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Likelihood preserving normalization in multiple equation models

1. Introduction

It is widely recognized that “economic data are generated by systems of relations that are in

general stochastic, dynamic, and simultaneous” (Marschak 1950).  Stochastic multiple-equation

models, therefore, play a central role in understanding causal relationships among economic

variables (Tobin 1970).  In the money market, for example, the money stock (M) and the interest

rate (R) are jointly and interdependently determined in equilibrium.  Such a simultaneous

feedback mechanism is common across all other quantity and price variables and has been

traditionally expressed as the following set of multiple equations:

11 21

12 22 1 2 3

  (Money Supply)

  (Money Demand)
MS MS

MD MD

a M a R X

a M a R y P X

α ε
β β β ε

+ = +
+ = + + +

  , (1)

where y represents output or income, P is the price level, MSX  is a vector of variables entering

the money supply equation, and MDX  is a vector of variables that enter the money demand

equation.  The exogenous disturbances MSε  and MDε  are independent random variables.

One unresolved issue in the inference of multiple equation models like (1) is normalization.

It is well known that how normalization is implemented has no consequence on the inference of,

say, the interest elasticity 21 11a a− .  But if the purpose is to obtain the statistical reliability of the

estimated effects of an exogenous shift in a structural equation (such as money supply), arbitrary

implementation of normalization can distort finite-sample inferences about the maximum

likelihood (ML) estimates in multiple equation models.  This point is related to Dent and

Geweke (1980), who argue for careful normalization; it is recently iterated in Sims and Zha

(1999):

[It] is widely understood that … all coefficients seem ill-determined by normalizing

the equation on a variable whose coefficient is insignificantly different from zero. …

Casual choice of normalization can lead to estimates that all responses to, say, a policy

shock are “insignificant,” when a better normalization would make it clear that the

responses are actually sharply determined.

In this paper we address some important practical issues related to normalization:
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(I) Causal analysis in multiple equation models often involves controlled experiments by

examining the effects on economic variables of an exogenous shift in, say, the supply equation

while holding all other structural equations fixed.  Take the example of simultaneous system (1),

where the liquidity effect of an exogenous disturbance MSε  on money and the interest rate has

been an important issue in policy analysis.1  Suppose the money demand is taken as given with

the negative slope in the M-R plane.  An expansionary monetary policy disturbance should

simultaneously increase the money stock (quantity) and decrease the interest rate (price).  When

the uncertainty of 11a  and 21a  in the money supply equation is taken into account, the direction

of this expansionary effect   the increase of M and the decrease of R   should not depend on

particular values of these parameters.  As the values of 11a  and 21a  are drawn from the likelihood

function, however, naive implementation of normalization can lead to inferentially ambiguous

conclusions (i.e., the effect of an expansionary policy shift has the opposite direction for some

supply equations   decreasing M and increasing R).  We explain how this anomalous result can

occur and develop a general method, called likelihood preserving (LP) normalization, that

resolves such an anomaly for both recursive and simultaneous-equation systems.

(II) When allowing the parameters in the other equations to vary, we show that the LP

normalization minimizes the distance between the ML estimate of the effect of an exogenous

shift and the normalized value of this effect sampled from the likelihood distribution.  This

theoretical result implies that the LP normalization eliminates the needless distortion of finite-

sample inferences about the ML estimates.  An accurate characterization of how sharp the ML

estimates are is important in scientific reporting of empirical results.  We give an applicable

example to show the differences in results produced by the LP normalization and by naïve

implementation of the standard rule.

In a nutshell, this paper makes two points.  First, it shows that the way normalization is

implemented matters not only in principle but in practice as well.  We use the familiar work of

Sims (1986) as an empirical example for illustration.  Second, we offer a solution to the

implementation of normalization for both recursive and simultaneous systems.

                                                
1 See, for example, Poole (1970); Sargent and Wallace (1975); Leeper and Gordon (1992); and
Pagan and Robertson (1995).
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To elaborate these points, we organize the rest of the paper as follows.  Section 2 sets out the

general framework.  Section 3 provides an empirical example of money demand and supply to

show that the problem associated with arbitrary implementation of normalization can be serious.

