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CONSUMPTION AND ASSET PRICES WITH RECURSIVE
PREFERENCES: CONTINUOUS-TIME APPROXIMATIONS TO
DISCRETE-TIME MODELS

MARK FISHER

ABSTRACT. This paper presents tractable and efficient numerical solutions to
general equilibrium models of asset prices and consumption where the represen-
tative agent has recursive preferences. It provides a discrete-time presentation
of the approach of Fisher and Gilles (1998), treating continuous-time representa-
tions as approximations to discrete-time “truth.” First, exact discrete-time so-
lutions are derived, illustrating the following ideas: (i) The price-dividend ratio
(such as the wealth—consumption ratio) is a perpetuity (the canonical infinitely-
lived asset), the value of which is the sum of dividend-denominated bond prices,
and (iz) the positivity of the dividend-denominated asymptotic forward rate is
necessary and sufficient for the convergence of value function iteration for an im-
portant class of models. Next, continuous-time approximations are introduced.
By assuming the size of the time step is small, first-order approximations in the
stepsize provide the same analytical flexibility to discrete-time modeling as Ito’s
lemma provides in continuous time. Moreover, it is shown that differential equa-
tions provide an efficient platform for value function iteration. Last, continuous-
time normalizations are adopted, providing an efficient solution method for re-
cursive preferences.

1. INTRODUCTION

This paper presents tractable and efficient numerical solutions to general equi-
librium models of asset prices and consumption where the representative agent has
recursive preferences and utility is derived solely from consumption. Models of this
type have been developed in both discrete-time and continuous-time settings. This
paper highlights the benefits—analytical and numerical—of using continuous-time
models relative to discrete-time models. The analytical advantages of continuous-
time modeling are attributable to Ito’s lemma, which provides continuous-time
modeling with great flexibility with respect to transforming expressions. Even so,
Campbell (1993, p. 487) compares continuous-time techniques unfavorably with
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2 MARK FISHER

discrete-time techniques for analyzing asset pricing models of the sort discussed in
this paper:

... Robert C. Merton ... suggested reformulating the consumption
and portfolio-choice problem in continuous time. Doing this in effect
linearizes by taking the decision interval infinitely small, so that
the model becomes linear over this interval. However, this kind of
linearity is only local, so it does not allow one easily to study longer-
run aspects of intertemporal asset pricing theory.

Campbell instead log-linearizes a discrete-time intertemporal budget constraint and
derives an impressive array of interesting results. Nevertheless, it turns out that
continuous-time modeling is quite well-suited to to deal with these problems. In
particular, Fisher and Gilles (1998) nest Campbell’s results in a more general dy-
namic setting in a continuous-time model. In doing so they are able to delimit the
scope of the applicability of Campbell’s results. In light of the work of Fisher and
Gilles, continuous-time modeling is seen to provide powerful analytical tools for the
models considered here.

Even though continuous-time modeling offers great flexibility to transform ex-
pressions, in some ways it is more restrictive. In particular, not all discrete-time
normalizations can be implemented directly in continuous time. Discrete-time mod-
elers can rely on the “today-tomorrow” distinction of discrete time and need not
necessarily consider what happens in the limit as the size of the time step goes to
zero. On the other hand, it is often straightforward to translate a normalization
that works in continuous time into discrete time. It turns out that many interre-
lations are more transparent in the continuous-time representations than in those
of discrete-time. Fortunately, these continuous-time representations can be brought
to bear on discrete-time models by, for example, treating the continuous-time rep-
resentations as approximations to the discrete-time “truth.”

Yet even if one grants the analytical advantages of continuous-time modeling,
it is not clear what advantages, if any, it offers for numerical solutions. On this
front, continuous-time models seem to be disadvantaged. For example, consider the
solution technique of value-function iteration for dynamic programming problems.
Judd (1998, p. 440) states the apparent difficulties with continuous-time models in
this regard:

Value function iteration is an important method for solving discrete-
time dynamic programming problems. Unfortunately, the structure
of value function iteration is itself tied to the discrete nature of time
in those models, and cannot be used for continuous-time problems,
since there is no today-tomorrow distinction in continuous time.

One approach is to replace the continuous-time structure with a
discrete-time structure with short periods and then use discrete-time
methods. Using short periods will make the discount factor, 3, close
to unity, and imply very slow convergence.

For concreteness, consider a case where value function iteration can be reduced
to solving for a fixed point by iteratively solving a system of difference equations.



CONSUMPTION AND ASSET PRICES: DISCRETE TIME 3

Judd’s point is that, given a prespecified convergence criterion, decreasing the size
of the time step has the effect of increasing the number of steps required to reach
convergence.

Yet a different moral can be drawn from the observation that there is no today-
tomorrow distinction in continuous time: The absence of this distinction liberates
one from the tyranny of a uniform step size. In the limit, a system of difference
equations becomes a system of ordinary differential equations (ODEs). Modern
ODE solvers choose the step size adaptively, according to various error criteria
computed as part of the solution process. As Press, Teukolsky, Vettering, and
Flannery (1992) state in their chapter on the integration of ODEs,’!

A good ODE integrator should exert some adaptive control over
its own progress, making frequent changes in its stepsize. Usually
the purpose of this adaptive stepsize control is to achieve some pre-
determined accuracy in the solution with minimum computational
effort. Many small steps should tiptoe through treacherous terrain,
while a few great strides should speed through smooth uninteresting
countryside. The resulting gains in efficiency are not mere tens of
percents or factors of two; they can be factors of ten, a hundred, or
more.

As a result, the amount of computational effort required to reach convergence with
a given accuracy can be far less for a differential equation than for a difference
equation. When this problem is seen in this light, efficient numerical solutions
based on continuous-time limits emerge.

This paper provides a discrete-time presentation of the approach of Fisher and
Gilles (1998) to modeling and solving general-equilibrium asset-pricing problems. It
compares their approach to existing approaches for solving models with both recur-
sive and standard time-separable preferences. In order to highlight the advantages
of their approach, their model is presented as an approximation to discrete-time
models. Many presentations of discrete-time models implicitly take the size of the
time step to be unity and adopt normalizations that rely on the today-tomorrow
distinction with the result that the connection to continuous-time models is not
transparent. In this paper the size of the time step, A, is explicit. The continuous-
time results are all seen to be first-order approximations around A = 0.

I adopt the Euler approximation to continuous-time Ito processes as the true
discrete-time process. The Euler approximation converges to an Ito process both
pathwise and in distribution and consequently it can be used to solve stochastic
differential equations (SDEs).2 Nevertheless, for some purposes the most natural
discrete-time model is the binomial model. Not only does it converge on an Ito
process in the limit, but it also maintains completeness of markets: A stock and a
bond are sufficient to span markets in either a binomial model or a continuous-time

! Judd (1998) does not discuss variable step sizes.

ZKloeden and Platen (1991) provide a thorough discussion of Monte Carlo solutions to SDEs
using the Euler approximation as well as more sophisticated approximations that converge more
rapidly. For a brief introduction to these issues, see their section titled “A brief survey of stochastic
numerical methods” (pp. zziti—zzTv).
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model with a single Brownian motion. By contrast, for the Euler approximations
adopted here, the market is incomplete for any finite stepsize and any finite number
of securities. Since the main concern here is with equilibrium asset pricing, this
does not pose a problem. Having provided this note of caution, I will nevertheless
refer to various “absence-of-arbitrage conditions” that are not strictly such in the
discrete-time setting.

For technical issues regarding the continuous-time derivations of the continuous-
time formulas in this paper, see Fisher and Gilles (1998) and the references therein,
especially Schroder and Skiadas (1999). The derivations of the continuous-time
formulas in this paper are intended to be heuristic. Continuous-time restrictions
are derived by finding a first-order approximation in the stepsize that allows one to
cancel out the stepsize.?

The absence of the today-tomorrow distinction in the limit as the stepsize goes
to zero requires the adoption of normalizations that are not typical of discrete-time
modeling. First, explicit reference to next period’s asset price is replaced by the
growth-rate dynamics of the asset price. Second, cum-dividend asset prices that in-
clude the current dividend flow as used, rather than ex-dividend prices that exclude
it. As a result, the dividend that appears in the pricing equation is known at the
beginning of the period and zero-coupon bond prices have a value of one at matu-
rity rather than zero. The third necessary modification relates to the way in which
state variables enter the model. In discrete-time models, state variables are often
linked to backward-looking realized growth rates. But in stochastic continuous-time
models based on Brownian motion, instantaneous realized growth rates do not ex-
ist. Instead, state variables can be linked with forward-looking expected growth
rates, which do exist in the limit. On purely economic grounds, expected growth
rates are more appropriate as hitching posts for state variables than realized growth
rates: As is well-known, variation in realized growth rates that is unrelated to ex-
pected future growth rates is irrelevant. As a result, when actual growth rates are
not perfectly correlated with expected growth rates, it is more parsimonious to use
expected growth rates as state variables.

The final issue has to do with the size of the time step and the quality of the
continuous-time approximations. Obviously, continuous-time approximations will
well approximate a discrete-time model when the size of the time step is small. In
other words, if the size of the time step is three months or one year, continuous-time
approximations may do poorly. However, for the asset pricing models considered
in this paper, I believe time steps of the magnitude of a day or a week are more
appropriate. It is certainly true that at this frequency, the time step will not match
the sampling frequency of the data. As the stepsize decreases, the parameters in
the processes for the state variables will need to be adjusted in order to match the
moments of the less-frequently sampled data.

Conceptual overview. A perpetuity is the canonical infinitely-lived asset. The
absence-of-arbitrage condition for the price of a perpetuity is a functional equa-
tion for which the perpetuity price is the fixed point. Zero-coupon bond prices

3 A version of Ito’s lemma for the discrete-time processes in this paper is presented in Appendix A.
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form the natural basis for the value of a perpetuity, and the positivity of the as-
ymptotic forward rate is necessary and sufficient for the convergence of annuity
prices to a perpetuity price. The functional operator in the perpetuity equation
can be decomposed into a “bond-shift” operator plus a dividend accumulator. Any
infinitely-lived asset with a strictly positive dividend flow can be transformed into
a dividend-denominated perpetuity which can be analyzed in terms of its associ-
ated dividend-denominated zero-coupon bonds and dividend-denominated asymp-
totic forward rate.

In an equilibrium setting with an infinitely-lived representative agent, wealth
is the asset for which consumption as the strictly positive dividend flow, making
the wealth—consumption ratio a dividend-denominated perpetuity. If the agent has
time-separable preferences, the dividend-denominated intertemporal marginal rate
of substitution can be expressed in terms of equilibrium consumption growth. This
allows one to identify the dividend-denominated interest rate (and the price of
risk) and apply the solution techniques based on the perpetuity approach. More-
over, by structuring the model so that the dividend-denominated bond prices are
exponential-affine, the curse of dimensionality can be eliminated since the functional
form of the solution is known. The value of the wealth—consumption ratio at any
point in the multidimensional state space can be evaluated by a univariate sum of
dividend-denominated bond prices.

