemjatic

2. the existence dfendswhich is the key assumption technical analysisg

There are many publications questioning the existencesreith trends (seee.g,
[15, 36, 47]), of random walks (see,g, [31, 55]), or of the market efficiency (see,
e.g, [23, 51, 55])

Atheorem due to Cartier and Perrin [9], which is stated if@hguage ohonstandard
analysis* yields the existence of trends for time series under a veakiregrability
assumption. The time serig$t) may then be decomposed as a sum

f(t) = ftrcnd (t) + fﬂuctuation(t) (1)
where
e firend(t) is the trend,

e fauctuation () iS @ “quickly fluctuating” function around.

The very “nature” of those quick fluctuations is left unknoamd nothing prevents us
from assuming thafg,ctuation(t) 1S random and/or fractal. It implies the following
conclusion which seems to be rather unexpected in the egikterature:

The two above alternatives are not necessarily contradicty and may coexist
for a given time series®

We nevertheless show that it might be difficult to reconcilthwur setting the cele-
brated Black-Scholes model [8], which is in the heart of thpraach to quantitative
finance via stochastic differential equations (&g, [52] and the references therein).

Consider, as usual in signal, control, and in other engingeciencesfg,ctuation (t)
in Eq. (1) as an additive corrupting noise. We attenuateif we obtain an estimation
of firena(t) by an appropriate filterin§ These filters

1Random walks in finance go back to the work of Bachelier [3leyfbecame a mainstay in the academic
world sixty years ago (see,g, [7, 10, 40] and the references therein) and gave rise to @ litecature (see,
e.g, [52] and the references therein).

2Technical analysis (see,g, [4, 29, 30, 43, 44] and the references therein)cuarting is popular
among traders and financial professionals. The notion néigénere and in the usual time series literature
(see.e.g, [22, 24]) do not coincide.

3An excellent book by Lowenstein [35] is giving flesh and bldodhose hot debates.

4See Sect. 2.1.

50ne should then define random walks and/or market efficieanyuhd” trends.

6Some technical analysts (seeg, [4]) are already advocating this standpoint.
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e are deduced from our approach to noises via nonstandargsas|l6], which

— is strongly connected to this work,

— led recently to many successful results in signal and inrobiisee the
references in [17]),

e yields excellent numerical differentiation [39], whichhgre again of utmost
importance (see also [18, 20] and the references thereapfaications in con-
trol and signal).

A mathematical definition of trends and effective means &tineating them, which
were missing until now, bear important consequences onttitly ®f financial time
series, which were sketched in [19]:

e The forecast of the trend is possible on a “short” time irdérnder the as-
sumption of a lack of abrupt changes, whereas the forecastedfaccurate”
numerical value at a given time instant is meaningless aodldibe abandoned.

e The fluctuations of the numerical values around the trend teaew ways for
computing standard deviation, skewness, and kurtosighwhay be forecasted
to some extent.

e The position of the numerical values above or under the tnesiglbe forecasted
to some extent.

The quite convincing computer simulations reported in S#show that we are
o offering for technical analysis a sound theoretical basée (@lso [14, 32]),

e on the verge of producing on-line indicators for short timading, which are
easily implementable on computérs.

Remark 1. We utilize as in [19] the differences between the actualgwiand the
trend for computing quantities like standard deviatiorewkess, kurtosis. This is a
major departure from today’s literature where those quaesi are obtained via re-
turns and/or logarithmic return8,and where trends do not play angle. It might
yield a new understanding of “volatility”, and therefore &w model-free risk man-
agemen?.

Our paper is organized as follows. Sect. 2 proves the existen trends, which
seem to contradict the Black-Scholes model. Sect. 3 skefitteetrend estimation
by mimicking [20]. Several computer simulations are degmicin Sect. 4. Sect. 5
concludes by examining probability theory in finance.

"The very same mathematical tools already provided suadesshputer programs in control and sig-
nal.

8See Sect. 2.4.

9The existing literature contains of course other attemgtsritroducing nonparametric risk manage-
ment (seee.qg, [1]).
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2 Existence of trends

2.1 Nonstandard analysis

Nonstandard analysis was discovered in the early 60’s byrRRoh [50]. It vindicates
Leibniz’s ideas on “infinitely small” and “infinitely largefiumbers and is based on
deep concepts and results from mathematical logic. Theéstseanother presentation
due to Nelson [45], where the logical background is less aeling (seege.g, [12,
13, 49] for excellent introductions). Nelson’s approadj [@f probability along those
lines had a lasting influendé. As demonstrated by Harthong [25], Lobry [33], and
several other authors, nonstandard analysis is also a lnasweol for clarifying in a
most intuitive way questions stemming from some appliedsiaf science. This work
is another step in that direction, like [16, 17].