While other researchers adopt ad hoc ways to fix the potential problem, Section 4 presents a

general method.  Section 5 shows that the method works for the application considered in

Section 3.

2. Likelihood and normalization

The stochastic, dynamic, and simultaneous models studied in this paper have the general

form of a system of multiple equations:

1

p

t t t tε−
=

′ ′ ′ ′= + +∑y A y A z D
l l

l

, t T=1,..., , (2)

where yt  is an n×1  vector of endogenous variables; zt  is an 1h×  vector of exogenous

variables;  A or A
l
 is an n n×  parameter matrix;  D is an h n×  parameter matrix; ε t  is an n×1

vector of structural shocks;  p is the lag length and T is the sample size.  The structural shocks

are assumed to be Gaussian with2

E st t s
n

ε | ,y 0− ×
> =0

1
� � , E st t t s

n n
ε ε ′ > =− ×

| ,y I0� � .

Note that the columns of A, A
l
, and D correspond to the individual equations of the model.

Let [ ]1 | | |n
′′ ′= ′F A A D� .  As shown in Sims and Zha (1998a), the likelihood function (or

the likelihood function multiplied by the widely used reference prior of Sims and Zha) takes the

form ( ) ( )( ) ( ) |p vec p vecA F A  where

p vec
T

vec vec
T

A A A I S A� �� � � � � � � �det exp − ′ ⊗�
��

�
	
2

; (3)

( ) ( )( ) | ( ) ( );p vec vecϕ= ⊗Ξ ⊗ΣF A I A I . (4)

                                                
2 The independence of structural disturbances is a standard assumption for unambiguous causal
analysis in the identified VAR literature.  For detailed discussions, see Leeper, Sims, and Zha
(1996).
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In (3) and (4), vec(⋅) denotes the operation of stacking the columns of a matrix into a single

column vector;  ϕ ( ; )x y  is the normal probability density function with mean x and covariance

matrix y;  Si  is an n n×  symmetric, positive definite matrix;  Ξ  is an ( )np h n+ ×  matrix;  Σ is

an ( ) ( )np h np h+ × +  symmetric, positive semidefinite matrix.  All three matrices Si , Ξ , and Σ

are functions of the data (and the prior information when an informative prior is imposed).

The existing literature often considers deterministic linear restrictions, especially exclusion

restrictions, on the parameters in each structural equation.  Specifically, A a a= 1| |� n A

satisfies linear restrictions so that a i  belongs to the set:

Ri
n

i= ∈ =x R Q x 0|� � , for i n=1,..., , (5)

where Q Q1, ,� n  are n n×  matrices and R n  is Euclidean n-space.  It is assumed that the

restrictions are non-degenerate in the sense that there exists at least one non-singular matrix A

satisfying the restrictions.  Waggoner and Zha (2000) show that the likelihood function has a

similar form as (3) and (4) under such linear restrictions.

It is clear from (2) that the simultaneous effect of an exogenous shift ks  in the kth equation

on endogenous variables ty  is 1
k ks −′e A  where ek  is the k th  column of the n n×  identity matrix.

The dynamic effects of such a shift are the nonlinear functions of B
l
 and 1−A  where

1−=B A A
l l

.  As will be show, normalization amounts to a rule that determines the sign of all

parameters in each structural equation.  Clearly, a sign change in the equation switches the sign

of the corresponding column in A and thus of the corresponding row of 1−A , but has no effect on

the value of B
l
.  Therefore, our normalization analysis concerns A only.

To focus on the subject of normalization, we only consider the model void of identification

problems.  That is, there is a unique ML estimate of A up to sign changes in columns.  Because

the ML value is the same as the sign of each column changes, there are a total of 2n  ML

estimates.  The first step of normalization is to arbitrarily choose one of these ML estimates.