With recursive preferences, however, the dividend-denominated intertemporal
marginal rate of substitution is not determined solely by consumption growth in
general, and so the direct application of the approach outlined above is not possible.
For recursive preferences, the first problem is simply to compute the utility of a given
consumption process. Homotheticity guarantees that utility depends on two state
variables, consumption (which delimits current opportunities) and an “information”
variable that summarizes what is known about future opportunities. The key to
computing utility is to find an expression for the information variable in terms of the
growth rate of consumption (through which the state dependence of utility enters).
The second problem is to solve for optimal consumption given a stochastic return
process. This problem involves maximization, which was absent from the previous
recursive utility problem. Marigal utility provides the link to optimization.

Outline of the rest of the paper. The paper is divided into four main parts.
In Section 2, asset pricing is introduced in a generic setting. I interpret the price—
dividend ratio as the value of a dividend-denominated perpetuity and derive exact
closed-form solutions as infinite sums of dividend-denominated zero-coupon bond
prices. Absence-of-arbitrage conditions produce systems of difference equations for
bond prices. The infinite sums can be thought of as generated by repeated appli-
cation of a contraction operator related to Bellman’s equation. We show how the
asymptotic dividend-denominated forward rate can be used to determine whether
the iterative procedure will converge, even when Blackwell’s sufficient conditions
are not satisfied.

In Section 3, we present solutions based on continuous-time approximations for
models with standard preferences. The solution method proposed for these models
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amounts to the integral of bond prices and can be thought of as the result of a
continuous-time contraction. Bond prices are characterized by a system of ordi-
nary differential equations (ODEs). As noted above, one of the advantages of the
continuous time formulation is that the numerical solution to differential equations
is very flexible: ODE solvers are free to adapt the step size to the features of the
solution, which allows continuous-time formulations to converge much more rapidly
than corresponding discrete-time formulations.

In Section 4, recursive preferences are introduced. A method of solving for utility
(given a consumption process) is presented that parallels the solution method for
asset pricing presented earlier. The supporting price system and returns process are
derived, and the role of the information variable as a weighted forecast is explained.

In Section 5, the solution method of undetermined coefficients is applied to the
recursive preference problem. Regions in the preference-parameter space where no
solution to the infinite-horizon problem are identified.

2. ASSET PRICING

The cum-dividend value of an asset is the present value of the future dividends
plus the value of the current dividend:

iicﬂ%%é»d@+uwA]

=1

p(t) =d(t) A + B,

(2.1)
m(t+ A)

m(t)

Ey[-] is the conditional expectation operator, A is the size of the time step (the
length of the period), d(t 4+ ¢ A) is the rate of dividend flow at time ¢ + ¢ A, m(t +
i A)/m(t) is the discount factor, and p(t) is the cum-dividend asset price. The
ex-dividend price is simply p(¢) — d(t) A. The existence of a well-defined price in
(2.1) depends on the convergence of an infinite sum. If dividends grow too fast
asymptotically relative to the discount factor, the sum will not converge. For the
time being, let us assume the infinite-horizon problem does have a solution. In
the second line of (2.1), the infinite-horizon problem has been converted to a one-
period problem where p(t + A) captures the value of all of the future dividends.
Since absolute time plays no role in (2.1), the notation can be streamlined:

p=dA+ E; [(m//m) p’] , (2.2)

:ﬂ®A+E{< )p@+Aﬁ.

where unprimed variables represent beginning-of-period values and primed variables
represent end-of-period values.

Bond prices, the interest rate, and the state—price deflator. The simplest
asset is a zero-coupon bond that pays one unit when it matures at time ¢t + 7, where

7 > 0 is the bond’s term to maturity measured in units of time.* (It matures in

“The derivation of discrete-time bond prices parallels that of Backus and Zin (1994).
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7/A periods.) Its cum-dividend value at time ¢ is
m(t + 7‘)}
m(t)
Comparing (2.3) with (2.1), we see that the dividend flows for a 7-maturity zero-
coupon bond are

B(t,t+7) = E, [ (2.3)

0 for i # 7/A

dit+il) = {1/A for i = 7/A.

To streamline bond-price notation, let B; be the current price of a T-maturity zero-
coupon bond. Next period the 7-maturity bond will have become a (7— A)-maturity
bond, so its value today can be expressed as

B, = Eyf(m’/m) B;_4]. (2.4)

Upon maturity we have By = 1, regardless of the state of the world. Thus the value
of the shortest (nonzero) maturity bond is

Ba = Eym’/m)].
The short-term interest rate can be defined in terms of Ba:

r = —log(Ba)/A = —log(Ey[m'/m])/A.

The conditional distribution of the state—price deflator. The discount factor, m’/m,
is the growth rate of the state-price deflator.® In equilibrium, m’/m is the in-
tertemporal marginal rate of substitution measured in the chosen numeriare. We
will assume that the state—price deflator is conditionally log-normally distributed.
In particular, we will decompose the growth rate of the state—price deflator into
expected and unexpected components as follows:

log(m'/m) = fiy A+ 0y, - € \/Z> (2.5)

where [i,,, is a (possibly state-dependent) scalar, o,, is a (possibly state-dependent)
vector, € is a vector of independent standard normal shocks, and y - z is the inner
(dot) product of two vectors y and z. We refer to fi,, as the drift and oy, as the
diffusion or the volatility. Equation (2.5) implies

log(m') ~ N (log(m) + fim A, |ow|| VA), (2.6)

where ||z|| :== \/z-z and z ~ N(u, o) signifies that z is a random variable that is
normally distributed with mean p and standard deviation o. Given (2.6) we see
that pi,, and o, have been normalized to measure the mean and the variance of the
growth rate of the state—price deflator per unit of time.

Given (2.6) and using the fact that E[e*] = exp(u + 02/2) for z ~ N(u,0), we
have BA = exp ({fim + 3 |lom|*} A), and therefore

~ 1
'="Hm—5 lom . (2.7a)

®See Duffie (1996) for an extensive discussion of the state—price deflator.
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In addition, it is convenient to adopt the following renormalization of the volatility
of m:

A= —0Opm, (2.7b)

where A is called the price of risk. Given these expressions for  and A\, we can write
the conditional dynamics of the state—price deflator as

log(m’ /m) = — <r + % ||)\||2> A—X-eVA. (2.8)

The term structure of interest rates. Let us consider longer-term bond prices. We
can rewrite (2.4) as

By [(m fm) (BL_n/B;)] = 1. (2.9)

We now assume that the conditional growth rate of a bond’s price is also log-
normally distributed:

log(B._A/B:) = ip, A+ op, - VA.

Inserting the expressions for m’/m and B, _ /B, into (2.9), we have

1 - 1
exp ({=r = GNP + 7 + 5 lom, ~ AP fa) =1
Taking logs, dividing by A, and rearranging produces
UB, =T+ A-0B,, (2.10)

where pp, = fig, + 3 |lop, ||>. Equation (2.10) expresses the well-known relation
between risk and return: The expected return pp_ equals the risk-free rate r rate
plus the covariance-based risk premium A -op. .

In order to derive explicit expressions for bond prices, we introduce Markovian
state variables. This allows us to turn (2.10) into a system of difference equations
by the matching undetermined coefficients. Our goal is to find a Markovian bond
pricing function B(x, 7) such that B, = B(X, ) for some Markovian state variables
X. In order to acheive this goal, how must the state variables enter the marginal
rate of substitution? Examining (2.10), we see that r and A must be Markovian. In
other words, we will need functions R(z) and A(x) that determine how the interest
rate and the price of risk depend on the state of the world: » = R(X) and A = A(X).
Note however that m//m itself need not be Markovian. Markovianizing m’/m is at
best unnecessary and at worst restictive.’

Let x be a scalar state variable that is conditionally normally distributed:

¥ —xz=puxA+ox- VA, (2.11)

where pux and ox can themselves be state-dependent. For the moment, however,
we will leave unspecified the way in which pux and ox depend on x. Suppose the
solution for bond prices can be written as follows:

B(z,T) = exp(ar + br z). (2.12)

6Tt is even more restrictive to Markovianize the state—price deflator m. See Fisher and Gilles (1999).
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Since By = 1, we must have ag = by = 0. The coefficients {a,} and {b;} for
7=1,2,3,... are as yet undetermined.
It is convenient to introduce forward rates here. Forward rates are defined as

fri=— log(BT/BT+A>/A7 (2'13)

where the indices have been chosen so that fo = r. In light of (2.12), forward rates

can be expressed as
[ Or4A — Q7 bryn —br
fr= < x ) + ( A )m (2.14)

Since fo =7, it follows that r = (an/A) + (ba/A) z.
To recover all of the coefficients {a,} and {b;}, we proceed as follows. Given
(2.12) and (2.11), we can write

/
log < EA> = (ar-a +br-a2’) = (ar +br 2)
= (—fra+brapux)A+b_anox-eVA,

and therefore

1
1B, = —froa +br_apx +b2_A 5 lox|? (2.15a)
op, =br_ao0x. (2.15b)

In (2.15a) we see that the expected return on a bond is composed of three parts,
induced by (%) the forward rate (solely from the passage of time), (i7) the expected
change in the state variable, and (iiz) the nonlinear relationship between bond
prices and the state variable (the Jensen’s inequality part). Using (2.15) we can
write (2.10) as

N 1
—froa+broafix +2_4 5 lox|* —r =0, (2.16)
where
fix :=px —A-0x

is the so-called risk-adjusted drift of .

We now make specific assumptions about how the state variable enters the system.
We specify how each of r, A\, fix, and ox depend on z. In order to maintain
consistency with our previous assumptions, r, fiy, and |lox||*> must be affine in .7
For this example, assume r = z, ux = k(T — z), and ox = sx and \ are scalar

constants. In this case we have ix = r (X — x), where X := Z — Aox/k. Given
this specification (2.10) becomes

ar—A — ar br_a — b7 > 1
( S >+< . )HbfA(m(X—m)+bi_A§st||2—x=0.

"The conditions are similar for continuous-time models. See Duffie and Kan (1996).
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By matching coefficients, a pair of difference equations is produced:

ar — Ar_A %, 1

(T) =baRX +b7 5 5 lsx]® (2.17a)
by — by

(TA> — 1—kb_a (2.17b)

subject to ap = by = 0. The solution to (2.17) is

2 _ 1-(1-rA)/A)X
2 K2

R
(kAT (2.18a)
(20— 0-ray/d) - LA ) 2
2 K3
R AY/A
b, = & “AH) L (2.18b)

The bond-price solution is obtained by substituting (2.18) into (2.12).

