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Decentralized Production and Public Liquidity with Private Information

1. Introduction.

Numerous authors, in a wide variety of settings, have investigated conditions that

are sufficient for efficient allocations when there is private information. For example,

with fixed preferences and common knowledge concerning outcomes, Debreu (1959) has

shown that complete securities markets are sufficient to implement Pareto optimal

allocations in a given economy.  However, it is generally the case that the social optimum

cannot be achieved, with securities markets or otherwise, when there is asymmetric

information regarding outcomes from private production. This follows from the fact that

if information regarding output is private to each firm, any claims on the firm, public or

private, can be repudiated. Thus, any monitoring scheme that is costly and/or less than

fully revealing will result in, at best, a constrained Pareto Optimal allocation.

Atkeson and Lucas (1991) study the problem of efficient allocation in a world

with a known level of aggregate output each period but private information regarding

shocks to concave preferences. They develop an allocation rule that minimizes social

costs subject to the requirement that individual anonymity be maintained and show, for a

class of preferences, that this least cost rule results in ever increasing levels of income

inequality over time. They go on to discuss decentralized allocation mechanisms,

specifically a bond market, and conclude that it cannot be used to mimic the least cost

allocation rule.

This paper addresses the question of efficient allocations in the context of a

production economy when there is private information concerning output and participants

are risk neutral. As noted earlier, the market for claims on private assets cannot function
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due to private information. Not surprisingly, when a firm’s only supply of capital is its

private storage or saving, the firm may face liquidity constraints that prevent it from

attaining efficient levels of investment, even though in the aggregate there is sufficient

capital to fund first best levels of economic growth.

Our approach to solving this problem involves leaving production to take place in

a decentralized setting while at the same time introducing a simple pooling scheme where

firms can save collectively, i.e., endogenously make their storage publicly observable.

We introduce a planner that can coordinate the use of pooled liquidity by specifying the

withdrawal requirements that respect firm anonymity.

In order to achieve efficient levels of investment and growth the pooling scheme

must effect a transfer of liquidity from firms with good productive outcomes to firms

with poor productive outcomes. We show that such a transfer may not be incentive

compatible if the returns to scale of the technology are large. Specifically, when there is

no aggregate uncertainty, a condition is identified on the elasticity of scale of the private

technology that is sufficient for incentive compatibility to hold and hence for efficient

levels of investment and growth to be implemented. We show feasibility of this condition

in the context of the family of non-increasing elasticity of scale technologies.

When aggregate uncertainty is introduced we show, for the special case of

constant elasticity production functions, that if firms are sufficiently optimistic and the

elasticity of scale is sufficiently low, feasibility and incentive compatibility of the public

liquidity system is maintained. However, if investors are very pessimistic ex ante and/or

the scale elasticity is high, efficient levels of investment may not be feasible or incentive

compatible.
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Intuitively, if firm priors are poor, most of their endowment goes to storage. Such

a strategy may a.) yield insufficient future aggregate output to fund efficient levels of

investment and/or b.) cause the ex post prosperous firms to abandon the collective

pooling scheme. This later action will occur when the expected payoff from excess levels

of investment in the private technology exceed those from optimally investing in the

private technology, paying the liquidity tax and leaving any remainder on personal

balance in the liquidity pool. Thus, it is when the economy turns out to be prosperous

relative to expectations that there are problems in keeping the system of collective

liquidity management from unraveling.

The remainder of the paper is structured as follows. In section 2 we outline the

basic model without aggregate uncertainty and show that investment when there is only

private storage is strictly less than the full information optimum. Equivalently, this is a

situation where too much liquidity is maintained relative to the social optimum. Section 3

contains the simple public pooling scheme for storage. Sufficient conditions for incentive

compatibility for this case are provided in Section 4. The case of aggregate uncertainty is

treated in Section 5 while Section 6 contains a summary and some additional discussion

of the results as they relate to the extant literature.

2. The Basic Model.

Consider a one good, two period (three date) economy populated by a large

number of risk neutral participants, we will call them firms, with identical productive

opportunities; a risky production technology that displays decreasing marginal

productivity and a storage technology yielding a zero rate of return. At date zero each

firm is endowed with units of the single storable good. At date one output from the
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investment at date zero is realized. Adding this output to date zero storage gives the

resources available for investment at date one. There is no intermediate endowment and

at date two the output from the investment at date one is realized and the economy is

over. We assume that the outcome from investment is the private information of the firm.

Firms are interested in making expected wealth at date 2 as large as possible1.

The production technology is given by the production function f:ℜ+
2 → ℜ+,

which is assumed to be as smooth as necessary for what follows. Denote invested capital

by I, the realized value of the production shock by θ, and define realized output by

f I,θ( ). For simplicity, we assume that there are only two possible realizations of the

production shock; 0 or θ �����:H�DOVR�DVVXPH�WKDW��� � f I,0( ) = f 0,θ( ) < f I,θ( ), I > 0.

With this specification, we will suppress the reference to the production shock and just

write f(I) for f I,θ( ), when it is convenient to do so. We assume that capital is productive

but marginal productivity is decreasing, i. e., ′ ′ f I( ) < 0 < ′ f I( ) , I > 0.

Initially, we assume that the production shocks ˜ θ 1, ˜ θ 2( ) are iid with p = Prob{ iθ~  �

0}, i = 1, 2, some p, 0 < p < 1, which is the case where there is no aggregate uncertainty.

We later drop this assumption and consider the question of efficient investment when

there is aggregate uncertainty in the economy.

The one period productive optimum2 is the level of I that achieves

supI ��� pf I( ) - I. (1)

The first order condition for (1) is

                                                
1 We rule out intermediate consumption although the model could be generalized to endogenize the
consumption decision if some cost to consumption is incorporated into the framework. For example, if at
any given date the investor can only consume or produce, it can be shown that public liquidity will remain
optimal for some, but not all, values of the parameters of the problem.
2 We drop the subscripts on the production shocks until they are needed to avoid confusion
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p ′ f I( )= 1. (2)

By concavity, (2) is both a necessary and a sufficient condition for (1), and if a solution

exists it is unique. We assume that there is such a solution of (2) and that I* > 0.

Each firm has initial resources of W0 units of the single good such that

I* < W0 < 2I*. (3)

Thus ex ante, there is enough private liquidity to undertake the productive optimum in the

first period, but no firm has enough resources to ensure that it can undertake the

unconstrained productive optimum in each of two periods. This is the essence of the

liquidity problem and we refer to the quantity 2I* - W0 as the liquidity gap or liquidity

shortfall.

Given this set-up it is straightforward to show that autarky (private storage and

private production) leads to an over supply of liquidity relative to that carried if the

unconstrained optimum is achievable. To see this, let I0 denote the firm’s investment at

date zero. At date one, if the value of the production shock is ˜ θ 1 = θ1, the firm will have

resources of

W1 = f I0 ,θ1( ) + W0 - I0. (4)

Letting I1 denote the firm’s investment at date one, then if the value of the production

shock at date two is ˜ θ 2  = θ2 , resources are given by

W2 = f I1,θ2( ) + W1 - I1. (5)

Since by assumption the firm chooses I0 and I1 to achieve

sup  E ˜ W 2[ ] (6)

subject to: 0 ��,0 ��:0
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     0 ��,1 �� 1

~
W

     (4), (5),

then, given I0 and θ1, the firm will choose I1 so as to achieve

sup E ˜ W 2 θ1[ ] (7)

subject to : 0 ��,1 ��:1

     (4), (5).