Denote the normalized ML estimate by � � | | �A a a= 1� n .  To derive the statistical inferences

involving of �A−1  or functions of �A−1 , the second step of normalization is to determine the sign

of the value of A randomly drawn from the likelihood function.  It is this second step that is
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subject to how normalization is implemented.  Before we demonstrate this point, we note that a

common practice in the literature is to consider the model given by

′ = ′ + ′ + ′−
=
∑y y zt t

p

t tΓ Γ ∆
l l

l 1

η ,

where η t N~ ,0 Λ� �  and Λ  is a diagonal matrix with positive diagonal.  This model maps into

the model given by (2) via Γ Λ= A 1 2 , Γ Λ
l l
= A 1 2 , ∆ Λ=D 1 2 , and ′ = ′η εt tΛ

1 2 , where Λ1 2  is the

positive square root of Λ .  The conventional choice of normalization arbitrarily divides the

structural equation by one nonzero parameter (or the negative of it) and thus restricts the

corresponding parameter in each column of Γ  to 1 (or –1).  Since A = −ΓΛ 1 2  and Λ−1 2  is a

positive diagonal matrix, this is equivalent to restricting the corresponding parameter in each

column of A to be positive (or negative).  Thus the conventional normalization is an arbitrary

choice of sign restriction on the parameters in the structural equation (Zellner 1971, 250-252).

The standard practice for the inference involving �A−1 , coded in the widely used software

ESTIMA (Doan 1992), chooses Â  such that all diagonal entries are positive (the first step of

normalization) and then restricts all diagonal entries to be positive for every A drawn from the

likelihood function (the second step of normalization).  In the following section we show that

this standard procedure suitably designed for recursive systems, when adopted naively, can

generate inferential results that are ill determined for simultaneous systems.

3. An empirical example

We apply the standard normalization rule designed for recursive systems to Sims’s (1986)

second six-variable simultaneous equation system.  The model has four lags and uses quarterly

data with the sample period 1948:1-1979:3.  The six variables are the 3-month Treasure Bill rate

(R), the M1 stock (M), real GNP (y), GNP deflator (P), the unemployment rate (U), and gross

domestic business investment (I).  All variables are in logarithm except the interest rate and the

unemployment rate, which are divided by 100.  For the reader’s convenience, the following table

presents the exclusion restrictions on A in the original paper.
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Table 1.  Sims’s (1986) Second Identification

MS MD Output Price Unemp ID

M X X X

R X X X X X

Y X X X X

P X X X

U X

I X X X X

The first column in Table 1 lists all the endogenous variables.  Starting from the second

column, each column represents a behavioral equation labeled on the top of the column.

Specifically, “MD” stands for money demand, “MS” for money supply, “Unemp”

unemployment, and “ID” investment demand.  If a cell is filled with “X”, the variable labeled on

the left of the row enters the equation labeled on the top of the column.  Empty cells correspond

to zero restrictions.  For example, the second column describes the money supply equation in

which the Federal Reserve responds to the interest rate (R) and money (M) but not to other

variables contemporaneously.  The description for other behavioral equations is in Sims’s

original paper.

It can be seen from Table 1 that the first two contemporaneous structural equations are in the

form of (1).  The ML estimate for the interest elasticity 21 11a a−  in money supply is 1.11 and for

the interest elasticity 22 12a a−  in money demand is −1.25.  The estimates are close to Sims’s

original ones.3  As pointed out before, statistical inferences of these estimates are invariant to

how normalization is implemented.  But the invariance breaks down if one is interested in the

simultaneous and dynamic effects of an exogenous shift in money supply.  Figure 1 reports the

effects of a one-standard-deviation shift in money supply for the 32-quarter time horizon under

the 11 0a >  normalization.  The middle solid line represents the ML estimate; the outer two bands

represent .68 and .90 equal-tail probability bands, which are commonly used in the existing

                                                
3 The small discrepancies stem from the fact that the original paper uses a smooth prior that was
not explicitly laid out for duplication.
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literature.4  Two error bands, instead of one, are reported to give the reader better information

about the overall shape of the likelihood.