2.2 Sketch of the Cartier-Perrin theoremtt
2.2.1 Discrete Lebesgue measure arfgtintegrability

Let J be an interval ofR, with extremitiesa andb. A sequenc& = {0 = ty <
t;1 < --- < t, = 1} is called amapproximationof J, or anear interval if ¢;11 — ¢;
is infinitesimalfor 0 < i < v. TheLebesgue measumn ¥ is the functionm defined
onT\{b} by m(t;) = t;+1 — t;- The measure of any intervil, d[C J, ¢ < d, is its
lengthd — ¢. The integral ovefe, d[ of the functionf : 7 — R is the sum

fdm =" f(tym(t)

[e.d] tele,d[

The functionf : ¥ — R s said to be5-integrableif, and only if, for any intervalc, d]
the integralf[c d | f|dm is limited and, ifd — c is infinitesimal, also infinitesimal.

2.2.2 Continuity and Lebesgue integrability

The functionf is said to beS-continuousat¢, € ¥ if, and only if, f(t,) ~ f(7)
whent, ~ 7.12 The functionf is said to bealmost continuoui, and only if, it is S-
continuous orE \ R, whereR is arare subset® We say thaff is Lebesgue integrable
if, and only if, it is S-integrable and almost continuous.

10The following quotation of D. Laugwitz, which is extractewn [27], summarizes the power of non-
standard analysisMit Ublicher Mathematik kann man zwar alles gerade so gutdigen; mit der nicht-
standard Mathematik kann man es aber verstehen

11The reference [34] contains a well written elementary pregtion. Note also that the Cartier-Perrin
theorem is extending previous considerations in [26, 48].

12y ~ ¢ means that: — y is infinitesimal.

13The setR is said to be rare [5] if, for any standard real number> 0, there exists an internal set
B D Asuchthatn(B) < o
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2.2.3 Quickly fluctuating functions

A functionh : € — R is said to beguickly fluctuatingor oscillating, if, and only fif,
itis S-integrable an(fA hdm is infinitesimal for anyquadrablesubset*

Theorem 2.1. Let f : ¥ — R be anS-integrable function. Then the decomposition
(1) holds where

e firend(t) is Lebesgue integrable,
® fAuctuation(t) i quickly fluctuating.
The decompositiofl) is unique up to an infinitesimal.
firena(t) @nd fauctuation (t) @re respectively called theendand thequick fluctuations
of f. They are unique up to an infinitesimal.
2.3 The Black-Scholes model

The well known Black-Scholes model [8], which describegifiee evolution of some
stock options, is the Itd stochastic differential equatio

dS; = uSt + oS dW; (2)
where
e W, is a standard Wiener process,
o thevolatility o and thedrift, ortrend, 1 are assumed to be constant.

This model and its numerous generalizations are playing jarméle in financial
mathematics since more than thirty years although Eq. @}én severely criticized
(seee.q, [38, 54] and the references therein).

The solution of Eq. (2) is thgeometric Brownian motiowhich reads

o2
Sy = Spexp <(;L - 7)t + cht)

whereS; is the initial condition. It seems most natural to consider meanSye#
of S, as the trend of;. This choice unfortunately does not agree with the follayin
fact: F; = S; — Spe”! is almost surely not a quickly fluctuating function around

i.e., the probability that fOT F.dr| >¢>0,T >0, is not “small”, when
e cis“small”,

e T'is neither “small” nor “large”.

147 set is quadrable [9] if its boundary is rare.
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Remark 2. A rigorous treatment, which would agree with nonstandardlgsis (see,
e.g, [2, 6]), may be deduced from some infinitesimal time-samypdif Eq. (2), like
the Cox-Ross-Rubinstein one [11].

Remark 3. Many assumptions concerning E@) are relaxed in the literature (see,
e.g, [52] and the references therein):

e ; ando are no more constant and may be time-dependent ariti/dependent.

e Eqg. (2) is no more driven by a Wiener process but by more complex rando
processes which might exhibit jumps in order to deal withifexe events”.

The conclusion reached before should not be modifiegdthe price is not oscillating
around its trend.

2.4 Returns

Assume that the functiofi: 7 — R gives the prices of some financial asset. It implies
that the values of are positive. What is usually studied in quantitative firmace the

return
f(t) — f(ti-1)

) = R

and thelogarithmic return orlog-return,

®3)

f(ti)
f(tiz1)
which are defined for; € ¥\{a}. Thereis a huge literature investigating the statistical
properties of the two above returng., of the time series (3) and (4).