Now (7) is the one period productive optimum problem whenever W1 ��,
*. Furthermore,

since E ˜ W 2 θ1[ ] is increasing in I1 the solution to (7) is given by

I1
* = I*,if W1 ��,

*, (8’)

        = W1, if W1 < I*. (8”)

Let W2
* denote (5) composed with (8). Then the value function for (7) is given by

E ˜ W 2
∗ θ1[ ] = pf I∗( ) + W1 - I

*, if W1 ��,
*, (9’)

          = pf W1( ), if W1 < I*. (9”)

Now, from (9) E ˜ W 2
∗ θ1[ ] is continuous in I0. Furthermore, we have that

∂E ˜ W 2
∗ θ1[ ]

∂I0

 = 
∂W1

∂I0

, if W1 > I*, (10’)

                       = p ′ f W1( ) ∂W1

∂I0

, if W1 < I*, (10”)

i. e., E ˜ W 2
∗ θ1[ ] is differentiable in I0 whenever W1 ��,

*. For the case W1 = I*, (10’) and

(10”) are the same since in this case, by (2), p ′ f W1( ) = 1. Thus (10’) holds for W1 = I*,

as well. Let m* be defined by

m* = 1, if W1 ��,
*, (11’)
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            = p ′ f W1( ), if W1 < I*. (11”)

By concavity and (2), m* > 1 if W1 < I*. Thus m* �����DQG������FDQ�EH�ZULWWHQ�DV

∂E ˜ W 2
∗ θ1[ ]

∂I0

 = m* ∂W1

∂I0

. (12)

Let I0
* denote the value of I0 that maximizes the unconditional expectation E ˜ W 2

∗[ ], and

let E ˜ W 2
∗∗[ ] denote the expectation E ˜ W 2

∗[ ] evaluated at I0
*.

Theorem 1. The optimal investment policy with private storage (autarchy) is (I0
*, I1

*),

where I0
* < I* and I1

* ��,*.

Proof: See the Appendix

Theorem 1 shows that under autarky there is, relative to the unconstrained private

optimum, too little invested in the productive technology and therefore an inefficient

growth rate in the economy. In order to show that this unconstrained private optimum is

in fact the social optimum as well, assume that there is a continuum of identical firms

indexed in [0, 1], each with iid shocks ˜ θ 1, ˜ θ 2( ), independent across firms. Recall that p =

Prob{ ˜ θ i  ���`��L� �������IRU�VRPH�S������S�������$W�GDWH�RQH��D�IUDFWLRQ�S�RI�WKH�ILUPV�ZLOO

have

W1 = f I0( ) + W0 - I0, (4’)

and a fraction 1 - p will have

W1 = W0 - I0. (4”)

The first order condition is (2) and is satisfied by I = I*, and of course we must have that

pf I∗( ) > I*, (13)
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the condition that expected profit (NPV) is positive at the optimum. We assume (13)

henceforth. Denote the efficient level of investment in this economy as the pair ˆ I 0,
ˆ I 1( )

that solves the program

sup pf I0( ) + pf I1( )  + W0  - I0 - I1 (14)

subject to: 0 ��,0 ��:0,

     0 ��,1 ��:0 - I0 + pf I0( ).

Note that the objective function in (14) is the same as the objective function in (6) but

the wealth constraint on I1 differs from the constraint in (6). The constraint on I1 in (14) is

aggregate wealth in the economy at date one whereas the constraint in (6) is realized firm

wealth. Now, by (13) and (3), the pair I*,I*( ) is feasible for (14). We therefore have

Theorem 2. The pair I*,I*( ) solves (14).

Theorem 2 shows that the unconstrained private optimal level of investment over

time is indeed the same as the optimum for the economy. However, with private

information concerning risky output there is no way to costlessly implement efficient

levels of investment for this economy by pooling private production; either through an

intermediary or through a securities market. Moreover, we have already shown, in the

proof of Theorem 1, that there will be an excess supply of liquidity and suboptimal levels

of expected growth when liquidity is carried privately. However, in the next section of

the paper we explore the possibility of achieving the social optimum by separating

production and storage arrangements. In essence, we wish to investigate the welfare

properties of leaving production decentralized while at the same time giving firms the

opportunity to invest in a “public” liquidity pool. We show that under certain



10

circumstances the social optimum can indeed be achieved by separating economic

activity into a decentralized production sector and a pooled liquidity sector.

3. A Simple Pooling Scheme

Suppose that firms can agree to make their private storage public so that any

wealth not invested in the risky technology is observable, verifiable, and can be

confiscated. This is an intuitively reasonable assumption to the extent that it is known by

all that the outcome from storage is not random. Moreover, we note that even under full

information there is no incentive to pool the production of firms since the risky

production technology displays decreasing returns to scale3.

We also assume that if storage is made public at date zero it remains so at date 1,

i. e., once storage is made public, private storage is not an option4. We can now discuss

ways to implement the efficient level of investment. In particular, consider a pooling

arrangement whereby each firm contributes the amount S0 ≡ W0 - I0 to a pool at date zero.

The realization of the production shocks at date one will leave p firms with resources

given by (4’) and 1 - p firms with resources given by (4”). If I0 = I*, then from (3) we

know that these firms, acting alone, will be unable to undertake the productive optimum

at date one.

One way to remedy this liquidity gap is to devise a scheme to redistribute

resources at date 1 from those firms having resources given by (4’) to those with

                                                
3 The solution to this problem under full information is for there to be no trade among firms at date 0. At
date 1 liquidity poor firms will issue securities whose expected rate of return in equilibrium is zero.
Prosperous risk neutral participants will be indifferent between purchasing these securities and storing.
4 Without this assumption all firms that were successful would, ex post, choose to privately carry their
liquidity from date 1 to date 2. In essence we are assuming that once mechanisms for transferring
endowment through time are set, they remain so over the life of economy.
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resources given by (4”). Call these type R (rich) and P (poor) firms respectively and

imagine a planner (or public liquidity manager) who chooses an allocation I0, I1( ) to

solve (14) with some redistribution of aggregate wealth at date 1; ideally from type R

firms to type P firms. Of course this reallocation rule is subject to incentive-compatibility

constraints which we study later. For now we assume

Hypothesis (A). Every type R firm will do the same thing and every type P firm will do

the same thing.

We will consider (measure zero) deviations from this rule in the next section.

The pool authority, or planner, observes the declaration of storage decisions of

every firm but does not know the outcome of firm investment at date one (firm type).

Thus the planner can only observe and redistribute the resulting aggregate public storage.

Let S1’(S1") denote the amount of storage made by a type R (P) firms, with resources at

date 1 given by (4’)((4”)). We allow S1’ and S1"  to be of any sign. Having observed each

choice S1 , the pool authority can determine the aggregate amount of this storage (roughly

it can count the number of firms storing this quantity), call it A S1( ). So long as S1’ ��S1" ,

the pool authority computes the aggregate storage for the economy B S1’,S1’’( ) ≡ A S1’( )

+ A S1"( ). If S1’ = S1" , the pool authority observes S1  = S1’ = S1"  and computes the

aggregate storage as B S1’,S1’’( ) = A S1( ) = S1 .

If S1’ ��S1"  and S1’ �����WKH�SRRO�DXWKRULW\�FDQ�FRPSXWH

q1’  ≡ A S1’( )/S1’. (15a)

Similarly, if S1’ ��S1"  and if S1"  �����WKHQ�WKH�SRRO�DXWKRULW\�FDQ�FRPSXWH

q1"  ≡ A S1"( )/S1" . (15b)
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Under Hypothesis (A), we have that q1’ = p and q1"  = 1 – p. Note, however, that the pool

authority is not required to know what p is or to be able to distinguish firms except by

information provided by the numbers S1’ and S1" .