The ML estimates (the solid lines in Figure 1) show the equilibrium effects expected by

economists: a liquidity effect (the interest rate falls and the money stock increases in the initial

period), an expected inflation effect (the nominal interest rate tends to rise in two years in

anticipation of a rise in inflation), and an expansionary effect (output, employment, and

investment all rise within two years while the price level rises steadily through the entire

horizon).  The constructed error bands are meant to measure how sharp these estimates are.

Clearly, the .68 and .90 equal-tail probability bands cover both the positive and negative regions

so that all the ML estimates are ill determined.5  If these error bands were an accurate measure of

how sharp the ML estimates are, one would conclude that the estimates are uninformative or

“insignificant.”

The error bands reported in Figure 1 are exact finite-sample intervals derived from the

likelihood function.  The derivation, however, depends on how normalization is implemented.

Here, the 11 0a >  rule is used.  While this rule is widely used for recursive systems in the

empirical literature, it can result in misleading inferences for simultaneous systems (Sims and

Zha 1999).  We now show that it is this normalization rule that leads to an inaccurate description

of the uncertainty around the ML estimates.

To understand the inferential results derived from the overall uncertainty, it is necessary to

first examine the contemporaneous effect of an exogenous shift 1s  in the money supply equation

while holding all the other equations fixed.  Let the value 1s  to be 1, implying a one-standard-

                                                

4 The effects are the nonlinear functions of 1−A  and B
l
.  The probability distributions for the

effects can be obtained by first simulating Monte Carlo (MC) draws of A and A
l
 from (3) and

(4) and then calculating B
l
 for each draw of A and A

l
.  The exact finite-sample inference such

as the 90% probability interval is computed through the MC integration.  The simulation method
is the Gibbs sampler of Waggoner and Zha (2000).  Each simulation conducted in this paper
generates 1.2 million draws to secure the high numerical accuracy.  For an overview of the Gibbs
sampling technique, see Chib and Greenberg (1995) and Geweke (1995).
5 In the early stage of this research, some researchers suggested that the normalization rule be
modified to keeping positive the diagonal entries of A−1  rather than A .  That is, if A 1− ( , )k k  <

0, change the sign of the k th  column of A .  The statistical inferences under this rule are nearly
identical to Figure 1.
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deviation shift of the supply curve.  In our example, we fix the parameters in all other equations

at a set of likely values, in particular the interest elasticity of money demand is fixed at the ML

estimate (−1.25).6  Figure 2 plots the probability distributions of the equilibrium effects on M and

R .  The distributions are distinctively bimodal.  There is a substantial probability that the money

stock rises and the interest rate falls, consistent with the ML estimates.  There is also a nontrivial

probability that the equilibrium effect is in the opposite direction: the interest rate rises while the

money stock shrinks.7  Economic interpretations implied by Figure 2 are therefore ambiguous.

To explain how the bimodal distributions occur in this example, it is necessary to understand

the unnormalized likelihood shape of 11a  and 21a  in the money supply equation.  Figure 3

depicts the contours of such a likelihood function conditional on the other equations being fixed.

The normalized ML estimates of 11a  and 21a , as used in Figure 1, are in Quadrants I and II.  The

thick sloping line is the hyperplane on the 11a  and 21a  space, along which the likelihood function

has zero density.  The hyperplane is uniquely determined by the other columns of A and we call

it dividing hyperplane.  Under 11 0a > , the normalized likelihood shape of 11a  and 21a  is bimodal

(see Quadrants I and II in Figure 3).  This bimodal likelihood leads to the ambiguous equilibrium

outcome as shown in Figure 4.  Consider Quadrant II in Figure 3 where the supply curve is

upward sloping.  In this case, the supply shift 1s  increases the quantity from M to M ′  and

decreases the price from R to R′  (Figure 4(a)), and the direction of the equilibrium outcome (M

rises and R falls) is the same as the ML equilibrium outcome in Figure 1.  Now consider

Quadrant I in Figure 3 where the supply curve is downward sloping.  In this situation, the same