The value of a perpetuity. A perpetuity is the canonical infinitely-lived asset.
It pays dividends at the constant rate of one: d(t +iA) =1 for all 7 in (2.1). For a
perpetuity, (2.2) becomes

p=A+E [(m'/m)p]. (2.19)

The value of a perpetuity is the limiting value, if the limit exists, of the value of
an annuity as the horizon goes to infinity. The value of an annuity is the sum of
zero-coupon bond prices:

T/A
pri=Y BiaA, (2.20)
1=0

where p, denote the value of a annuity that matures in 7 units of time, so that
p =lim,_ o p; if the limit exists. We address the question of existence in terms of
the asymptotic forward rate.

A necessary condition for convergence is that bond prices go to zero as the ma-
turity goes to infinity: lim,_,o, B; = 0. From (2.18b) we have lim,_,o, b, = —1/k.
Therefore, we need lim,; .o, ar = —o0, or equivalently lim, .o, ar — ar_a < 0.
From (2.17a) we see that

: % 2 2 o lsx]l?
= lim b AKX +b0;_allsx||"=—-X+"—7—.

T—00 2 K2
Therefore, bond prices will go to zero if and only if X — 3 (|[sx||/x)? > 0. At the
same time, inserting (2.17) into (2.14), we have

o1 (IsxI\?
foo = lim fT:X——<—> .
T—00 2 K

Thus bond prices will go to zero if and only if fo, > 0. Assuming bond prices do go
to zero, we can apply the ratio test for convergence. The ratio of successive terms

. Gr — Qr—A
lim ——

T—00 A
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is B;ya/B; = e /72, Thus we have

lim Byin/By = lim e /78 =e /=2 < 1.
T—00 T—00
For this example we conclude that the positivity of the asymptotic forward rate is
both necessary and sufficient for the convergence of annuity prices to the price of a
perpetuity as the horizon goes to infinity.?

Functional iteration and fized points. We can think of (2.19) as expressing a func-
tional relation: p = T'(p'), where T'(-) = A+ Tg(-), and Tp is the “bond-shift”
operator: Tp(B;) returns Brya. We are looking for the fixed point p such that
p =T(p). We can confirm our solution in terms of bond prices:

T (ZBMA> = A+Tp (ZBMA> =A+)> Tp(Bia)A=)_ BiaA.
1=0

=0 1=0 =0

Moreover, this suggests that we can solve for the fixed point by starting with py =
A and iterating according to p,yan = T(p,;).” Bond prices provide closed-form
expressions for the increments, B; A = (pr+a — pr)/A.

Blackwell’s sufficient conditions for 7' to be a contraction are (i) monotonicity
and (ii) discounting. Let f and g be two functions in the space T' operates on,
and let f —g > 0. T satisfies the monotonicity condition if T'(f) — T'(g) > 0.
In our case T'(f) — T'(g) = Tp(f —¢g) > 0. Let ¢ > 0 be a scalar constant. T
satisfies the discounting condition if T'(f + ¢) — T'(f) < ¢4, where § € (0,1). To
see that this condition is not satisfied in general, let f = 0 and ¢ = 1. Then
T(f+c¢)—T(f) =Tp(1) — Tp(0) = e "2. Note that e "> > 1 where 7 < 0, which
violates the discounting condition. We have seen, however, that it is possible to
derive necessary and sufficient conditions for convergence in terms of the asymptotic
forward rate.

A first continuous-time approximation. Equation (2.10) exemplifies the re-
strictions we will derive as continuous-time approximations. In this case, of course,
no approximations were required. The restriction involves in the parameters of
forward-looking growth rate processes. The introduction of Markovian state vari-
ables turns the restriction into a system of difference equations.

It is straightforward to construct a continuous-time approximation to the solution
for the value of a perpetuity given the Markovian structure of the example above.
Assume that bond prices maintain their exponential-affine form as in (2.12). The
pair of difference equations that characterize the bond-price solution, (2.17), become
a pair of ordinary differential equations in the limit as A — 0. The solution to the

8This analysis extends to the class of exponential-affine and exponential-quadratic models as long
as the state variables are stationary.
9We could just as well start with p_ = 0.
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differential equations is the limit of the solution to the difference equations:'®

2 B _ KT\ Y 3 —2KT _ fe=RTY) 42
aT:(S_X_X)T+(1 e )X (Bte ) (2910

2 K2 K - 4 g3
e "7 -1

by = — (2.21Db)
Taking the limit as the step size goes to zero, we have p, = fsT:O Bsds, and p =
lim, .o p- if the limit exists. The condition for the positivity of the asymptotic
forward rate is the same in the continuous-time limit as in discrete-time; the integral
converges if and only if X —(||sx||/#)?/2 > 0. The advantage of the continuous-time
approximation lies in the efficiency gains from evaluating integrals using adaptive
quadrature instead of evaluating sums.!!

We can easily determine the magnitude of the approximation error when the
interest rate is constant. The value of the continuous-time perpetuity is simply
p = 1/r, whereas the value of the discrete-time perpetuity is p = A/(1 — e "4).
The continuous-time approximation understates the discrete-time solution by about
50r A percent. For A = 1/12 and r = 0.05, the understatement is about 0.21
percent.

Dividend-denominated perpetuities. We now consider assets with more gen-
eral dividend processes, where the dividend flow is always positive. We observe that
for assets with such dividend streams, the price—dividend ratio is itself the value
of a perpetuity measured in terms of the dividend process. In particular, (2.2) is
homogeneous in prices and dividend: One is free to multiply each of p, d, and p’ by
a constant a > 0. We can remove this degree of freedom by normalizing (2.2) by
the dividend d, assuming it is not zero, to produce

™= A+ E; [(my/mq) '], (2.22)

where m = p/d is the price-dividend ratio and m/;/mq = (m’'d’)/(md) is the dis-
count factor measured in terms of the dividend process. Equation (2.22) shows that
the price—dividend ratio is itself the value of an asset when measured in terms of
the dividend process: Its dividend is identically one (i.e., one unit of the dividend
process per unit of time); the asset is a dividend-denominated perpetuity.

Let the growth-rate for dividends be given by

log(d'/d) = fig A+ 04 - £ VA,

0This is essentially the Vasicek (1977) model of the term structure of interest rates. See Duffie
and Kan (1996) for the general exponential-affine case.

1 Ppress, Teukolsky, Vettering, and Flannery (1992) do not discuss adaptive quadrature directly in
their chapter on the integration of functions. Instead they refer the reader to their chapter on
the integration of ODEs for adaptive stepsize algorithms. Judd (1998) briefly discusses adaptive
quadrature. He seems to suggest that every subinterval gets subdivided, rather than just those
that need it, which would indeed make the method quite costly to use in general. An elementary
introduction to adaptive quadrature can be found in Skeel and Keiper (1993), where the authors
present “an algorithm that automatically determines an efficient partition that is fine enough for
the desired accuracy.” [Emphasis in the original.] For a textbook discussion of adaptive Gaussian
quadrature, see Buchan and Turner (1992).
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so that
fmg = fom + pflg  and oy, = op + 0.

The expressions for the interest rate and the price of risk in (2.7a) and (2.7b) in
terms of the drift and diffusion of the state—price deflator are not numeraire-specific.
In particular, they apply to m/,/mg:
3
2

We refer to rgy and Ay as the dividend-denominated interest rate and price of risk.

Given the dynamics of m and d, we can solve for dividend-denominated bond prices,
Bj, and thereby solve for value of the asset, the price-dividend ratio,

OO .

T = B .
> BiAA
i=0

Td = —flm, — \adeQ and A\ = —0op,. (2.23)

Equilibrium asset pricing: Standard preferences. Here we apply some of the ideas
already developed to equilibrium asset pricing.!? With standard time-separable
preferences, utility has the following recursive structure:

V=ulc)A+e PR E V'], (2.24)

where (3 is the rate of time-preference and u(x) = («” — 1)/p. As is well-known,
the marginal rate of substitution is e % (¢//c)?~!. For optimal consumption,
the intertemporal marginal rate of substitution equals with the one-period dis-
count factor as given by the growth rate of the state—price deflator: m'/m =
e B2 (d/e)P~!. In this setting, the dividend is consumption itself, the value of
the asset is wealth, the price—dividend ratio is the wealth—consumption ratio, and
the dividend-denominated intertemporal marginal rate of substitution is m/,/mg =
e BA(/e)r.
Let the conditional growth rate of consumption be given by

log(c'/c) = Jie A + 0 - e VA,
so that
- 1
rq =B+ plic — p 5 loe|?> and Mg = po..

Any state-dependence in m must enter through either ji. or o.. Therefore, to com-
plete the model, let pi. = = where the evolution of the scalar state variable z is
determined by

' —2=kr(Z—2)A+(sx,0) e VA, (2.25)

2Below we will equilibrium asset pricing in the more general setting of recursive preferences that
includes standard preferences as a special case.
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where k, Z, and sx are constant. Also let 0. = (s1, s2), where s1 and s9 are constant.
With these dynamics,

1 s
rdzﬂ—i-pa:—i—pzi(sf—i-s%) and A\g = Pery (2.26)

pS2

As noted in the introduction, the state variable is related to be the expected
growth rate of consumption, rather than the realized growth rate as is typical in
discrete-time models. In the typical formulation, log(¢//c) follows and AR(1). As
formulated here, log(c’/c) follows an ARMA(1,1), since 2’ — x is not perfectly cor-
related with log(c/c).

The solution to this equilibrium asset pricing models can follow the same steps
as the solution to the perpetuity problem: Solve for (dividend-denominated) bond
prices and add them up. If p = 0, then r4 = 3, the value of a dividend-denominated
zero coupon bond is B = e #7, and the wealth-consumption ratio is A/(1 —
e B2) ~ 1/p3. For p # 0, the (2.26) constitute a Gaussian model of the term struc-
ture that is essentially the same as the bond example solved above. The aymptotic
dividend-denominated forward rate is given by

2518)( S%(-
. .

L1
ﬁ+px+02§<8§+83 =

3. CONTINUOUS-TIME APPROXIMATIONS

In the previous section, the connection between the canonical perpetuity model
and general equilibrium asset pricing models with standard preferences was estab-
lished.!® In this section, continuous-time approximations to the discrete-time mod-
els are developed. The continuous-time approximations are based on first-order
approximations around A = 0, where A is the size of the time step. This allows us
to treat, for example, both z and 22 as normally distributed.'* This result provides
continuous time (and discrete-time approximations based on it) great analytical
flexibility.

The approach to characterizing asset prices described here, which is borrowed
from the continuous-time setting, eliminates explicit reference to 7’ in (2.22) since
in continuous time there is no “next period.” In its place are the dynamics of the
growth rate log(7’ /7). We proceed by dividing (2.22) by 7 and rearranging;:

A+ E[(]-1=0, where ¢ := (m};/mg) (7' /7). (3.1)

Let log(¢) ~ N(fic A,0¢VA), so that Ey[¢] = ef<?, where pe = fic + 3 ||loc||?.
Since

Afm+ et —1=(1/m+ pc) A+ O(AY),

130nly the case where the forcing variable is consumption, as in an endowment economy, was
treated. The case where the forcing variable is a stochastic return process is treated below as a
special case of optimization with recursive preferences.