Let R2’ S1’,S1’’( ) be the return to storage at date two for a type R firm. Similarly,

let R2’’ S1’,S1’’( ) be the return to storage at date two for a type P firm. Finally, let

T1’ S1’,S1’’( ) and T1’’ S1’,S1’’( ) denote the transfer at date 1 given to the type P and type R

firms, respectively. These returns and transfers satisfy the following rules:

Table 1

S0 − I* <0

Case 1 2 3 4 5 6 7 8

S1’ ≥0 ≥ 0 ≥0 ≥0 <S0 −I* S0 − I* ≤S1’<0 S0 −I* ≤S1’<0 ≤0

S1" ≥0 <S0 −I* S0 − I* ≤S1"<0 S0 −I* ≤S1"<0 ≥0 ≥0 ≥0 ≤0

B ≥0 ≥0 <0 ≥0 <0 ≤0

R2’ S1’ S1’ B q1’ S1’ 0 0 0 0

T1’ 0 0 1−q1’( )S1" q1’ 0 0 −S1’ 0 0

R2" S1" 0 0 0 S1" B q1" S1" 0

T1" 0 0 −S1" 0 0 1−q1"( )S1’ q1" 0 0

I1’ (4’)− S1’ (4’) −S1’ (4’)−S1’ (4’) −S1’ (4’) (4’) +T1’ (4’) (4’)

I1" (4")− S1" (4") (4")+T1" (4") (4")− S1" (4") −S1" (4") −S1" (4")
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Table 2

S0 − I* ≥ 0

Case 1 2 3 4

S1’ ≥ 0 ≥ 0 ≤ 0 ≤ 0

S1" ≥ 0 ≤ 0 ≥ 0 ≤ 0

B ≥ 0 ≤ 0

R 2’ S1’ S1 ’ 0 0

T1’ 0 0 0 0

R2 " S1" 0 S1" 0

T1" 0 0 0 0

I1’ (4’) − S1 ’ (4’) − S1’ (4’) (4’)

I1" (4") − S1 " (4") (4") − S1" (4")

Table 1 treats the situation when S0 - I* < 0, while Table 2 treats the situation

when S0 - I
* �����7KH�ODVW�VHYHQ�URZV�RI�WKHVH�WDEOHV�DUH�HYDOXDWHG�DW�WKH� S1’,S1’’( ) pair

specified in the third and fourth rows. The last two rows specify the investment decisions

implied by the fact that public storage and investment in the productive technology are

the only two possible uses of resources at date 1. These rows are (4’) - S1’ and (4”) - S1" ,

respectively, when the authority accepts the storage quantities S1’ and S1’’ , respectively.

The situation in Table 2 is easiest to explain. In this latter situation, every firm has

enough resources to undertake the efficient level of investment at date 1 so the pool

authority in this situation just provides a means of storing resources in excess of I*.

Therefore, either both types of firms store some non-negative amount (Case 1) and there

are no transfers or some firm demands resources from the planner (Cases 2, 3, and 4) and

these demands are ignored. In both cases the returns on the liquidity provided is zero.

The situation in Table 1 is the one in which type P firms will have insufficient

resources to undertake the efficient level of investment at date 1. When both type firms

choose positive storage (Case 1) there are no transfers. Case 2 in Table 1 is when type R
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firms supply resources but the demand for liquidity by type P firms exceeds I*. In this

case the storage is accepted (again at a zero rate of return) but the demands are rejected

and no transfers are made.

Case 3 in Table 1 is the interesting case when storage is supplied and demanded,

but where the demands are not excessive and where in the aggregate, there is enough

supplied to cover the demand. This condition entails that S1’’ < 0 < S1’ and hence the

pool authority can differentiate types of firms and specify returns and transfers

accordingly. In this case each supplying firm is taxed 1 − q1’( )S1’’ q1’  so that in the

aggregate 1 − q1’( )S1’’  is transferred, i. e., each type P firm gets S1’’ . The remainder

remains on account for type R firms on a pro rata basis.

Case 4 in Table 1 is identical to Case 3, except that the resources supplied in the

aggregate are insufficient to cover the demand. In this case, the storage is accepted and

returned one-to-one, but the demands are rejected and no transfers are made. Cases 5, 6,

and 7, are mirror images of Cases 2, 3, and 4, with the roles of S1’ and S1’’ reversed since

the pool authority only observes the pair of numbers S1’,S1’’( ), not the primes. Note that

in Case 6 the fraction of supplying firms is q1". In the last case (Case 8 in Table 1), there

is no storage, no transfers and no returns.

To illustrate this public storage concept, imagine that the pool authority is trying

to implement the efficient level of investment I*,I*( ). Suppose also that at date zero each

firm makes the investment of I*. Then S0 = W0 - I
*, and by (3), we are in the situation in

Table 1. At date t = 1, p of the firms will have resources given by (4’) and 1 - p will have

resources given by (4”). Suppose also that all firms choose storage quantities that
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implement investment of I* at date 1. Then S1’ = f I*( ) + S0 − I*  > 0 and S1" = S0 − I*  <

0, by (3) and (13). Aggregate storage is

B S1’,S1’’( ) = p f I*( )+ S0 − I*( ) + (1 - p) S0 − I*( )

       = pf I*( ) + S0 − I*( ) > 0, (16)

again by (3) and (13). Thus we are in Case 3 in Table 1. Each type R firm would then

have a return to storage at date two of R2’ S1’,S1’’( ) = pf I*( )+ S0 − I*( ) p  > 0, while each

type P firm would have a return to storage at date 2 of R2’’ S1’,S1’’( ) = 0, with I1’  = I1’’ =

I*. The problem of course is making such storage choices incentive-compatible.

We analyze these incentives, as in Section 2, via backward induction. Moreover,

since the firm knows p and how the authority determines q1’ and q1", we substitute in p

and 1 – p freely. A strategy for a firm is a triple I0,S1’,S1"( ). The wealth of a firm at date

2 following the strategy I0,S1’,S1"( ) is

W2’  = f I1’,θ2( ) + R2’ S1’,S1’’( ), (17’)

W2’’ = f I1’’,θ2( ) + R2’’ S1’,S1’’( ). (17”)

Therefore, the conditional expectation at date one of wealth at date 2 is given by

E ˜ W 2 θ1 = θ[ ] = pf I1’( ) + R2’ S1’,S1’’( ), (18’)

E ˜ W 2 θ1 = 0[ ] = pf I1’’( ) + R2’’ S1’,S1’’( ). (18”)

It is easy to see from (18”) and Tables 1 and 2 what a type P firm will do in terms of

choosing S1" . Let   
r 
S 1"  denote the value of S1"  that maximizes (18”).

Lemma 1. If S0 - I
* < 0, then

  
r 
S 1"  = max −pS1’ 1 − p( ),S0 − I*[ ], if S1’ ����� (19’)
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       = 0, if S1’ < 0. (19”)

If S0 - I
* �����WKHQ

  
r 
S 1"  = S0 - I

*. (20)

Proof: See the Appendix.

The results in Lemma 1 make sense. The first part treats the situation of a firm

that has invested more at date zero than allows for the efficient level of investment at date

1 with certainty. In that situation, the incentives of a type P firm will be to demand all

that is available from the pool authority.  The binding constraints are that (15) hold and

that demands be at least S0 - I*. These constraints produce (19’). In essence, the

individual type P firm is concerned about aggregate storage staying non-negative,

because if it demanded more, then by Table 1, no transfer would be made. The second

part of Lemma 3 treats the situation of a firm that has invested at date zero such that at

date one the efficient level of investment can be undertaken with certainty. In this

situation, given the structure of the pool authority in Table 2, it is optimal for the type P

firm to do just that.