                                                
6 By likely we mean that the draw is within the 0.68 probability region so that the probability of
the likelihood value less than this draw’s value is over 40%.
7 Such a bimodal phenomenon becomes even more severe when the interest elasticity of money
demand is smaller.  Small elasticity of money demand can be found in other empirical work
(Lieberman 1979; King, Plosser, Stock, and Watson 1991).  In this six-variable simultaneous
system, however, the effects on M and R depend on not only the money demand equation but
also all other equations.  Thus, when the uncertainty of all the other columns of A is taken into
account (or integrated out), the effects will be in general different from those conditional on the
other columns shown in Figure 2.  In comparison, Figure 1 shows that the marginal impact on
the initial decline of M shows little probability but there is a substantial probability of the
positive response of R in the initial period.
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exogenous shift 1s  has the opposite effect: the quantity falls from M to M ′′  and the price rises

from R to R′′  (Figure 4(b)).  This result follows immediately from the fact that the equilibrium

effect on quantity and price of this supply shift is 1
1 1s −′e A  where 1e  is the first column vector of

the n n×  identity matrix.  Thus we have the bimodal results shown in Figure 2.

It is important to take into account the downward sloping supply in reporting statistical

inferences of the ML estimates.  Researchers, when confronted with the data, are often uncertain

about the sign of the price elasticity of supplied quantity despite their a priori beliefs, especially

in situations where there is a nontrivial probability that the slope of a supply curve is close to be

horizontal or vertical.  In our money market example, the argument for upward sloping supply is

based on daily or weekly activities (Sims 1986; Bernanke and Mihov 1998).  Over a longer

horizon such as monthly or quarterly data, however, the Federal Reserve will set the interest rate

and influence money supply in response to dynamic changes in output, employment, and the

general price.  The money supply behavior on the quarterly basis will not, in general, be the same

as the daily or weekly behavior.  Even on the weekly basis, the Federal Reserve is always

concerned with liquidity problems in the banking system. In such a situation, the Federal

Reserve, despite the fall in the interest rate, may continue to increase the supply of money to

secure the adequate liquidity.

There are many other examples of downward sloping supply.  A loan supply in markets with

imperfect information is one example and a backward bending labor supply in labor markets is

another (Stiglitz and Weiss 1981; Varian 1978, Chapter 6).  The point here is not about what

kind of a priori belief one should have regarding the slope of the supply curve; the point is how

researchers should, without pretending too much a priori knowledge, report the statistical

reliability of the ML estimates when the likelihood function implies a good deal of uncertainty

about the parameters in the structural equation.  The results presented in Figure 2 are difficult to

interpret because of two distinct behaviors implied by the distributions around the two modes.
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The ambiguous interpretations can be eliminated, however, if we simply change the sign of

11a  and 21a  in the shaded area of Quadrant I above the dividing hyperplane.  Such a sign change

finds the hyperplane image that lies in the shaded area of Quadrant III below the dividing

hyperplane.  Clearly, the normalized likelihood below the hyperplane has the unique mode and

the shift in the supply curve in Figure 4(a) moves in the same direction as Figure 4(b).

Consequently, the equilibrium effects of the exogenous shift 1s , as shown in Figure 5, always

increase the quantity M and decrease the price R despite the slope of the supply curve.  In

contrast to Figure 4, the results in Figure 5 have a clear interpretation about the effects of 1s  and

are consistent with the direction of the ML estimates as shown in Figure 1.

Having seen Figures 2 and 5, one would not adopt naive implementation of the standard

normalization rule if this rule generates visible bimodal distributions.  In some previous work of

simultaneous modeling, researchers instead search for a sophisticated ad hoc rule to change the

sign of 11a  and 21a  whenever the negative effect on M or the positive effect on R occurs (Sims

and Zha 1998b; Christiano, Eichenbaum, and Evans 1999).  Operationally, this rule is equivalent

to changing the sign of the parameters in the shaded area of Quadrant I and finding the

hyperplane image of these parameters in the shaded area of Quadrant III.  Finding such a rule is

not always easy in high dimensions implied by multiple equation models.  In particular, when the

parameters in the other columns of A vary, the equilibrium effects on M and R may not be in the

same direction of the ML estimates.  Take the example in which the equilibrium response of R is

negative while the response of M is negligible but nonetheless negative.8  In this case, the sign of

the M response is inconsequential.  But it is computationally very inefficient to manually keep

track of such instances as all columns of A are moving and then decide when to change the sign

of the structural equation.