YIf 2 ~ N(z+ pA,0VA), then, to a first-order approximation in A, (2)* ~ N(22 + (22 p +
02)A,2z0+v/A). See Appendix A.



CONSUMPTION AND ASSET PRICES: DISCRETE TIME 15

we can write (3.1) as
1/m+pe =0 (3.2)

to a first-order approximation, where we have divided through by A = 0.
We now assume the growth rates of my and 7 is log-normally distributed:

log(7' /) = fixr A+ 0x - e VA (3.3a)
log(mly/ma) = fim, A+ Oy, - € VA. (3.3b)
This assumption involves an implicit approximation, since as we saw in the example
above, 7 is not exactly log-normally distributed for finite A. Given (3.3), we have
10g(C) = (fir + fimy) A+ (0r + Tm,) - € VA,
and thus
fic = fix + [im, and  o¢ = [lox + om,ll. (3.4)

Therefore, pe = fix + fim, + % lox + omd||2, and we can write (3.2) as
~ - 1
1/7T+/Lﬂ-+,umd+§||0'ﬂ-+0'md||2:0. (3.5)

In order to solve (3.5) for 7, we need to specify state variables along with their
dynamics and how fi,,, and o,,, depend on those state variables.
Given (2.23), we can rewrite (3.5) as

1/m+ pr =74+ Ad - Ox, (3.6)

where pr = fix + 3 ||ox|* is the expected capital gain. Equation (3.6) expresses
the risk-return condition for a perpetuity: The expected return (relative dividend
plus relative capital gain) equals the risk free rate plus a risk premium. Since 7 is
the value of a perpetuity, we see immediately that if rg4 is constant then = = 1/ry,
regardless of the behavior of A\;. The exact solution to the discrete-time problem
when 74 is constant is 7 = A/(1 — e~ "¢?). The magnitude of the approximation
error can be determined by comparison.

Markovian asset price functions. To put some Markovian meat on the bones
on (3.5), typically one assumes there is an unknown function I such that = = IT(x)
and 7' = II(2") for some vector of state variables x that evolve according to specified
laws of motion:

¥ —z=px(x)A+ox(z)e VA, (3.7)

where px(z) and ox(x) are (respectively) vector and matrix functions of xz. The
dependence of the solution I on the state variables = arises solely through the
dependence of ji,,, and o,,, on the state variables, as illustrated by the example at
the end of Section 2.

For our purpose here, it is convenient to write (3.6) as

1+ fir=rqm+ Ay Or, (3.8)
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where fi; = prmand 6, = o, m asin ' — 7T =iy A+, € V/A. The discrete-time
version of Ito’s lemma (see Appendix A) delivers

fir = i (2) 11, (2) + 5 Lo (0) o (2)

or = ox(z) II(x)

to a first order approximation in A. Thus we can write (3.8) as
R 1 2
1+,U/Xﬂx+§ﬂmc||0'x|| —Rdﬂzo, (39)

where [ix :=pux — Ag-0x.

Solution methods. Let there be a single state variable x with the following risk-
adjusted dynamics: fix = n()_( — ) and ox = sx, where k, X, and sx are
constants, and let Ry(z) = x. In this example, dividend-denominated bond prices
are given by By(x,7) = e+ where a(r) = a, and b(1) = b, are given in
(2.21). Therefore the solution is given by IT(z) = [, e+ T g if the integral
converges.

In order to introduce a solution method that will prove quite useful for solv-
ing models with recursive preferences, we will apply the semi-analytic method of

undetermined coefficients to (3.9). First, insert the power-series representation
II(xz) =372, 0px™ into (3.9):

1+ (X -z Zné 2" 4

L\DI»i

o0 o0
Z (n—1)0 ”2—$Zénx":
n=2 n=0

Next, collect the coeflicients of powers of x to produce a system of linear equations
in the unknown § coefficients:

= 1
—0n— M+ 1)Kdpt1+ (N +2)K X Opto + (n+2) (n+3)§s%(5n+3 =0,

for n > —1 where §_; := —1. The first N equations (for N > 1) contain N + 2
coefficients: g through dny11. To solve this under-determined system we replace
the true coefficients §,, with approximations .Y and set 6 =6y ~N41 = 0, producing
a system of N equations in N unknowns: 6}’ through 5%_1. By increasing N, one
can examine the convergence of 6V for specific n. Of course in this example we can
compute the coefficients in the power series directly from bond prices. The Taylor
series for bond prices is

a(T) n
Byar) =3

n!
n=0

so that &, = = 1= e (1) dr.
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4. RECURSIVE PREFERENCES

The first problem one faces when dealing with recursive preferences is simply
evaluating the utility of a given consumption process. Recursive utility in discrete

time has the following form:!®

V =2(c, €(V")), (4.1)

where €(-) is the certainty equivalent operator and (-, -) is the intertemporal
aggregator. In particular,

1—ePAYePr fe PR 1/p, 0 <1,
e, z) = {(l(e—fm 2 ) e (4.20)
c z , p=0
and
e(e)= 0#asl, (4.2b)
exp {Et [log(z)] }, a =0,

where B > 0 is the rate of time preference, n = (1 — p)~' is the elasticity of

intertemporal substitution, and v = 1 — « is the coefficient of relative risk aversion
for static wealth gambles. The certainty equivalent for the lognormal distribution
has a simple expression: E [z%]/* = exp(u+a 02/2) for log(z) ~ N'(i, o). Inserting
(4.2) into (4.1) produces (for p # 0 and o # 0)

ap/a\ Y/ )
Vz((l—eiﬁA)c’)—i—e*ﬁAEt [(V’) ]p/) p, subject to Vp = Cep,  (4.3)

where ( cr is the terminal reward and ¢ > 0. Equation (4.3) has the recursive
structure of the Bellman equation, but without optimization. Since V is homo-
geneous in consumption of degree one, we can write V = cv, V' = 4/, and
Vi = cr ¢r for some process 1, and we can replace ¢, ¢/, and ¢y with ¢, £¢, and
Lcr for £ > 0. By choosing £ = (ct)~! we can write (4.3) as

((1-c72) v+ e B (e )] ~1 =0,
subject to Yp = (. (4.4)

Equation (4.4) is scale-free: It involves consumption only through its growth rate.
Note that the similarity between (4.4) and (3.1).
We model the conditional growth rates of ¢ and 1 as log-normally distributed,

log(¢'/c) = fie A+ 0c- VA (4.5a)
log (v /1) = iy A + g - VA. (4.5b)

15See Epstein and Zin (1991).
Risher and Gilles (1998) treat the case where ¢ = 0.
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Given (4.5), we can write (4.4) as

1/p
((1 - e‘ﬁA) VP +ePA exp {p (ﬁc + [y + a% lloe + a¢||2) A}) —1=0.
(4.6)

Taking the first-order approximation to (4.6) around A = 0 and canceling A pro-
duces

JUR 1 .
fie + iy + a5 loe + oy |* + Bu(1/$) =0, subject to Yy = ¢, (4.7)

where

P—1
u(az):x .
p

Equation (4.7) is valid for all parameter values including o = 0 and p = 0, where
u(z) = log(x) in the latter case. Given the dynamics of consumption, the process
1 that solves (4.7) provides the solution for utilty. We discuss how to solve (4.7)
below.

Marginal utility and the supporting price system. Marginal utility provides
the link to optimality.
We can use (4.3) to express how utility is expected to change over time. Define
z¢—1

P(z) =",

(%

and let V, = ®(V;). We can write (4.3) as

((1 —e PR P+ e PAE 1+ aV’]p/a>a/p -1

(%

V =

The first-order approximation around A = 0 produces
V= fle, B[V']) A+ E V']
= f(e, V) A+ E[V'], subject to Vp = &(C er),
where
f(c,v):z6u<cz*1/a), where z = 1+ aw.

Note that discounting, intertemporal substitution, and risk aversion are all in im-
pounded in f. We can write (4.8) as

V, = E, )

T—A B
S Flew V) A+ 0(Cer)
s=t

To get an expression for marginal utility, take the total derivative of (4.8):'7

8V = fe(e, V) Adc+ fy (e, V) AV + E;[oV'], (4.9)

Note that 0V is the current value of marginal utility, not the change in utility as time changes,
which is V' — V. The change in marginal utility as time changes is 6V’ — V.
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where f. and fy are the partial derivatives of f. Solving (4.9) for 6V, we have:
fe(c, V) Adc+ Ey[6V)
1— fv(eV)A
where the approximation is first-order in A. From (4.10), we see the marginal utility
of current consumption per unit of time is f.(¢, V) and the rate at which utility is

discounted is — fi-(c, V). Since (4.10) holds for marginal utility next period as well,
we can write

5V = = fu(e, V) Adc + elVEVIA BT, (4.10)

v’
0V = Fes V) Adet 08 By (e V) Ad T3 [577] |
(4.11)

Setting §V = §V” = 0 in (4.11), rearranging, and canceling A, we have
¢ = E, Kefv(c,v)A M) 50’}
fele, V)

for any feasible intertemporal rearrangement of consumption between ¢ and c'.
Therefore, we can express the one-period intertemporal marginal rate of substi-
tution G'/G as G'/G = e/v(EV)A f( V') fo(e, V)18 Given V = (V) = &(ct)) =
((c)* —1) /a and (4.7), we can write

fele, V) = Bty (4.12a)

Fole, V) = =B+ (o — p) u(1 /)

o 1 ) (4.12b)
=—B—(a—p) /~Lc+ﬂw+a§”‘70+‘7¢” ~

Given (4.12) we can write
~ 1
GG =ew{ ~ (840 -ph-alp-a) 5ot o) A

(1= a)ou+ (p-a)on) VA (413

Given the dynamics of consumption, the only unknown in the marginal rate of
substitution is the volatility of the information variable.

The supporting price system satisfies m’'/m = G’/G. Using (2.7), which expresses
the interest rate and the price of risk in terms of the dynamics of the log of the
state—price deflator, we have

N 1 1
r=B+1-ph—alp=-a)zlo.+ oyl — 5 A2 (4.14a)
A=(1-a)o.+ (p—a)oy. (4.14b)

Before proceeding we can use (4.14a) to confirm the interpretations of 5 and 7. Let
0. = 0 and ji. be constant. Since there is no state variation in this case, o, = 0 and

8Duffie and Skiadas (1994) derive this result in a semi-martingale setting that includes both
discrete time and continuous time as special cases.
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(4.14a) becomes r = 4 (1 — p) fi.. For constant consumption, r = (3, the rate of
time preference. In addition, dfi./dr = (1 — p)~! = 5, confirming that 1 measures
the elasticity of intertemporal substitution.