The incentives of type R firms are a little more complicated. Let   
r 
S 1’ denote the

value of S1’ that maximizes (18’). Also let   
( 
S 1’ = S0 + f I0( )− I*( )+

 and let   
) 
S 1’ =

max S0 − I*, − 1− p( )S1" p[ ].
Lemma 2. If S0 - I

* < 0, then

  
r 
S 1’ =   

) 
S 1’, if S1"  ����DQG�

  
pf S0 + f I0( )−

) 
S 1’( ) > 

  
pf S0 + f I0( )−

( 
S 1’( ) -   

( 
S 1’      (21’)

      =   
( 
S 1’, otherwise. (21”)

If S0 - I
* �����WKHQ
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r 
S 1’ = S0 + f I0( )− I* . (22).

Proof: See the Appendix .

The second part of Lemma 2 treats the situation of a firm that has invested at date

zero such that at date one the efficient level of investment can be undertaken with

certainty. In this situation, given the structure of the pool authority in Table 2, it is

optimal for the type R firm to do just that. The first part of Lemma 2 treats the situation

of a firm that has invested more at date zero than allows for the efficient level of

investment at date one with certainty. It follows that, if there are resources available for

redistribution (S1" ������WKH�W\SH�5�ILUP�KDV�WR�FKRRVH�EHWZHHQ�VWRUDJH��&DVH���RI�7DEOH

1) and demanding resources from the pool authority (Cases 5-7 in Table 1). The relevant

comparison is the conditioning inequality in (21’). It is this tradeoff that is at the heart of

the incentive compatibility problem analyzed in the following section. But under

Hypothesis (A), the conditioning inequalities in (21’) are inconsistent. This is established

in the following result.

Lemma 3. The storage strategy 
  

r 
S 1’,

r 
S 1"( ) satisfies

  
r 
S 1’ = S0 + f I0( )− I* , (23)

  
r 
S 1"  = S0 - I

*. (24)

Proof: See the appendix.

Lemma 3 gives the optimal storage strategy under the pool authority. Regardless

of the choice of the initial date zero investment, at date one rich firms will store the

quantity S0 + f I0( )− I* , and  poor  firms will demand a transfer of S0 - I
*. This makes the

optimal initial investment easy to determine.



18

Theorem 3. Under the pooling authority specified in Tables 1 and 2, and under

Hypothesis (A), the strategy 
  
I*,

r 
S 1’,

r 
S 1"( ) maximizes E ˜ W 2[ ] and yields the supremum in

(14).

Proof: See the appendix.

The result of Theorem 3 is not surprising given the behavior imposed by

Hypothesis (A). In the next section, we examine if it is in the interest of individual firms

of each type to act in this way5

4. Incentive Compatibility

In this section we examine the validity of Hypothesis (A). A necessary condition

for Hypothesis (A) to be valid is that it must be in any firm’s interest to act as required by

Hypothesis (A), given that all other firms act in this way. It is clear from the result in

Lemma 1 and the discussion that follows it that this is the case for type P firms. This

conclusion does not extend to rich firms. Given that type P firms can receive the transfer,

it may be in the interest of a rich firm to make the same demand, rather than supply

positive amounts of storage. Thus, we are asking if it is in the interest of a rich firm to

behave as a poor firm since such behavior could not be detected in any way by the pool

authority.

 Since none of this capital can be stored, a rich firm receiving a transfer would

have to invest it all in the productive technology. Its conditional expected date two wealth

at date one is therefore pf I* + f I*( )( ). Using the results from the proof of Theorem 3, it is

straightforward to show that storage is incentive compatible for a rich firm if and only if

                                                
5 We note that if incentive compatibility holds for individual firms then the allocation is coalition proof as
well. Since output is unobservable and storage cannot be made private once it is public, at date one there is
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pf I* + f I*( )( ) ��Sf I*( ) + 
pf I*( )− I*

p
 + 

W0 − I*

p
, (IC)

which after rearranging terms becomes

p2 f I* + f I*( )( )− f I*( )( ) ��Sf I*( ) - I* + W0 - I
*. (26)

By strict concavity of f, Mangasarian (1994, Theorem 6.2.1),

p2 f I* + f I*( )( )− f I*( )( ) < p2 ′ f I*( ) I* + f I*( )− I*( )

  = p ′ f I*( )pf I*( )

  = pf I*( ),

by the first order condition (2). It follows from this strict inequality that (26) holds for W0

sufficiently close to 2I*, and hence the condition (IC) is not vacuous.

At the other extreme, under the resource restriction (3), (26) holds if

p2 f I* + f I*( )( )− f I*( )( ) ��Sf I*( ) - I*. (27)

If (27) holds, then (IC) holds for all W0 satisfying (3). Now,  (27) can be written as

f I* + f I*( )( )− f I*( ) �� ′ f I*( ) f I*( )− I* ′ f I*( )( ). (28)

The inequality (28) shows that something more than concavity is required for (27) to

hold. In order to see what more than concavity is sufficient for (IC) to hold, let ε I( )

denote the elasticity of scale of the production function f (Varian, 1992, p. 16), at I. Then

ε I( ) = I ′ f I( ) f I( ) , and (28) becomes

f I* + f I*( )( )− f I*( ) �� ′ f I*( )f I*( ) 1 − ε I*( )( ). (29)

which can be rewritten as

                                                                                                                                                
no mechanism such that a group of rich firms will find it in their interest to contract with one another
outside of the pooling arrangement.
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f I* + f I*( )( )− f I*( )
′ f I*( )f I*( )  �� 1 − ε I*( )( ), (30)

If (30) holds for all values of I*, then the incentive compatibility condition holds for all

W0 satisfying (3) and, by Theorem 6, the pool authority implements the efficient level of

investment.

We now show that there does indeed exist a critical level of scale elasticity such

that for every production function that has decreasing (which includes the constant case)

elasticity of scale below this level, (29) and (30) hold. We first derive this critical level in

the case of constant elasticity and then prove that it holds for all decreasing returns to

scale functions.

Constant elasticity of scale production function. The production function f I( ) = Iαθ α ,

0 < α  < 1, θ > 0, has constant elasticity of scale ε I( ) = α , I �� ��� ,Q� WKLV� FDVH�� ,* =

pθ( )
1

1−α . Using this result and some algebra, condition (30) can be written as

p 1 +
1

pα
 
 
  

 
 

α

−1
 

 
 

 

 
  ������α . (31)

It can be shown that the term on the left hand side of (31) is increasing in p. It follows

that

p 1 +
1

pα
 
 
  

 
 

α

−1
 

 
 

 

 
  < 1 +

1

α
 
 

 
 

α

 - 1. (32)

Using L’Hospital’s rule (Rudin (1976, Theorem 5.13)), it follows that

limα↓0
1 +

1

α
 
 

 
 

α

 = 1.

Let ˆ α  denote the unique value of α  such that
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1 +
1

α
 
 

 
 

α

 + α  = 2.

Then ˆ α  = .3735495 to seven decimal places. Choosing α  < ˆ α , it follows from (32) that

(31) holds for all values of p.

The result for constant elasticity of scale is easily extended to the case of

decreasing elasticity of scale  (e.g., Frisch (1965), chapter 8).  Rewrite (29) by adding

f I*( ) to both sides of the equation. This yields

f I* + f I*( )( ) ��f I*( ) + ′ f I*( )f I*( ) 1 − ε I*( )( ). (33)

Theorem 4. If f exhibits decreasing elasticity of scale and ε I*( ) < ˆ α , then (33) holds. In

particular, if f exhibits decreasing elasticity of scale and ε 0( ) < ˆ α , then (33) holds for all

p, 0 ��S�����

Proof: See the appendix.