(1) = log(f(t)) — log(f(ti_1)) = log ( ) “log(1+r(t) (@)

Remark 4. Returns and log-returns are less interesting for us sinegtttnds of the
original time series are difficult to detect on them. Note @aver that the returns and
log-returns which are associated to the Black-Scholes gouié2) via some infinites-
imal time-sampling [2, 6] are nob-integrable: Theorem 2.1 does not hold for the
corresponding time serig8) and (4).

Assume that the trenfl... : 7 — R is S-continuous at = ¢;. Then Eq. (1) yields
f(tz) - f(tl—l) = ffluctuation(ti) - ffluctuation(ti—l)
Thus

r

N o~ ffluclualion(ti) - ffluclualion(tifl)
() = f(tiz1)

It yields the following crucial conclusion:

The existence of trends does not preclude, but does not impbither, the possi-
bility of a fractal and/or random behavior for the returns (3) and (4) where the
fast oscillating function fy..uaio(t) Would be fractal and/or random.
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3 Trend estimation

Consider the real-valued polynomial functior (t) = >0, =) (0) 4 € R[t], ¢t >
0, of degreeN. Rewrite it in the well known notations of operational cdizu(see,

e.g, [56]): N

x(”)
o)=Y
v=0

Introduce%, which is sometimes called ttedgebraic derivativg41, 42], and which
corresponds in the time domain to the multiplication-bg Multiply both sides by
AN+ o =0,1,...,N. The quantities™) (0), » = 0,1,..., N, which are given
by the triangular system of linear equations, are said tbriearly identifiable(see,

e.g, [17]): N
daSN+1XN do
_ 2 (v) N—v
ds® ds® <;0x (0)s ) )

The time derivativesi.e, s*4Xx ;= 1,...,N, 0 <« < N, are removed by

multiplying both sides of Eq. (5) by~ %, N > N, which are expressed in the time
domain by iterated time integrals.

Consider now a real-valued analytic time function definedh®yconvergent power
seriesz(t) = Y00 2 (0)L, 0 < ¢ < p. Approximatingz(t) by its truncated
Taylor expansion: y (t) = Z,JLO ™) (O)% yields as above derivatives estimates.

Remark 5. The iterated time integrals are low-pass filters which attste the noises
when viewed as in [16] as quickly fluctuating phenomé&nhdee [39] for fundamental
computational developments, which give as a byproduct effisient estimations.

Remark 6. See [21] for other studies on filters and estimation in ecoigenand
finance.

Remark 7. See [55] for another viewpoint on a model-based trend egtona

4 Some illustrative computer simulations

Consider the Arcelor-Mittal daily stock prices from 7 Jul99r until 27 October
200816

4.1 1 day forecast

Figures 1 and 2 present

1535ee [34] for an introductory presentation.
16Those data are borrowed frami t p: / / f i nance. yahoo. cont .
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Figure 1: 1 day forecast — Prices (red -), filtered signalgbhy forecasted signal
(black - -)
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Figure 2: 1 day forecast — Zoom of figure 1
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e the estimation of the trend thanks to the methods of SectitB, W = 2;

e al day forecast of the trend by employin@#-order Taylor expansion. It ne-
cessitates the estimation of the first two trend derivativieigh is also achieved
via the methods of Sect. 3.

We now look at some properties of the quick fluctuatigag.tuation(t) around the
trend fi,end (t) Of the pricef(¢) (see Eq. (1)) by computing moving averages which
correspond to various moments

Z-,]Y[zo(fﬂuctuation(T - M) - f_ﬂuctuation)k

MAe () = M+1

where
o k>2,
o fructuation IS the mean offquctuation OVEr theM + 1 samples?
e M =100 samples.

The standard deviation and itsday forecast are displayed in Figure 3. Its het-

eroscedasticity is obvious.
i MAg100(t) MAs 100() -
The kurtossﬁ, the skewnes ,IAzjolo"&)S/z, and theirl day forecasts are

respectively depicted in Figures 4 and 5. They show quitrlyi¢hat the prices do not
exhibit Gaussian properti€sespecially when they are close to some abrupt change.

4.2 5 days forecast

A slight degradation with & days forecast is visible on the Figures 6 to 10.

4.3 Above or under the trend?

Estimating the first two derivatives yields a forecast of phiee position above or
under the trend. The results reported in Figures 11-12 sbhow dlay (resp.5 days)
aheadr5.69% (resp. 68.55%) for an exact predictior3.54% (resp. 3.69%) without
any decision20.77% (resp.27.76%) for a wrong prediction.