                                                
8 The reverse case is of small or little liquidity effect, as found in Leeper (1995), Cushman and
Zha (1997), and Zha (1999).
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In the following section we provide a general solution to normalization, including the

standard rule for recursive systems as a special case.  We show the existence of the zero-density

dividing hyperplane in the parameter space of each column of A while holding the other columns

fixed.  We develop a method guaranteeing that the normalized ML estimates and the normalized

parameters drawn from the likelihood always lie on the same side of the hyperplane.  The

method preserves the shape of the normalized likelihood by eliminating the bimodal

phenomenon, and maintains the direction of the equilibrium effects of an exogenous shift in the

structural equation.  As the other columns of A move, such a likelihood-preserving procedure

adjusts the zero-density dividing hyperplane accordingly.9  For the inference of the impact effect

of an exogenous shift, furthermore, the method minimizes the distance between the normalized

ML estimate and the normalized value drawn from the likelihood function.

4. The theory of likelihood preserving normalization

A hyperplane in Rm  is simply a linear subspace of dimension m−1.  Thus a hyperplane in

R 2  is a line and a hyperplane in R 3  is a plane.  The following proposition describes the zeros of

the likelihood function in terms of hyperplanes.

Proposition 1.  Given ia  for i k≠ , the set of all a k kR∈  such that likelihood function defined by

(3) is zero at A a a a= 1| | | |� �k n  is either a hyperplane in Rk  or all of Rk .

Proof.  Let Γk  be the set of all a k kR∈  for which the value of the likelihood function at A is

zero10.  Note that the likelihood function is zero if and only if A is singular.  If Γk  is equal to Rk ,

then we are done.  If not, then there exists ak kR∈  such that the matrix A is non-singular.  This

                                                
9 Take the case of Figure 3.  The line 21 0a =  is a good approximation to the zero-density
dividing hyperplane.  But when the other columns of A vary, this line can become a poor
approximation because it fails to adjust accordingly.  In Waggoner and Zha (1997), they show
the similarly ill-determined inferences when the 21 0a >  rule is used.
10 Though not explicit in our notation, Γk  depends on ia  for i k≠ .
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implies that span |a i i k≠ � is of dimension n −1 and that Γk  is equal to R i kk i∩ ≠span |a � ,

which is a hyperplane in Rk .  QED

Because the restrictions are non-degenerate, the set of all Π Π
i k

i
i k

iR
≠ ≠

∈a  such that Γk  is all of

Rk  is of measure zero in Π
i k

iR
≠

.  Thus we need only consider the case that Γk  is a hyperplane in

Rk .  The hyperplane Γk  divides Rk  into two regions and the shape of the likelihood is identical

and unimodal on each of these regions11.  A normalization will be likelihood preserving if

normalized values of a k  either lie on or on the same side of Γk .

Definition 1.  A normalization rule is likelihood preserving (LP) if every normalized value of

k kR∈a  either lies on or on the same side of Γk .

The following definition makes precise the notion of two points being on the same side of a

hyperplane and Proposition 2 and its corollary give easy conditions for testing this condition.

Definition 2.  Two points are on the same side of a hyperplane if the line that connects them does

not intersect the hyperplane.

Proposition 2.  For 1≤ ≤i n , let a i iR∈ , with A a a= 1| |� n  non-singular.  If �a ak i

n

i i= =1Σ α ,

then the vectors a k  and �a k  lie on the same side of Γk  if and only if α k  is positive.