5. Aggregate Uncertainty

In the previous sections of the paper we analyzed the liquidity problem under the

assumption that the likelihood of a productive shock was known with certainty and

constant through time. In this section we extend our analysis to the case where p is

initially uncertain. The basic model of Section 2 is maintained, i. e., the production

shocks ˜ θ 1, ˜ θ 2( ) are iid with p = Prob{ ˜ θ i  ���`�� L� �������H[FHSW� WKDW�QRZ�ZH�DVVXPH�WKDW

firms have a common prior distribution on p over the interval [0, 1].

Let p0  denote the mean of this prior distribution. From Section 2, for any p ∈

[0, 1], let I ∗  denote the solution to (1) with I0
∗  being the solution to (1) for p = p0 . If the

full information optimum is to be achieved it must be the case that
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I0
∗  < W0 . (3’)

Turning to the optimal investment at date one, we note that if the firm did not learn any

more about the value of p than what could be inferred from the observation of its

productivity shock θ1, then the firm will invest I ∗ p θ1( )( ), which is the solution to (1) for

the posterior mean p θ1( ). The firm is constrained at t = 1 if W1  < I ∗ p θ1( )( ), where W1  is

given by (4). Assuming that the firm makes the optimal investment of I0  = I0
∗  at date

zero, this constraint can be written as W0  - I0
∗  < I ∗ p θ1 = 0( )( ), for P firms, or as f I0

∗( ) +

W0   - I0
∗  < I ∗ p θ1 ≠ 0( )( ), for R firms. The efficiency question is only interesting when

the firm with the bad production shock is constrained at date one under autarky.

Furthermore, we want the first best to be attainable. A necessary condition for this is that

firms with good production shocks not be constrained under autarky. Thus, we assume

that

W0  - I0
∗  < I ∗ p θ1 = 0( )( ) (3’a)

 I ∗ p θ1 ≠ 0( )( ) < f I0
∗( ) + W0   - I0

∗ . (3’b)

Along the lines of Theorem1 we would expect that the optimal investment policy in

autarchy would be I0
*,  I1

*( ) with I1
∗  �� I p θ1( )( ) and I0

*  < I p0( ), while the non-liquidity

constrained optimal investment policy is I0  = I0
∗  and I1  = I ∗ p θ1( )( ).

While the investment policy I0
∗,  I∗ p θ1( )( )( ) is the unconstrained optimum for the

individual firm that learns only the value of its private shock θ1, it is not clear that this

policy is even feasible, much less socially efficient. First of all, this policy depends on the

private information of the firm. In principal the pool authority might be able to engage in
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the redistribution of liquidity in a manner similar to that when there is no aggregate

uncertainty. In particular, aggregate wealth in the economy at date one is given by

pf I0
∗( ) + W0   - I0

∗ , where p is the realized fraction of resource rich  firms. If transfers

are made so that true P firms invest I ∗ p θ1 = 0( )( ) and true R firms invest I ∗ p θ1 ≠ 0( )( ),

then aggregate use of wealth for investment must be pI ∗ p θ1 ≠ 0( )( ) + (1 – p)I ∗ p θ1 = 0( )( ).

It follows from (3’a) that for p sufficiently small, pI ∗ p θ1 ≠ 0( )( ) + (1 – p)I ∗ p θ1 = 0( )( ) >

pf I0
∗( ) + W0   - I0

∗ , and the policy I0
∗,  I∗ p θ1( )( )( ) is not feasible. If the inequality (3’b) is

reversed, then for realizations of p sufficiently close to 1, the policy I0
∗,  I∗ p θ1( )( )( )  is

infeasible. Since either (3’a) or the reverse of (3’b) is essential to having a liquidity

problem, the infeasibility of the policy I0
∗,  I∗ p θ1( )( )( ) is unavoidable.

This concern about feasibility of the policy I0
∗,  I∗ p θ1( )( )( ) stems from its

optimality when firms know only the value of its private shock θ1 and is of some social

concern only if the social planner cannot know more. Note that by design, the pool

authority observes both individual and aggregate storage decisions. If the pool authority

can announce this information to all firms at t = 1, then for every firm p =

E ˜ p θ1,announcement[ ] regardless of the value of θ1, and the unconstrained optimal

investment at t = 1 would be I ∗ . Analogous to the argument in Section 2, the socially

efficient investment policy solves (14) subject to the computation of expectations using

the prior distribution6. Thus, the pool authority provides fully revealing information

regarding the economy from its storage function even in situations where there turns out

                                                
6 This additional qualification is needed because firms will not learn the value of p until date one. Having

learned this p, however, the pool authority may be able to redistribute liquidity to achieve investment of I ∗
.
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to be no liquidity ex post. To see why there may be no liquidity problem, recall that, by

assumption, I ∗  is increasing and continuous in p and I ∗  = 0 at p = 0. Intuitively, if the

realized value of p is sufficiently small then I ∗ may be small enough that there is no need

for transfers. To get some intuition for this, assume further that the residual W0  - I0
∗  is in

the range of I ∗ . Then by (3’) there is a value p 0  ∈ (0, 1], such that

I 0
∗  = W0  - I0

∗ , (34)

where I 0
∗  is I ∗  for p = p 0 . Then in a low productivity economy, i. e., when p �� p 0 , by

monotonicity, I ∗  �� I 0
∗ , and every firm would have enough resources to undertake the

optimal investment I ∗  if it knew p.

In a high productivity economy, p > p 0 , and poor firms would be resource

constrained because I ∗  > W0  - I0
∗ . This is really the counterpart of the inequality on the

right hand side of equation (3) and it comes naturally without any assumption other than

there is positive probability that p > p 0 . On the other hand (4’) firms would have wealth

of f I0
∗( ) + W0   - I0

∗ , and the question is, is this enough to undertake the optimal

investment I ∗ ? This brings up the feasibility of the policy I0
∗,I∗( ) for the program (14)

with I0  = I0
∗ . In order to have a chance to implement this constrained first best

investment policy, at the very least we would need to have that

pf I0
∗( ) + W0   - I0

∗  ��I ∗ , 0 < p ���� (35)

The previous question regarding the resources of P firms is answered by (35) at the end

point p = 1. We will assume that (35) holds and seek modifications of the simple pooling

scheme of Section 3 that will implement the policy I0
∗,I∗( ).
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Recall from Section 3 that a strategy for a firm is a triple I0,S1’,S1"( ), where

S1’(S1") denotes the amount of storage made by a rich (poor) firm at date one. As in

Section 4, we invoke Hypothesis (A). Having observed the storage choice S1 , the pool

authority can compute the aggregate of this amount of storage (roughly it can count the

number of firms storing this quantity) call it A S1( ). Having observed S1’ and S1", as long

as S1’ ��S1", the pool authority can compute A S1’( ) and A S1"( ), and check the resource

conservation condition (15). We now assume that the pool authority announces to all

firms the pairs S1’,A S1’( )( ) and S1",A S1"( )( ). If S1’ = S1", the pool authority announces

the pair S1,A S1( )( ), where S1  = S1’ = S1".