Wealth and the supporting returns process. Wealth k is the present value of
consumption:

k=cA + Ef(m'/m)K]. (4.15)
The dynamics of wealth are given by
K = (k—cA)(d/0), (4.16)

where ¢'/¢ is the return on wealth. We can interprete ¢ as the value of an asset
that earns the return on wealth with no drawdowns for consumption. As such, we
refer to ¢ as the value of the capital account. Eliminating k" from (4.15) and (4.16)
produces the absence-of-arbitrage condition for ¢:

Ey[(m'/m) (¢/¢)] = 1. (4.17)

Equation (4.17) provides a link from the capital account to the price system and
hence to preferences. Next we establish a second link from the capital account to
preferences.

As Fisher and Gilles (1998) show, the wealth—consumption ratio can be expressed
as the marginal utility of a permanent increase in consumption normalized by the
marginal utility of current consumption. The marginal utility of a permanent in-
crease in utility can be expressed as

oV 9 (cy)—1

A S S o a—1  «
dc e a v
and the marginal utility of current consumption is given in (4.12a). Therefore,
= /B, (4.18)

where 7 is the wealth-consumption ratio in this setting. Together (4.16) and (4.18)
provide the second link:

/ ! Iab)P
¢/ = —(cl/c_) Sj}k/z) : (4.19)
Given the dynamics of the stochastic return,
log(¢'/¢) = fig A+ 0 - e VA, (4.20)
Equations (4.17) and (4.19) imply
o =7+ A0y — oy (1.21a)
Op = 0c+ poy. (4.21b)

Note that the returns process is independent of wealth. Together (4.14) and (4.21)
establish the relations among the dynamics of consumption, the supporting price
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system, and the supporting returns process. For example, we can use (4.14b) to
eliminate o, from (4.21b) and express the price of risk as

A:w%+u—w<%ﬁ. (4.22)

Evidently risk premia depend on the covariance with the returns process and with
the information variable. Campbell (1993) derives an equivalent expression for
risk premia (his Equation (25)), which he refers to as the “cross-sectional asset
pricing formula that makes no reference to consumption.” We can obtain Campbell’s
parameterization with a change of variables. Define w := . Then Oy = 10y,
and (4.22) becomes A = y04 + (1 — ) 0.

The information variable as a weighted forecast. Given (4.8), we have
V-V =—f(c,V)A+op-eVA,

for some oy;. Let V = g(V). Using the discrete-time version of It6’s lemma, we can
compute

V’—V:MVA—i—aV-g\/Z,

where

po =~ (N Fe V) +g" (V) S lopl’ and oy =g(V)op.  (423)

We can use the expression for oy, and the inverse function g_l(V) to eliminate oy
and V' from py:

/WZ—JQIWDwa1WD+d%g(W)1

T/ N\29
g’<g‘1(Vﬁ>
By choosing g(z) = ((1+az)?/* —1)/p, we can make the first term in py linear in
V:

log1”

Thus we can write

~

V= (s -1+
which is equivalent to

(Bule) + 25 Fllop|2) A+ B[V
L+ BA (4.24)
. a—p 1 2) -BA %
= | Bul(e) + — — |lo¢ A+e E(V7.
(90t + 2= S oy 7]
Equation (4.24) shows that the current flow of utility is composed of two parts.
The first part is the standard “felicity” of consumption, Su(c). The second part
depends on the conditional variance of utility itself. The sign of the second part is

a—p 1
1+pV 2

HWW>A+&Wm

V=
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determined by the sign of a — p. If & — p < 0, then an increase in the conditional
variance of utility reduces current utility. This can be interpreted as a preference
for early resolution of uncertainty. Similarly, « — p > 0 indicates a preference for
late resolution of uncertainty. Standard preferences (o — p = 0) display indifference
to the timing of the resolution of uncertainty.

Repeated recursive substitution for expected future utility in (4.24) produces

T—-A

Z o B(s—1) {5u(cs) L e7r 1 gVSH?} A+ e BTy CT)]

V,=E :
e 1+ pV; 2

s=t

=E, {/T e A=) {/Bu(c )+ a-p 1 lov HQ} ds + e P TV y(Cer)
s=t ° 1+pVs 27V
(4.25)

where we have approximated the sum with an integral and we have used the fact

that V = u(V) in writing the terminal reward. Using V = u(c1)), low |2/ (1+p V)=
VPllov/V]?, and u(x)/y? +u(1/y) = u(z/y), we can write (4.25) as

T
u(y) = / Be Pt g, [u <%>] ds+ e PT-V g, [U (C C—T>
s=t Ct ct

T
1
(o — p) / e Pl B, [ §§ lloe, + U%HQ} ds. (4.26)
s=t

)

+

For p =0 (4.26) becomes

T
log(v)) = /_tﬂe_ﬁ (=) B, [log (Z-j)] ds+e BTV E, {log (C Cc—fﬂ +

T
N / B0 g, B ||o'cs+a¢s||2:| ds. (4.27)

=t
Equation (4.27) expresses the information variable as a weighted forecast of con-
sumption growth rates plus a weighted forecast of conditional variances. If the
conditional variances are constant, then variation in the information variable will
come solely from variation in the weighted forecasts of consumption growth.

We can easily convert (4.27) into a weighted forecast of growth rates of the capital
account. For p =0, fi. = iy — f and 0. = 0y, so we can write (4.27) as

T
log () = / . Be Bl—1) E, [log (%)} ds+ E, [log <g %)} -

T
(1 —e P (T_t)) +a / e PV E, B llog, + JwSHQ} ds (4.28)
=t

sS=

The approximations in Campbell (1993) are implicitly based on (4.28).

Optimal consumption. Up to this point, we have treated the consumption process
as given: Current opportunities have been given by current consumption and fu-
ture opportunities have been determined by the dynamics of consumption. Now we
change perspective. Consumption is no longer given exogenously. Instead, current
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opportunities are given by current wealth and future opportunities are determined
by stochastic investment returns—either directly via the investment technology or
indirectly via the price system.

The dynamics of wealth embody the consumption—investment trade-off. We can
interpret d¢/¢ as the return on optimally invested wealth and o4 as the volatility of
the optimal portfolio. We refer to ¢ as the value of the capital account. The capital
account tracts the value of a marginal investment. The source of returns could be
a portfolio of securities, or it could be a single stochastic investment technology. In
either case, the value of the capital account represents the outcome of the following
investment strategy: invest one unit of the consumption good in the returns process
at time zero and thereafter continuously reinvest the proceeds.

In the current setting, the information variable will summarize all relevant in-
formation about future opportunities as reflected in the dynamics of either the
state—price deflator or the capital account. In other words, the information variable
must conform to the dynamics of the forcing variable. Previously, in the endowment
setting, the forcing variable was consumption. We now allow the forcing variable
to be the state—price deflator or the capital account. The restriction ¢ must satisfy
when the forcing variable is the state—price deflator is obtained by eliminating f.
and o, from (4.7) using (4.14). Similarly, the restriction ¥ must satisfy when the
forcing variable is the capital account is obtained by eliminating f. and o. from
(4.7) using (4.14) and (4.21).

TABLE 1. Coefficients for Equation (4.29).

Yy ap ai ag

c 0o 1 1—~

¢ —Bn n  (A-=7)/n
I/m —Bn n (1-7)/(n7)

Thus there are three versions of (4.7), the central restriction on the information
variable, each depending on a different choice for the forcing variable. It is conve-
nient to formally unify all three restrictions. To that end, we denote the generic
forcing variable y and its dynamics dlog(y(t)) = fiy(t) dt + o, (t) " dW (t), where y
is either consumption (c), the capital account (¢), or the inverse of the state—price
deflator (1/m). We can write all three restrictions as

~ - 1 .
ao+ a1 fiy + iy +azg oy + a1 0yl|* + Bu(l/¥)) =0, subject to (T) = ¢,
(4.29)
where the coeflicients a; are given in Table 1. Given the dynamics of the forcing

variable and the solution to (4.29), we can use (4.14) and (4.21) to compute the
dynamics of the remaining variables.
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Wealth—consumption ratio, again. For n # 1, a change of variable from 1 to
7 = k/c allows us to express (4.29) as (3.6). Using m = ¥? /3, p fiy = fix, p Oy = O,
and fir = pr — 3 ||ox||?, we can rewrite (4.29) as (3.6), where

_ 1 1
ra=do+dy iy + di dy 5 |loy I = (/)5 ol (4.30a)

A = —do oy + (€/d1) Ox. (4.30b)

The coefficients d; are given in Table 1. As long as n # 1, Equations (4.29) and (3.6)
are equivalent in the sense that the relation between 1 and 7 can also be inverted.
However, when n = 1, (3.6) devolves to 1/7 = 3, and ¥ cannot be recovered from
m. In this case, one must attack (4.29).

TABLE 2. The coefficients of Equation (4.30) in terms of the prefer-
ence parameters (columns 2-5).

y do dy do e=d +dy
c B 1n-1 1-v 1/n-vy
¢ np l1l-n 1-v 2-n-v
I/m nB 1-n 1/y=1 1/y—n

In (4.30), the dividend-denominated interest rate and price of risk are not exoge-
nous unless either o, = 0 (in which case ry must be deterministic) or £ = 0. The
latter case depends on the parameter values and the forcing process. For example,
if the forcing variable is consumption, then standard preferences imply ¢ = 0. By
contrast, if the capital account is the forcing variable, then standard preferences

imply ¢ # 0.
5. NUMERICAL SOLUTIONS FOR RECURSIVE UTILITY

Solving the model amounts to solving for the information variable given the
dynamics of a forcing variable. In this section we solve (4.29) for the information
variable in a continuous-time Markovian setting.

Markovian structure. We suppose there are d Markovian state variables X driving
the forcing process y, where y = ¢, or 1/m, or ¢. The joint dynamics of X and y
are given by

ax(@) | _ [#x(X(®) ox(X(t)"
dlog(y(t)) py (X (1)) oy (X(t)"

where WT = (W;— , Wy) is a [-dimensional vector of orthonormal Brownian motions,

with W, (I — 1)-dimensional and W, scalar. The dimensions of ox(z) and oy (x)

are respectively [ x d and [ x 1. We assume that the last column of ox(z)" is



CONSUMPTION AND ASSET PRICES: DISCRETE TIME 25

a vector of zeros, so that the state variables are not affected by W,: ox(z)" =

(Sx(z)" 0), where ¥x(z) is (I — 1) x d."” Note that even if the state variables are
deterministic (ox(x) = 0), y can be stochastic; a completely deterministic economy
would require oy (z) = 0 as well. The following functions of the state variables are
called collectively the data:

Tox(z), ox(z)oy(z), and oy(z) oy(z). (5.1)

px (@), py(z), ox(z)

For the most part, we will take ( > 0 so that the information variable is strictly
positive and finite. In addition, since we have assumed the data do not depend on
time, the solution will be time-homogeneous. As a consequence, it is convenient to
model log(¥(t)) = 2(X(t), T —t). Given the function §2(z,7), we can compute the
functions for the drift and diffusion iy (t) = pe(X(t),t) and oy (t) = op(X(t),1),
in terms of the partial derivatives of (2:

po(z,7) = Qu(z,t) " ux(z) + % tr (ox(z) ox(z) 2pe(, 7')} —2:(z,7) (5.2a)
ooz, 7) = 2(x,7) ox (). (5.2b)

The data turn (4.7) into a quasi-linear partial differential equation (PDE) in terms
of the unknown function {2,

fiy (z) + po(z, 7) + alloy(z) + ooz, 7)) + Bu (e—fl(w)) —0, (5.3)

subject to the boundary condition 2(x,0) = log(¢).2° It can be shown that if
the data are real analytic, a unique real analytic function {2(z,7) exists in the
neighborhood of 7 = 0.2! The theorem does not guarantee the existence of a solution
for an arbitrary finite horizon. In Section 5 we will encounter an example that fails
to have such a solution. However, if solutions exist for all finite horizons, then they
converge to an infinite-horizon solution if and only if lim,_,», §2;(x,7) = 0.