"Here, asin [19], forecasting is achieved without specydnmodel (see also [18]).
18according to Sect. 2. Ffuctuation IS “small’.
19 ack of spaces prevents us to look at returns and log-returns
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Figure 3:1 day forecast — Standard deviation w.r.t. trend (blue —)isted standard
deviation (black - -)
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Figure 4:1 day forecast — Kurtosis w.r.t. trend (blue -), predicteddsis (black - -)
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Figure 5:1 day forecast — Skewness w.r.t. trend (blue —), predicteds&ss (black -
)

5 Conclusion: probability in quantitative finance

The following question may arise at the end of this prelimjnstudy on trends in
financial time series:

Is it possible to improve the forecasts given here and in f®laking advantage
of a precise probability law for the fluctuations around ttemtl?

Although Mandelbrot [37] has shown in a most convincing wayrethan forty years
ago that the Gaussian character of the price variationddhbetat least questioned, it
does not seem that the numerous investigations which haredagried on since then
for finding other probability laws with jumps and/or with tfeils” have been able to
produce clear-cut resultse., results which are exploitable in practice (segy, the
enlightening discussions in [28, 38, 53] and the referetfva®in). This shortcoming
may be due to an “ontological mistake” on uncertainty:

Let us base our argument on new advancemaodel-free contro[18]. Engineers
know that obtaining the differential equations governingpacrete plant is always a
most challenging task: it is quite difficult to incorporatethose equations frictior?§,

20Those frictions have nothing to do with what are calléctions in market theory!
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Figure 6: 5 days forecast — Prices (red -), filtered signal (blue -),dasted signal
(black - -)
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Figure 7:5 days forecast — Zoom of figure 6
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Figure 8:5 days forecast — Standard deviation w.r.t. trend (blue -€dlioted standard
deviation (black - -)
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Figure 9:5 days forecast — Kurtosis w.r.t. trend (blue -), predicteddais (black - -)
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(a) Skewness of error trend (blue —), predicted skewnessafteend (black - -) (5 day ahead)

Figure 10:5 days forecast — Skewness w.r.t. trend (blue —), predicteds&ss (black
-)

heating effects, ageing, etc, which might have a huge infle@m the plant’s behav-
ior. The tools proposed in [18] for bypassing those equatfogot already in spite
of their youth a few impressive industrial applications.isTis an important gap be-
tween engineering’s practice and theoretical physics /tier basic principles lead to
equations describing “stylized” facts. The probabilitwsastemming from statistical
and quantum physics can only be written down for “idealizeiiiations. Is it not
therefore quite naive to wish to exhibit well defined prabgtaws in quantitative fi-
nance, in economics and management, and in other sociakgotqiogical sciences,
where the environmental world is much more involved thannp physical system?
In other wordsa mathematical theory of uncertain sequences of events shidunot
necessarily be confused with probability theory?> To ask if the uncertainty of a
“complex” system is of probabilistic natufeis an undecidable metaphysical ques-
tion which cannot be properly answered via experimentalmael should therefore
be ignored.

21The effects of the unknown part of the plant are estimateliémiodel-free approach and not neglected
as in the traditional setting ebbust control(see,e.g, [57] and the references therein).

22|t does not imply of course that statistical tools should beraloned (remember that we computed here
standard deviations, skewness, kurtosis).

23\We understand by “probabilistic nature” a precise prolistiil description which satisfies some set of
axioms like Kolmogorov's ones.
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Figure 11:1 day forecast — Prices (red —), predicted trend (blue - -Yipted confi-
dence interval45%) (black —), price’s forecast higher than the predicteddrégreen
A) , price’s forecast lower than the predicted trend (bide

Remark 8. One should not misunderstand the authors. They fully reizeghe math-
ematical beauty of probability theory and its numerous axaltang connections with
physics. The authors are only expressing doubts about adgling at large in quan-
titative finance, with or without probabilities.

The Cartier-Perrin theorem [9] which is decomposing a tierges as a sum of a trend
and a quickly fluctuating function might be

e a possible alternative to the probabilistic viewpoint,
e a useful tool for analyzing

— different time scales,

— complex behaviors, including abrupt changes, “rare” extreme events
like financial crashes or booms, without having recourse toodel via
differential or difference equations.

We hope to be able to show in a near future what are the benefitnity in quanti-
tative finance but also for a new approach to time series iemgsee [19] for a first
draft).
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Figure 12:1 day forecast — Zoom of figure 11
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