In the case S1’ ��S1", every firm can infer the realized fraction of poor firms, for

either S1’ ����RU�S1" �����,I�S1’ �����HYHU\�ILUP�FDQ�FRPSXWH�q1’ = A S1’( )/S1’ and set p =

q1’. Here R firms know that q1’ is the value of p because they know their storage

decision S1’. Also P firms know q1’ is the value of p because they know their storage

decision S1" and hence they know that S1’, which is different from S1", is the storage

decision of rich firms. Similarly, when S1" �����HYHU\�ILUP�FDQ�FRPSXWH�q1" = A S1"( )/S1"

and set p = 1 - q1".

The case when S1’ = S1" is more difficult. In this case, firms learn nothing about

the realized fraction of R firms and must value outcomes using their posterior E ˜ p θ1[ ].

The difficulty is that no firm can decide at date one whether or not to choose S1’ ��S1" or

S1’ = S1", since this later choice would have to be based on knowledge of p. But p cannot

be known if the firm chooses S1’ = S1". To avoid this difficulty, we make the following

assumption.
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Hypothesis (B). Firms choose among strategies I0,S1’,S1"( ) for which S1’ ��S1".

We can now consider a modified version of the pooling scheme of Section 4.

Under Hypothesis (B), the pool authority, modified to make the announcements

S1’,A S1’( )( ) and S1",A S1"( )( ), is described by Tables 1 and 2. The results of Lemma 5

hold, i.e., any optimal strategy is of the form 
  
I0,

r 
S 1’,

r 
S 1"( ), where   

r 
S 1’ is given in (23) and

  
r 
S 1" is given in (24). Notice that in this policy   

r 
S 1’ >   

r 
S 1", for all I0  > 0, consistent with

Hypothesis (B). We also have

Theorem 5. Under Hypotheses (A) and (B) and (45), the strategy 
  
I0

∗,
r 
S 1’,

r 
S 1"( ) maximizes

E ˜ W 2[ ].
Proof: See the appendix.

Armed with Theorem 5, we revisit the incentive compatibility of

Hypothesis (A). As in Section 4, our intuition is that incentive compatibility will require

that the elasticity of scale of the production function will have to be sufficiently small. In

addition the prior mean p0  will need to be sufficiently large. The analog here of the

inequality (27) is the following:

p2 f I∗ + f I0
∗( )( )− f I∗( )( ) �� p f I0

∗( ) - I ∗ , (36)

which reduces to

f I∗ + f I0
∗( )( ) - f I∗( ) �� ′ f I∗( )f I∗( ) f I0

∗( )
f I∗( ) − ε I∗( )

 

 
 

 

 
 , (37)

by repeated use of the first order condition (2). Inequality (37) is analogous to (29). They

differ only in the fact that the initial investment by firms is at the optimum for the prior

mean I0
∗ . The intuition about the scale elasticity follows from (37) just as in the case of
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(29). The intuition about the size of the prior mean comes from the ratio f I0
∗( ) f I∗( ) on

the right in (37). In particular, we see that the larger is p0  the larger is I0
∗  and the larger

is the ratio f I0
∗( ) f I∗( ), which in turn makes (37) more likely to hold.

Generally speaking, one would have to check whether equation (37) holds for all

p. However, the following result can be used to simplify the problem greatly. In

particular, let   
r 
ε  = sup ε I∗( ):0 < p < 1{ }. Then we can prove

Theorem  6. If   
r 
ε  < ε∗  ������� p0  ��  

r 
ε ε ∗ , and if f I∗( ) is concave in p, then (36) holds if it

holds at p = 1.

Proof: See the Appendix:

The hypothesis that   
r 
ε  < ε∗  ������DQG� p0  ��  

r 
ε ε ∗  expresses well our intuition that

the elasticity of scale must be sufficiently small and the prior mean must be sufficiently

large for (37) to hold. They do not guarantee that (37) holds at p = 1. However, we can

show that for the constant elasticity of scale case the conditions in Theorem 6 are also

sufficient for incentive compatibility to hold for all p.

Constant Elasticity of scale production function. Recall that f I( ) = Iαθ α , 0 < α  < 1, θ

> 0, with ε I( ) = α . Let ˆ α  be as in Section 5. For f I( ) = Iαθ α , 0 < α  < ˆ α , and p0  �

α ˆ α , (35) and (37) hold for all p. In order to show this we use the fact that I ∗  = pθ( )
1

1−α

and f I∗( ) = 
p

α
1−αθ

1

1− α

α
, which is concave in p since α  < 1/2.  We first check the

feasibility condition (35). For the constant elasticity case this condition is that

W0  - p0θ( )
1

1−α  + p·
p0

α
1−αθ

1

1−α

α
 - pθ( )

1

1−α  ���� (38)
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By (3’), (38) holds at p = 0. It is straightforward to show that as a function of p, the left-

hand side of (38) is concave. Hence (38) will hold if it holds at p = 1. A sufficient

condition for this is that p0

α
1−α  ��α . By hypothesis, p0

α
1−α  �� p0  ��α ˆ α  > α . Thus (35)

holds.

Rewriting (37) as in (30), we have that in this case incentive compatibility holds if

p 1 +
p0

p

 
  

 
  

α
1−α 1

pα
 
  

 
  

 

 
 
 

 

 
 
 

α

−1

 

 

 
 
 

 

 

 
 
 
 ��

p0

p

 
  

 
  

α
1−α

 - α . (39)

By Theorem 5, (39) holds if it holds for all p if it holds at p = 1. At p = 1, the inequality

(39) becomes

 0 � 1 - 1 +
p0

α
1−α

α

 

 
 

 

 
 

α

  + p0

α
1−α  - α . (40)

The right hand side of (40) is increasing in p0 . By hypothesis, p0  �� α ˆ α  �� α ˆ α ( )
1−α

α .

Evaluating the right hand side of (40) at α ˆ α ( )
1−α

α  yields the quantity

1 - α  + 
α
ˆ α 

 - 1 +
1
ˆ α 

 
 

 
 

α

. (41)

The quantity in (41) is zero at α  = 0. It is also zero at α  = ˆ α , by the definition of ˆ α .

The quantity 1+
1
ˆ α 

 
 

 
 

α

 is convex as a function of α , while the quantity 1 - α  + 
α
ˆ α 

 is

affine in α . Since these quantities are equal at α  = 0 and at α  = ˆ α , 1 - α  + 
α
ˆ α 

 is greater

than 1 +
1
ˆ α 

 
 

 
 

α

 for 0 < α  < ˆ α . Thus (41) is nonnegative, and (40) holds.
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Given the result for the constant elasticity of scale and our earlier results in

Theorem 4, it seems reasonable to conjecture that if the production function f exhibits

decreasing elasticity of scale and if ε 0( ) < ˆ α  and p0  ��ε 0( ) ˆ α , then (35) and (37) would

hold as well for this case.

Unfortunately, we have not been able at this point to generate a result as general

as Theorem 4 for the case where there is aggregate uncertainty. However, it seems clear

that the intuition from the constant elasticity of scale case should, in some form, carry

over to more general functions. The basic point here is that, in addition to the possibility

of incentive compatibility failing due a large value of the elasticity of scale, it may also

fail if realized output at date 1 is much larger than anticipated at date 0. Thus, roughly

speaking, it is when expectations are poor and the actual economy turns out to be good

that incentive compatibility may fail.

6. Summary and Relationship to Other Work

In this paper we have developed of model in which the social optimum may be

achieved by having decentralized production and a public liquidity sector. To our

knowledge this is the first paper to generate such a result in a world where there is private

information regarding output and allocation rules that depend only on announced

liquidity needs. Thus the planner uses no more information than what can be surmised

from the collection of individual liquidity reports by market participants. The results here

can be contrasted with those in Atkeson and Lucas (1991) by noting that, unlike their

model without storage, the storability of the commodity can itself be used to extract

information that is capable of generating the first best allocation. Moreover, because our

participants are risk neutral, liquidity taxes influence the welfare of those taxed only in a
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linear fashion. Thus, unlike Atkeson and Lucas, who model risk averse participants but

do not include production and storage, we are able to generate Pareto Optimal solutions

and are able to do so with a simple lump sum tax scheme. It is not clear that this result

will be robust to the introduction of risk aversion. This extension is a topic for further

research.