Solution method. We present a method for numerically solving (5.3). Our nu-
merical solution technique can be thought of as the method of undetermined co-
efficient functions. It is based on the exact solutions described in the previous
section for p = 0. To illustrate our method and to reduce the notational burden,
we suppose there is a single state variable. Given real analytic data, {2(x,7) has
the power-series representation expanding around x = zg and treating 7 as a pa-
rameter: £2(z,7) = > o7 16,(7) (x — x9)". The condition for convergence to an

19This assumption is without loss of generality. It simply allows for the possibility that there exists
a shock, Wy, that affects y but not X.

2Duffie and Lions (1992) address the existence and uniqueness of V' in a similar setting.

21This is due to the main existence theorem for PDEs, the Cauchy-Kowaleskaya theorem. See
Rauch (1991, Chapter 1), for example.
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infinite-horizon solution is {2, (x,7) = 0. The partial derivatives are given by

(2, 7) =D 6,(7) (x — z0)"
n=0

Qaw(,7) =D _1(n—1)6u(7) (x — 20)" 2
n=0

The boundary condition, 2(z,0) = log(¢), implies 69(0) = log(¢) and 6;(0) = 0 for
i > 1. The solution method becomes operational by approximating {2(z, 7) as

N
OV (a,7) = 36N () (2 — o),
n=0

which is inserted into (5.2) and the result is inserted into (5.3), upon which the
N-th order Taylor approximation is computed. The result can be separated into
a system of nonlinear ordinary differential equations. In the previous section with
p = 0, we saw three examples where this representation provided exact solutions
with finite N.

For comparison with Campbell (1993) and Campbell and Koo (1997), we treat
the case where the forcing variable is the return on optimally invested wealth. We
adopt the following dynamics:

dx = Kk (T — x)dt + sx dW; (5.4a)
dlog(y) = (ay + by z) dt + s1 dW; + s9 dWo. (5.4Db)

In order to directly compare with their results, we adopt a change of variables.
Define w := ¥/, We can write (4.29) in terms of w for y = ¢:

54 (Rt it A=) glowtool?) +5u1fn =0, 69

subject to w(T) = ¢'/7. Now we let log(w(t)) = 2(X(t),T —t). Given (5.4) we
have

po(z) = k(2 —z) 2,(x,7) + 5% % Qur(z,7) — 20 (2, 7) (5.6a)
oo(z) = | F 90 (@) (5.6b)

We are now set to apply our truncated series representation to the Markovian
version of (5.5). Let ( = 1 so that {2(x,0) = 0. For example, with N = 1 and
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ro = I, we have

B (1—e(-md(r)
( — )+41—w%<@y+mﬂﬁﬂf+s® (5.7a)

5{@):1—(H+5akm%“§5aﬂ, (5.7b)

§(r) =2+

subject to 63(0) = 61(0) = 0. For N = 2, we must add terms to the right-hand sides
of (5.7) (changing 8} to §2): s% 63(7) to (5.7a) and sx (1 — ) (s1 + sx 02(7)) 05(7)
to (5.7b), where

3 () = 5 DR (1) 83 (r)? -
(26+B80MBO) B(r)+2(1 =)k BT (5:8)
subject to d2(0) = 0.

Special cases. There are two cases where (5.7) provides an exact solution. Both
cases involve a linearization of (5.7). These cases can be understood in terms of the
dividend-denominated asymptotic forward rate, f;(cc). Using the relations already
established above, we can write the dividend-denominated interest rate and price
of risk as??

=8+ (=0 {7+ (=D gloel - @-n-DglolP}  G99)

Ad=(y—1)op = (2—n—7)oy. (5.9b)

A potential difficulty we face in using (5.9) is the presence of oy, which is part
of the solution, in the expressions for both r; and A\;. However note that when
1+ = 2, the terms involving o, drop out of (5.9), leaving (in this example) an
exponential-affine model of the dividend-denominated term structure.

For the first case, consider n = 1. In this case, 4 = (. Therefore f3(c0) = 3. For
(8 > 0, convergence to an infinite-horizon is guaranteed. In this case, (5.7) becomes

%%ﬁ=f—ﬂ—ﬂ%ﬁ%ﬂl—w%(@Hﬂx&@»2+£) (5.10a)
V') =1—(k+B)6 (7). (5.10Db)

Moreover, the right-hand side of (5.8) is proportional to d2(7) when n = 1, which
makes it identically zero, given its starting value. All higher-order terms are simi-
larly zero. Since convergence is guaranteed, 6}’ (co) = 61’ (c0) = 0. Therefore we can
reexpress (5.7b) for the infinite-horizon problem as a system of algebraic equations,

0=z — B —Bo(cc)+(1—7) % (51 + 5x 61(00))* + 3) (5.11a)

0=1— (k+8)d1(0), (5.11b)

22See Fisher and Gilles (1998) for a unified treatment of all three forcing variables.
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with the unique solution

_ 2
dp(00) = :c;ﬁ + (1=7) % ((31 + X ) +s%> (5.12a)

61(00)

s (5.12b)

For the second case, let fz(co) < 0. In this case there is no infinite-horizon
solution: The wealth—consumption ratio, which is the value of an annuity, grows
without bound, and its inverse, the consumption—wealth ratio, shrinks to zero as
the horizon goes to infinity. Recall that ¢/k = B!'~". (Consequently 1 — 0 for
n < 1and ¥ — oo for n > 1.) The term Sel =7 5 () captures the scale of ¢/k, and
so it goes goes to zero, thereby linearizing the system of ODEs. For large 7, (5.7)
becomes

5(r) =38+ % +(1=7) % ((81 +sx61(r))° + 33) (5.13a)

sV(r) =1—kdl (7). (5.13b)

For N > 1, all higher-order coefficients are asymptotically zero, so that the model
is asymptotically first-order in the region of nonconvergence. Using (5.13b), we can
compute lim;_,o, 61(7) = 1/k. Inserting this into (5.13a) produces
lim 8. (7) = 7 — B _ L 24 42
im 6/(r) =% — B+ +(1—7) ((31 +sy/k)?+ 32) . (5.14)
T—00 1—7n 2
Because the model is asymptotically first-order in the region where it does not
converge, we have lim, .o, oy = (sx/k, 0).2 As a result, we can use (5.9) to
identify the regions of nonconvergence. For the regions of nonconvergence in this
example, we can write ry = ag + a3 x and Ay = ({1, {3), where

a0 =18+ (1=n) 5 {(1=7) (s} + ) — (2 =1~ ) (sx/w)?)}

ar=1—n
h=0-1)s—-(2-n-7)(sx/r)
ly=(y—1)so.

are scalar constants. The asymptotic forward rate is

fa(o0) = ag + (a?— 3)261) - (Oj};§>2 (5.15)

Note that the condition f;(c0) = 0 is equivalent to the condition lim, .« d'(7) =0
in (5.14).

23In essence what happens is this. As the horizon increases, the annuity value comes to be dom-
inated by limiting values of the underlying discount bonds. If the data are structured to deliver
exponential-affine dividend-denominated discount bonds absent the oy terms in r4 and A4, the
state-dependence of the annuity will inherit that structure in the nonconvergent case, guaranteeing
that rq and Aq including the oy, terms will deliver the same formal state-dependence asymptotically.
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Let h(t) = (1 —n)64(7) and f := fy(cc). For f <0 and 7 large, we write (5.7a)
as

W(r)=f—pe". (5.16)
The solution to (5.16) subject to h(0) = hg is
— =7 (e—ho _
h(r) = log (ﬂ{}jj—é—e (e B/f)) for f<0 (5.17)
—log(e 0—1—67‘) for f =0.
Therefore, for f < 0, we have lim, .o, €™ = 0 and lim, .o, R'(7) = f. Since
lim; o (1 —7)d4(7) = —oco for f <0, we have in this case
— fi 1
lim 0) () = co form <
T—00 +oo formn > 1.

Notwithstanding the ill behavior of the scale of the economy in terms of the
wealth—consumption ratio, the dynamics of consumption growth and of the state—
price deflator (i.e., the interest rate and the price of risk) are well-behaved as the
horizon goes to infinity in the nonconvergent case. Using the relations already
established, we can write the process for the state—price deflator and for optimal
consumption as follows:

_ 1
r=fiot (=) =5 ) lool? + (= Dol (5.188)
A=7v0s+(y—1)oy (5.18Db)
_ _ |
fie =1 (fis = B) + (L =) (v = 1) 5 llow + oyl|” (5.18¢)
oc =04+ (1 —n)oy. (5.18d)

The dynamics in (5.18) depend only on oy, which in turn depends only on ¢; = 1/k.

Numerical investigation. For a numerical investigation, let
6 =0.06, kK =2.67, sx =0.126, £ = 0.065, s; = 0.16, and sy = 0.04.

The parameter values are all measured per annum, and have been chosen to (roughly)
match the monthly moments in Campbell (1993). Numerical solutions for various
combinations of 7 and v are summarized in Tables 3-7. The first column indicates
the order of the approximation, IV, which runs from 1 to 9. In the second column,
ZN(z0,7) is computed as a measure of whether there has been convergence. In the
tables, zg = .065 and 7 = 10° years.?* Numbers less the 10~'¢ in absolute value are
reported as zero.

Table 3 presents the results for n = 1 and v = 2. The results in the table confirm
our analysis in this case. The value of the time derivative in column 2 indicates
that an infinite-horizon solution does indeed exist. The first-order solution appears
to be exact, since higher-order terms contribute nothing. Even absent analytical
proof, we can always insert the solution into the PDEs, and evaluate the absolute
value of the residual as a function of the state variable at the horizon in question.