There are a number of other papers that deal with questions such as optimal

taxation, insurance and liquidity provision when there is private information. Mirrlees

(1997) provides a review of the work on trying to achieve a social optimum when there is

private information concerning effort or outcomes. He focuses mainly on the optimal

taxation problem with hidden effort and notes that, with some exceptions, achieving

unconstrained Pareto Optimality is not generally possible in these models. Other authors

have focused more specifically on optimal insurance or liquidity arrangements when

there is private information. For example, Diamond and Dybvig (1983) posit a model

whereby individuals can insure against shocks to preferences by forming an intermediary.

However, since output is observable, taxes can be levied and other claims to production

can be traded. For example, securities markets are also viable in this framework, and as

Jacklin (1987) has shown, there are situations where a securities market can implement

the first best allocation. It is obvious by design that securities markets cannot substitute

for the liquidity arrangements developed in this paper.

Bhattacharya and Gale (1987) extend the Diamond and Dybvig model to analyze

risk sharing between banks themselves in a world where there is no aggregate

uncertainty. They show that Pareto Optimality cannot generally be achieved with an

interbank lending market. One way to view our results in this context is that the liquidity
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pool authority is a central bank that provides firms with below market rate loans when

they are in need of liquidity. Conversely, the central bank charges a tax to those who have

excess liquidity, with the interest rate being –1.0 per dollar. Indeed, modern central

banking seems to work very much along these lines. Firms with excess liquidity are

usually not offered market rates while those in need of liquidity are subsidized. The

results here are suggest that such arrangements may often be welfare improving.

Another important contribution to the literature on optimal liquidity management

is the recent work by Holmstrom and Tirole (1998). They too study a production

economy with risk neutral participants, albeit one without decreasing returns to

investment. They are interested in the interaction between the supply of liquidity and

optimal growth, or capital formation. Since output is observable while effort is not, they

are able to show that, absent aggregate uncertainty, private liquidity arrangements can be

used to implement second best solutions; there is no need for a public liquidity pool.

They go on to show how the issuance of government securities may increase welfare if

there is aggregate uncertainty but, of course, since output is observable, these bonds can

be redeemed ex post via the collection of taxes.

Our interest is similar to that of Holmstrom and Tirole but our approach is to

investigate under what conditions first best may be achieved without paying deadweight

costs to the owners of capital. One way to view our results is that by introducing

decreasing returns to scale we are able to generate the first best solution to what

Holmstrom and Tirole call the case of exogenous liquidity. In equilibrium there is no

moral hazard in our solution because there are no claims against risky production. This

approach also allows us to show the benefits of pooling storage for purposes of
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intertemporal risk sharing without the need to bring in overlapping generations or

distinguish between ex ante and ex post efficiency, as in Allen and Gale (1997).

Future work could proceed down a number of different paths. The first would be

to investigate whether or not the first best allocation can be achieved with a similar

liquidity pooling scheme in a production economy such as our when participants are risk

averse. A second promising area of research would involve a comparison of a the welfare

properties of a model with securities markets and costly state verification (Townsend

(1979)) with the liquidity model developed here when first best cannot be achieved.
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Appendix

This appendix contains proofs of the Theorems and Lemmas in the text.

Proof of Theorem 1: By the arguments leading to equation (8) in the text,

given I0 and θ1, E ˜ W 2
∗ θ1[ ] • E ˜ W 2 θ1[ ], for every I1, 0 • I1 • W1. Thus for any

choice of I0, 0 • I0 • W0, and for every I1, 0 • I1 • W1, E ˜ W 2
∗[ ] = E E ˜ W 2

∗ θ1[ ][ ] •
E E ˜ W 2 θ1[ ][ ] = E ˜ W 2[ ]. It follows that E ˜ W 2

∗∗[ ] is the supremum in (6) and thus

(I0
*, I1

*) is an optimal investment policy.

By (8), I1
* • I*. It follows that m* is decreasing in θ1, and strictly so for W1 < I*,

and 
∂W1

∂I0

 is increasing inθ1. We then have by (12) that

dE ˜ W 2
∗[ ]

dI0

 = E
∂E ˜ W 2

∗ θ1[ ]
∂I0

 

 
 

 

 
  (A1)

     = E m∗ ∂W1

∂I0

 

  
 

  

     < E m∗[ ]E
∂W1

∂I0

 

  
 

  

     = E m∗[ ] p ′ f I0( )−1( ),

where the inequality follows by Chebyshev’s (other) inequality (Fink and

Jodeit (1984)). For I0 • I*, p ′ f I0( )−1( ) • 0. It follows from (A1) that I0
* < I*. []

Proof of Lemma 1: If S0 - I
* < 0, then by (2), −p ′ f S0 − S1"( )+1 < 0, for any S1"  •

0. It follows from Table 1 that (18”) is strictly decreasing in Cases 1, 5, 6, and

7. In Cases 2, 4, and 8, (18”) is equal to pf S0( ). In Case 3, (18”) is strictly
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decreasing in S1" , as well. Hence in Cases 1, 2, 3, and 4, the best that can be

done is to set S1"  = max −pS1’ 1 − p( ),S0 − I*[ ], which makes (18”) equal to

min pf S0 + pS1’ 1 − p( )( ),pf I*( )[ ], which is at least pf S0( ), when S1’ • 0. If S1’ < 0,

in Case 5, the largest value of (18”) is pf S0 + pS1’ 1 − p( )( ), which is less than

pf S0( ). Thus the largest value of (18”) is pf S0( ) when S1’ < 0. This obtains by

the choice of S1"  = 0, which results in Case 8 in Table 1.

If S0 - I
* • 0, then the maximum of (18”) in Cases 1 and 3 of Table 2 is

pf I*( )+ S0 − I* , which is at least as great as pf S0( ) since I* solves (1). The

maximum of (18”) in Cases 2 and 4 of Table 2 is pf S0( ). This establishes

(20).[]

Proof of Lemma 2: Assume that S0 - I
* < 0 and that S1"  •  0. Then Cases 1, 5, 6, and 7 in

Table 1 apply. In Case 1, the best the type R firm can do is to choose S1’ =   
( 
S 1’, giving

(18’) equal to 
  
pf S0 + f I0( )−

( 
S 1’( ) -   

( 
S 1’. In Cases 5-7, the best the type R firm can do is to

choose S1’ =   
) 
S 1’, giving (18’) equal to 

  
pf S0 + f I0( )−

) 
S 1’( ). This gives (21’) and the part

of (21”) corresponding to when S1"  •  0. If S1"  < 0, then Cases 2-4, and 8 of Table 1

apply. In Case 8, (18’) is equal to pf S0 + f I0( )( ). Cases 2-4 are essentially the same as

Case 1 and (18’) is equal to 
  
pf S0 + f I0( )−

( 
S 1’( ) -   

( 
S 1’, which is at least as large

pf S0 + f I0( )( ), its value when   
( 
S 1’ = 0. This establishes the other part of (21”).

If S0 - I
* •  0, then Table 2 applies and   

( 
S 1’ = S0 + f I0( )− I*( )+

 = S0 + f I0( )− I* .

The maximum value of (18’) in Cases 1 and 2 in Table 2 is pf I*( )+ S0 + f I0( )− I* , which
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is at least as great as pf S0 + f I0( )( ) since I* solves (1). The maximum of (18’) in Cases 3

and 4 of Table 2 is pf S0 + f I0( )( ). This establishes (22).[]

Proof of Lemma 3: If S0 - I* • 0, then (23) and (24) are just (20) and (22),

respectively. If S0 - I
* < 0, then by (16), (23) and (24) are feasible. By (19),   

r 
S 1"

• 0, and   
r 
S 1"  = 0 only if S1’ • 0. By (21),   

r 
S 1’ • 0 only when (21’) obtains or in

(21”) when   
r 
S 1’ = 0. When (22’) obtains, then   

r 
S 1"  = 0 and   

r 
S 1’ =   

) 
S 1’ = 0. It follows

that   
r 
S 1’ = 0 if and only if   

r 
S 1"  = 0, the conditioning inequalities in (22’) are

mutually inconsistent, and hence   
r 
S 1’ =   

( 
S 1’. For I0 = 0,   

( 
S 1’ = W0 − I*( )+

 = W0 − I* ,

by (3). For I0 = W0,   
( 
S 1’ = f W0( )− I*( )+

 = f W0( )− I* , by monotonicity of f and (13).

By concavity of f, S0 + f I0( )− I*  is concave in I0. It follows that S0 + f I0( )− I*  is

positive on the interval [0, W0].  This gives (23).

By (19) and (23),

  
r 
S 1"  = 

  
max −p

r 
S 1’ 1 − p( ),S0 − I*[ ] (A2)

       = S0 - I
*,

⇔ W0 - I
* • I0 - pf I0( ). (A3)

The right hand side of (A3) is convex in I0. It is 0 at I0 = 0 and hence (A3)

holds strictly at I0 = 0 by (3). When I0 = W0, (A3) also holds since by (14), I* <

pf I*( ) < pf W0( ). It follows that (A3) holds with strict inequality on the

interval [0, W0]. This gives (24).[]
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Proof of Theorem 3: By (23) and (24), evaluating (18’) and (18”) under the

storage strategy 
  

r 
S 1’,

r 
S 1"( ) gives

E ˜ W 2 θ1 = θ[ ] = pf I*( ) + 
pf I0( )− I0

p
 + 

W0 − I*

p
, (A4’)

E ˜ W 2 θ1 = 0[ ] = pf I*( ). (A4”)

The unconditional expectation as a function of I0 is then

E ˜ W 2[ ] = pf I*( ) + pf I0( )− I0  + W0 − I* . (A5)

It follows that (A5) is maximized by the choice of I0 = I*, and the value of (A5)

for this choice is the supremum in (14), by Theorem 2.[]

Proof of Theorem 4: Given f and p, let α  = ε I*( ) and choose θ  so that pθ  =

I*( )1− α
. Let h I( )  = Iαθ α , and let

g I( ) = 
f I( )

Iαθ α
, (A6)

So that f I( ) = g I( )h I( ) . Clearly I*  is the optimal investment level for the

constant elasticity production function h for this p. substituting in for α  and

θ , we get that

g I*( ) = 
f I*( )

I*( )α
I*( )1−α

p( )
ε I*( )

 = 
f I*( )

I*

pε I*( )
 = 

pf I*( )ε I*( )
I*  = 

pf I*( )
I*

I* ′ f I*( )
f I*( )

= p ′ f I*( ) = 1, (A7)
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by the first order condition (2). It follows that f I*( ) = h I*( ). It is

straightforward to verify that the elasticity of scale ε I( ) of f is equal εg I( )  +

α , where εg I( )  = I ′ g I( ) g I( )  is the elasticity of scale of the function g.

Differentiating g with respect to I gives

′ g I( )  = 
Iα ′ f I( )− αIα−1f I( )

Iα h I( ) .

Thus

′ g I( )  
>
=
<

 0 as ε I( ) 
>
=
<

 α . (A8)

In particular, we have that

′ g I*( ) = 0, and g is decreasing for I > I* . 

(A9)

By the analysis for the constant elasticity case, (33) holds for h and

hence

h I* + h I*( )( ) < h I*( ) + ′ h I*( )h I*( ) 1 −α( ) = h I*( ) + ′ h I*( )h I*( ) 1 − ε I*( )( ). (A10)

Thus

f I* + f I*( )( ) = g I* + f I*( )( )h I* + f I*( )( ) • g I*( )h I* + h I*( )( )

< g I*( )h I*( ) + g I*( ) ′ h I*( )h I*( ) 1 − ε I*( )( )

= f I*( ) + ′ g I*( )g I*( )h I*( )h I*( ) 1 − ε I*( )( ) + g I*( )g I*( ) ′ h I*( )h I*( ) 1 − ε I*( )( )

= f I*( ) + ′ g I*( )h I*( )+ g I*( ) ′ h I*( )[ ]g I*( )h I*( ) 1 − ε I*( )( )

= f I*( ) + ′ f I*( )f I*( ) 1 − ε I*( )( ),
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where the first inequality follows from (A9) and the second from (A10), and

we have used (A7) and (A9) repeatedly. So (33) holds for this f and p as well,

proving the first statement of the theorem. The second statement follows

directly from the first. []

Proof of Theorem 5: (A4’) and (A4”) of Theorem 3 still hold with the

left-hand side of (A4’) being E ˜ W 2 θ1 ≠ 0,p[ ] and the left-hand side of (A4”) being

E ˜ W 2 θ1 = 0,p[ ]. Expecting out θ1 first yields (A5). Then taking the expectation

with respect to p gives

E ˜ W 2[ ] = E ˜ p f I ∗( )− I∗[ ] + p0 f I0( ) - I0  + W0 . (A11)

It follows that (A11) is maximized by the choice of I0  = I0
∗ .[]

Proof of Theorem 6: Rewrite (36) in the form

f I∗ + f I0
∗( )( ) • f I∗( ) + ′ f I∗( ) f I0

∗( )− I∗ ′ f I∗( )( ). (A12)

The left hand side of (A12) is increasing in p. Taking the derivative of the

right hand side and using the fact that I ∗  is increasing in p, the sign of the

derivative of the right hand side is the same as the sign of the expression

′ ′ f I∗( ) f I0
∗( )− 2I∗ ′ f I∗( )( ) + ′ f I∗( ) - ′ f I∗( )2

. (A13)

By the first order condition (2), ′ f I∗( ) - ′ f I∗( )2
 < 0. By concavity of f, (A13) is

negative if f I0
∗( ) • 2I ∗ ′ f I∗( ). Concavity of f I∗( ) in p implies that

p0f I∗ 1( )( ) = p0f I∗ 1( )( ) + 1 − p0( )f I∗ 0( )( ) • f I∗ p0 ⋅1 + 1 − p0( )⋅ 0( )( ) = f I0
∗( ).
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Since p0  •   
r 
ε ε ∗  • ε I∗( ) ε ∗  = 

I∗ ′ f I∗( )
f I∗( ) ε∗ , it follows that

f I0
∗( ) • p0 f I∗ 1( )( ) • 

I∗ ′ f I∗( )f I∗ 1( )( )
f I∗( ) ε ∗  • I ∗ ′ f I∗( ) ε∗  • 2I ∗ ′ f I∗( ),

(A14)

where the third inequality in (A14) follows from the monotonicity of f I∗( ) in p

and the fourth inequality follows from the hypothesis that ε∗  • 1/2. Thus

(A13) is negative, implying that the smallest the right hand side of (A12) gets

is at p = 1.[]