24The initial stepsize taken in solving the ODEs is 1076 years (= 31.5 seconds).
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N Z¥(wo,7) 5 () o (1) o5(r) 85'(r) &Y (r) 85'(r) 4&F(7)
1 0 —2.8416(—1) 3.6630(—1)
2 0 —2.8416(—1) 3.6630(—1) 0
3 0 —2.8416(—1) 3.6630(—1) 0 0
4 0 —2.8416(—1) 3.6630(—1) 0 0 0
) 0 —2.8416(—1) 3.6630(—1) 0 0 0 0
6 0 —2.8416(—1) 3.6630(—1) 0 0 0 0 0
7 0 —2.8416(—1) 3.6630(—1) 0 0 0 0 0
8 0 —2.8416(—1) 3.6630(—1) 0 0 0 0 0
9 0 —2.8416(—1) 3.6630(—1) 0 0 0 0 0
0 signifies less than 10716 in absolute value; n(d) := n x 10<.
TABLE 3. n =1,y =2, 7 = 10°, and o = 0.065.
N E¥(zo,7) 5 (1) 57 (1) ' (1) 83 (1) 83 (1) 8 (1) 5 (1)
1 0 —2.4934(—1) 3.6403(—1)
2 0 —2.4914(—1) 3.6402(—1) 9.4148(—4)
3 0 —2.4914(—1) 3.6402(—1) 9.4253(—4) —7.3255(—5)
4 0 —2.4914(—1) 3.6402(—1) 9.4261(—4) —7.3314(—5) 4.6005(—6)
5 0 —2.4914(—1) 3.6402(—1) 9.4261(—4) —7.3318(—5) 4.6032(—6) —2.2577(—7)
6 0 —2.4914(—1) 3.6402(—1) 9.4261(—4) —7.3318(—5) 4.6034(—6) —2.2586(—7) 7.7784(—9)
7 0 —2.4914(—1) 3.6402(—1) 9.4261(—4) —7.3318(—5) 4.6034(—6) —2.2587(—7) 7.7793(—9)
8 0 —2.4914(—1) 3.6402(—1) 9.4261(—4) —7.3318(—5) 4.6034(—6) —2.2587(—7) 7.7790(—9)
9 0 —2.4914(—1) 3.6402(—1) 9.4261(—4) —7.3318(—5) 4.6034(—6) —2.2587(—7) 7.7790(—9)
0 signifies less than 10716 in absolute value; n(d) := n x 10¢.

TABLE 4. n =2, v=2, 7 = 10°, and = = 0.065.

For n = 1, the residual is indistinguishable from zero for all values of v and at all

horizons.

In Table 4 we move away from the analytically available solutions to n = 2 and
~v = 2. In this case the solution has infinite order. Here we see that the coefficients

converge quite rapidly of a function of IV: 5]]\\,7_2

has converged to five significant

digits. Also note that the coefficients die off rapidly as a function of order. The same
observations hold for the coefficients in Tables 5 and 6. Note that in Tables 46,
8 remains close to 1/(8 + k).
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N =N (zo0,7) 5 (1) 87 (1) ' (1) 85 (1) 33 (1) 52 (1) 3 (1)
1 0 —3.3570(—1) 3.6861(—1)
2 0 —3.3591(—1) 3.6862(—1) —5.4124(—4)
3 0 —3.3591(—1) 3.6862(—1) —5.4061(—4) —4.3393(—5)
4 0 —3.3591(—1) 3.6862(—1) —5.4066(—4) —4.3356(—5) —2.8664(—6)
5 0 —3.3591(—1) 3.6862(—1) —5.4066(—4) —4.3359(—5) —2.8645(—6) —1.5459(—7)
6 0 —3.3591(—1) 3.6862(—1) —5.4066(—4) —4.3359(—5) —2.8647(—6) —1.5451(—7) —6.6105(—9)
7 0 —3.3591(—1) 3.6862(—1) —5.4066(—4) —4.3359(—5) —2.8647(—6) —1.5451(—7) —6.6082(—9)
8 0 —3.3591(—1) 3.6862(—1) —5.4066(—4) —4.3359(—5) —2.8647(—6) —1.5451(—7) —6.6082(—9)
9 0 —3.3591(—1) 3.6862(—1) —5.4066(—4) —4.3359(—5) —2.8647(—6) —1.5451(—7) —6.6082(—9)
0 signifies less than 107 ¢ in absolute value; n(d) := n x 10¢.

TABLE 5. n =0, v =2, 7 = 10°, and =g = 0.065.

N =N (z0,7) 5o (7) 87 (1) 53 (1) 83 (1) 85 (1) 35 (1) dg (7)
1 0 8.7011(=2) 3.6697(—1)

2 0 87210(—2) 3.6697(—1) 6.8632(—4)

3 0 8.7210(—2) 3.6697(—1) 6.8632(—4) —b5.4442(—5)

4 0 8.7210(—2) 3.6697(—1) 6.8638(—4) —5.4442(—5) 3.5329(—6)

5 0 8.7210(—2) 3.6697(—1) 6.8638(—4) —5.4446(—5) 3.5320(—6) —1.8447(—7)

6 0 8.7210(—2) 3.6697(—1) 6.8638(—4) —5.4446(—5) 3.5331(—6) —1.8447(—7) 7.3644(—9)
7 0 8.7210(—2) 3.6697(—1) 6.8638(—4) —5.4446(—5) 3.5331(—6) —1.8447(—7) 7.3644(—9)
8 0 8.7210(—2) 3.6697(—1) 6.8638(—4) —5.4446(—5) 3.5331(—6) —1.8447(—7) 7.3643(—9)
9 0 8.7210(—2) 3.6697(—1) 6.8638(—4) —5.4446(—5) 3.5331(—6) —1.8447(—7) 7.3643(—9)
0 signifies less than 107'¢ in absolute value; n(d) := n x 10%.

TABLE 6. n =2, v=1, 7 = 10°, and zg = 0.065.

Even though the coefficients in Tables 4-6 have converged, both as functions of 7
and N, there remains the question as to how well =¥ (z, o) fits the defining restric-
tion. Since the solution method is local in nature, the fit will be perfect at xy and
decay as we move away.?> There are two related issues here. First, what is the range
over which we desire a good fit, and, second, how good a fit should the fit be? To help
determine the appropriate range, we can compute the unconditional distribution of
the state variable. In our example, z ~ N (Z,sx/v2k) = N (0.065,0.054526). A
range centered on Z that includes more than 99.9 percent of the PDF is (—0.12, 0.25).
Table 8 shows the errors at the endpoints for the parameters in Table 4. Even the
first-order approximation is reasonably accurate over the region.

Tables 7 shows results for n = 4 and v = 0. With these parameter values there
is no convergence. The time derivative is clearly not zero, even at a horizon of 10°
years. Moreover, all of the coefficients higher than first-order are effectively zero

25In general, the decay need not be monotonic in | — zo]|, although it is for this example.
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N =)Y(xo,7) 5 (1) 61 (1) 03 (r) 65 (r) 6 (r) &8 (r) &F'(7)
1 7.2641(—3) 7.2684(2) 3.7453(—1)

2 7.2641(—3) 7.2684(2) 3.7453(—1) 0

3 7.2641(—3) 7.2684(2) 3.7453(—1) 0 0

4 7.2641(—3) T.2684(2) 3.7453(—1) 0 0 0

5 7.2641(—3) 7.2684(2) 3.7453(—1) 0 0 0 0

6 7.2641(—3) 7.2684(2) 3.7453(—1) 0 0 0 0 0
7 7.2641(—3) 7.2684(2) 3.7453(—1) 0 0 0 0 0
8 7.2641(—3) T.2684(2) 3.7453(—1) 0 0 0 0 0
9 7.2641(—3) T7.2684(2) 3.7453(—1) 0 0 0 0 0

0 signifies less than 10716 in absolute value; n(d) := n x 10<.

TABLE 7. n =4, v =0, 7 = 10°, and z = 0.065.

N z=-012 x2=0.25

1 1.7858(—4)  1.7074(—4)
2 3.8123(-6) 3.6916(—6)
3 5.8662(—8) 5.7292(—8)
4 6.6224(—10) 6.5169(—10)
5 5.0328(—12) 5.0061(—12)
6 1.1414(—14) 1.2122(—14)
7 3.5388(—16) 3.9205(—16)
8 0 0

9 0 0

0 signifies less than 10716 in

absolute value; n(d) :=n x 10%.

TABLE 8. FErrors at the end points for n =2 and v = 2.

at this horizon. The residual from the PDE is indistinguishable from zero at this
horizon. Also note that §% = 1/k = 0.37453 as expected.

The regions of non-convergence can be identified by examining the dividend-
denominated asymptotic forward rate. Using the expression for f;(c0) in (5.15), we
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can map out the regions of nonconvergence. Panel (a) of Figure 1 shades the regions
where fy(c0) < 0. Standard preferences are plotted as the rectangular hyperbola
ny = 1. Note that there is no infinite-horizon solution for standard preferences
unless 0.26 < v < 4.65. This rules out the level of risk-aversion that has previously
been found consistent with the moments of asset returns and consumption growth.
Panel (b) of Figure 1 illustrates the effect of lowering the rate of time preference
to 8 = 0.02 on the regions of nonconvergence. We see that a sizable fraction of
the region Campbell studied is nonconvergent in this case. In the limit as § — 0,
the regions of nonconvergence form a checkerboard, approaching the point (n,7) =
(1,3.9195).

FIGURE 1. Preference parameter space: The elasticity of intertem-
poral substitution () on the horizontal axis and the coefficient of
relative risk aversion () on the vertical axis. Areas of nonconver-
gence are shaded. The dashed line delimits the region studied by
Campbell (1993). The panels differ only in the rate of time prefer-
ence (). Panel (a) uses § = 0.06 from Campbell, while panel (b)
uses 3 = 0.02.

Convergence and its absence can be viewed from the perspective of solving a
system of nonlinear equations. In particular, setting the time derivatives to zero,
(5.7) becomes a system of nonlinear algebraic equations in the unknown variables (56
and &{. For each of the parameter combinations in Tables 3-7, these equations are
plotted in Figure 2, where the absence of a solution (at least in the neighborhood of
the origin) is evident in the last frame. One advantage of the ODE approach it that
it provides a solution method that finds the convergent solution if it exists, even in
the presence of multiple solutions to the nonlinear equations.
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n=1 v =2 n=2 vy =2 n=20v=2
2 2
! \ LN
0 0
-1 -1 -1
-2 -2 -2
-2-10 1 2 -2-10 1 2 -2-10 1 2
n=2 vy-=1 n=4 y=20
2
1 1
0 —  _—
-1 -1
-2 -2
-2-10 1 2 -2-10 1 2

FIGURE 2. Contour plots associated with Tables 3-7. &} is measured
on the horizontal axis and 5% is measured on the vertical axis.

Now consider a model with two state variables. Augment the previous model
with stochastic volatility. In particular, let

dlog(¢) = xdt + 51 dW; + \/y dW>
de =k (Z —x)dt + sx dW;
dy = ky (§ —y) dt + sy /y dWa.

We keep the values for s1, Z, k, and sx from the previous example, and let § = 0.042
so that \/y = .04 (= s2 from the previous example). Finally let ky = 1 and sy =
.02.26 Table 9 shows some results for = 2 and v = 2. There are (N + 1) (N +2)/2
coefficients 0;;(7) for which ¢ + j < N. The upper-left number in each block is
the constant term dpo(7). The remaining numbers in the first row of each block
are the coefficients on powers of x — Z, while the remaining numbers in the first
column of each block are the coefficients on powers of y — y. The time derivatives
are essentially zero, indicating the existence of an infinite-horizon solution for these
parameter values. As in the one-factor example, the coefficients converge rapidly as
a function of N. Note that the coefficients for x are little changed from the previous
example, while at the same time y enters the solution with an impact of the same
magnitude as . In Table 10, the coefficient of relative risk aversion is set to one,
which is the CAPM. In this case, the model reverts to a one-factor model: The
volatility of the return on the market plays no role. In Table 11, the parameters

26These values have been chosen arbitrarily.
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are n = 5 and v = 5. In this case, the coefficients for y do not decay as rapidly as
previously with respect to the order.

3.6402(—1) 9.4132(—4)

(-1)
(1)
(1)
—4.5576(—1) —3.3897(—3)
3.7764(—3)
3.0 —2.4895(—1)  3.6402(—1) 9.4236(—4) —7.3243(—5)
—4.5576(—1) —3.3944(—3) 3.4113(—4)
2 3.7833(—3) —b5.6083(—4)
3 3.4483(—4)
4 0 0 —24895(—1)  3.6402(—1) 9.4244(—4) —7.3302(—5) 4.5999(—6)
1 —4.5576(—1) —3.3947(—3) 3.4145(—4) —2.6436(—5)
2 3.7838(—3) —5.6147(—4) 5.7989(—5)
3 3.4532(—4) —5.8242(—5)
4 2.3228(—5)

0 signifies less than 107! in absolute value.

TABLE 9. n=2,v =2, 7 = 10°, 29 = 0.065, yo = 0.0016.

APPENDIX A. ITO’S LEMMA IN DISCRETE TIME

In continuous time, Ito’s lemma provides a rule for computing the Ito process for
f(x,t) given the Ito process for z. It requires f be twice continuously differentiable
in x and one continuously differentiable in t. Here we derive a version of [to’s lemma
for the discrete-time processes in this paper as a first-order approximation around
A =027 Let

¢ —r=pxA+ox-eVA and t —t=A. (A.1)
We seek expressions for y1y and o such that

F@ ) = f(at) = pr A+ op-e VA (A-2)

#7See for example Hull (1993) for a similar derivation.
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N EN 0 1 2 3 4

1 0 0 87011(—2) 3.6697(—1)

1 0

2 0 0 87210(—2) 3.6697(—1) 6.8632(—4)
1 0 0
2 0

3 0 0 87210(—2) 3.6697(—1) 6.8632(—4) —5.4442(—5)
1 0 0 0
2 0 0
3 0

4 0 0 87210(—2) 3.6697(—1) 6.8638(—4) —5.4442(—5) 3.5329(—6)
1 0 0 0 0
2 0 0 0
3 0 0
4 0

0 signifies less than 1071 in absolute value.

TABLE 10. n =2, v =1, 7 = 10°, zg = 0.065, 3o = 0.0016.

to a first-order approximation in A near zero. Given (A.1l) we can write
f@' t) = f(z,t) = f(x+ pux A+ ox -e VA t+ A) — f(z, 1)
= <ft + fo pix + % frz llox|? (6)2> A+ fooxeVA+O(AY?), (A3)
where f, f., and f., are the obvious partial derivatives of f with respect to ¢ and

x. Note the presence of (¢)? A in (A.3). Letting z := f(z/,t') — f(z,t) and using
Ey[(2)?] = 1, we can compute from (A.3)

Eils] = (ft Fux fo+ g fon 0’X> A+0(AY?)
and
Ei[(z = B[] = fol@)? ox|* A + O(A2),

Therefore, we have established, to a first-order approximation in A,

1
pr=fo+px fot+ §fm ||<7X||2 and o =ox fa
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x
N =N g 0 1 2 3 4
1 0 0 —4.5912(-1 3.2825(—1)
1 —1.3742( 0
2 0 0 —4.5832(-1 3.2745(—1) 1.4076(—2)
1 —1.3640( 0) —1.6253(—1)

3.2739(—1) 1.4247(—2) —3.3503(—3)

—1.3633( 0) —1.6479(—1) 4.8315(—2)
2 5.6024(—1) —2.3310(—1)
3 3.8396(—1
4 0 0 —45829(—1) 3.2739(—1) 1.4256(—2) —3.3732(—3) 4.8814(—4)
1 —1.3633( 0) —1.6489(—1) 4.8649(—2) —7.6931(—3)
2 5.6054(—1) —2.3458(—1) 3.9485(—2)
3 3.8537(—1) —b5.7982(—2)
4 —4.8659(—2

0 signifies less than 1071 in absolute value.

TABLE 11. n =5, v =5, 7 = 10°, g = 0.065, 3o = 0.0016.

Generalizing to a vector of state variables produces, let
x'—x:,uXA—I—UXe\/Z,

where x and px are vectors and ox is a matrix. In this case we have

1
Mf:ft+MX'fz+§tr |:f$a:UXO';|—(:| and oy =o0x " fz.

where f, is the gradient vector, fz, is the Hessian matrix, tr(z] is the trace of matrix
z and z' is the transpose of z.

APPENDIX B. (GAUSSIAN QUADRATURE

Gaussian quadrature can be thought of as a grid-based method of solution. For
a review of grid-based methods in general, see Rust (1996). The grid-based method
pursued here is the Gaussian-quadrature approach of Tauchen and Hussey (1991).
The quadrature-based approach persued here is that of Tauchen and Hussey (1991).
They takes (2.2) as their starting point, using ex-dividend prices. In this appendix,
the method is applied to the conditional expectation under the equivalent martingale
measure where asset prices are measured cum-dividend.
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The Feynman—Kac theorem suggests we can approximate the solution to (3.9) in
terms of a discrete-time one-step ahead expectation:

I(z) = A+ e Fa@A BT | 2], (B.1)
where the change in z has been risk-adjusted:
=z = (ux(z) —ox(x)  Aa(z)) A+ ox(z) - EVA.

The conditional expectation in (B.1) can be expressed as an integral

Nzl = /H |xdx—/ﬂ '|$) w(z') da

where f(2/ | ) is the risk-adjusted conditional PDF of z’ given z, and w(z') is
some strictly positive weighting function (to be chosen). A popular choice for the
weighting function is w(z) = f(z | Z), where Z is the unconditional mean of z. A set
of abscissas {z1,z9,...,zn} and a corresponding set of weights {wy,ws,... ,wyx}
that are chosen for w(x) by Gaussian quadrature. Then we can approximate the
preceeding integral by a Weighted sum:

o | x) >
[ ne w(@)da = 3 1)) wy(a),

where the weights are given by

The weights have been normalized so that w;(z;) can be interpreted as the transition
probability from z; to z; in a discrete Markov chain. Taking each abscissa in turn
as a conditioning variable we have

N
N (z;) = A+ e B AN"TTN () wj(2i),  i=1,...,N, (B.2)
j=1
where ITV(z;) is an approximation to IT(z) at = z;. Equations (B.2) comprise
a system of N linear equations in the N unknowns I7V(z;). The solution can be
extended to other values of z via

N
N () = A+ e @2 N 1TV (2) ;(x).

=1

Greater accuracy can be achieved by increasing N.

FEquivalent martingale measure. Given our representation for m’/m we can use
(2.7a) and (2.7b) to write

m' /m=e"? (W w), (B.3)
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where w is the Radon-Nikodym derivative for the equivalent martingale measure®®

and
1
log(w'/w) = -3 IMZA =X -eVA. (B.4)

Note that w is an exponential martingale: E[w’/w] = 1.
Let z be a positive process where log(2'/z) = fi. A 4+ 0. - £ v/A. Note that

(2) (2) =ew{(7 - 510P) 2+ 0. -0 2 VE}.
a(5) (2)] mon{ (e romegroe)ap

_ 5 [exp{(ﬁz_A.gz)A+az-é\/ZH7

Therefore

where the standard normal shocks € are conceptually distinct from ¢ and where
Et[ -] is the conditional expectation operator associated with those shocks. Equa-
tion (B.5) shows that we can compute the conditional expectation of (w'/w) (z'/z)
by instead computing the conditional expectation of z’/z where the expected change
in z has been artifically modified. From a purely formal standpoint, we have
changed the measure from the physical measure to the equivalent martingale mea-
sure and computed the expectation of the “risk-adjusted” process for z: log(z'/z) =
(L —A-0.)A+0,-¢ V/A. We have established the result that

Eif(w'Jw) (2'/2)] = E('/2)], (B.6)
for a lognormal process z. Given (B.3) and (B.6), we can reexpress (2.9):
e "AEB._A/B;] =1,

where the risk-adjusted process for bond prices is given by log(B._,/B;) = (i, —

A-op,)A+op, -€VA. In terms of the Markovian bond function, we can write
B(z,7)=e "2 E[B(a/,7 — A) | ], (B.7)

where the drift of « has been “risk-adjusted”:
x'—a::(,ux—)\-aX)A—FUX‘é\/Z. (B.8)

We can apply Gaussian quadrature to (B.7) because we have removed the explicit
dependence on the shocks.

28Gee Duffie (1996) for discussions of the Radon—Nikodym derivative and the equivalent martingale
measure
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Quadrature under the physical measure. If we want to apply Gaussian quadrature
under the physical measure, we must remove the explicit dependence on the shocks.
We can decompose the marginal rate of substitution into two factors, one which
is independent of the state variable and has unit conditional expectation and the
other from which the shocks can be eliminated. Decompose A = A1 + Ao, where
M =Cox and Ay = A\ — Cox and where C is chosen so that Ay - ox = 0; i.e.,
C = X-ox/|lox||?. In this case we can write

E; [(m!/m)Br_a] = e "2 E [(w] Jw1) (Wh/wo) B(z', 7 — A) | 2]

B.9
:e_xAE[(w'l/wl)B(x',T—A)‘x], (B.9)

where
1
Wi Jw; = exp {—5 [Nl2A =N - sx/A} .

The second line in (B.9) follows from the fact that (i) wy is conditionally independent
of the other two factors in the expectation and (ii) that Ew)/ws | ] = 1. We can
solve (2.11) for?

UX‘E\/Z:JJ/—JZ—,U,XA,
which allows us to write
1
log(w] /w1) = ) [Cox|*A—C (2 —z— pux A).

Inserting this expression into (B.9) provides the representation sought.
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