Proof.  Proceed by contradiction.  The line between a k  and �a k  is

t t t tk k k k i
i k

i�a a a a+ − = − − +
≠
∑1 1 1� � � �� �α α ,

for 0 1≤ ≤t .  Since Γk  is the contained in span |a i i k≠ � , the line between a k  and �a k  will

intercept Γk  if and only if there exists t such that 1 1 0− − =t kα� �  or t k= −1 1 α� � .  But

0 1 1 1≤ − ≤α k� �  if and only if α k ≤ 0 .  QED.

                                                
11 This follows easily from Theorem 2 in Waggoner and Zha [2000].
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Proposition 2 completes the establishment of our LP normalization rule, which produces the

zero-density dividing hyperplane Γk  for the kth column of A and selects the region that always

contains both the ML estimate �a k  and the normalized value a k .  The following corollary and

algorithm provide an efficient method for implementing the LP normalization.

Corollary 1.  The vectors a k  and �a k  lie on the same side of the hyperplane Γk  if and only if

′ >−e A ak k
1 0� .

Proof.  Note that �a ak i

n

i i= =1Σ α  if and only if A a− = ′1
1� , ,k nα α� .  The corollary follows

directly from Proposition 2.  QED.

Let R be the set of all n n×  nonsingular matrices A a a= 1| |� n  such that a i iR∈ .

Algorithm 1.  For A a a= ∈1| |� n R  and 1≤ ≤k n ,

(a) keep a k  if ′ >−e A ak k
1 0�  and replace a k  with −a k  if ′ <−e A ak k

1 0� ;

(b) if ′ =−e A ak k
1 0� , successively compute ′ −e A ak i

1�  for i k k n= − +1 1 1, , , , ,� � ;

(c) stop at the first i such that ′ ≠−e A ak i
1 0�  and replace a k  with −a k  if ′ <−e A ak i

1 0� .

In Algorithm 1, steps (b) and (c) are needed merely for the mathematical completion so that

the sign of a k  is always uniquely determined even if �a k  happens to lie in the separating

hyperplane Γk .  In practice, however, this situation will not occur because the set of all A ∈ R

such that �a k k∈Γ  has measure zero.  Hence, step (a) of Algorithm 1 is all we need to implement

the LP normalization.

In the special case where A is restricted to be triangular, step (a) of Algorithm 1 implies that

the sign of a k  is so chosen as to make
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ˆ ( , )
0

( , )

k k

k k
>A

A
.

This result accords with the standard practice for recursive systems: the ML estimate ˆ ( , )k kA  is

first normalized to be positive and the sign of the kth equation is then chosen so that the diagonal

element after normalization is always positive.

The LP normalization, by definition, ensures zero density on the boundary of the normalized

likelihood function.  We now show that such normalization also leads to unambiguous causal

analysis.  Let 0ks >  be the amount of an exogenous shift in the kth structural equation.  The

following proposition states that despite the parameter uncertainty in the equation, the

equilibrium effects of ks  on each variable of y under the LP normalization are always in the

same direction.

Definition 3.  Two vectors 1[ , , ]nu u ′=u �  and 1[ , , ]nv v ′=v �  point in the same direction if

0i iu v ≥ , for 1, ,i n= � .

Proposition 3.  If

( )
( ) 1 1 1[ | | | | | | ]j

j k k k n− +=A a a a a a� � , 1, 2j = ,

are LP normalized elements of R, then the effects under these structural parameters, given by

1
( )k k js −′e A , are in the same direction.

Proof.  Since A ( )j  invertible, there exists a non-zero vector k kRρ ∈  such that kρ  is

perpendicular to span |a i i k≠ �  and ˆ 0k kρ′ >a .  By the corollary of Proposition 2, we have

1
( ) ( )

ˆ
ˆ0 k k

k j k j
k k

ρ
ρ

− ′′< ≡
′

a
e A a

a
, for 1, 2j = .

This result implies that ( ) 0j
k kρ′ >a  for 1, 2j = .  Because

1
( ) ( )

k
k k j j

k k

s
ρ

ρ
− ′′ =

′
e A

a
, for 1, 2j = ,

and kρ  is independent of j, the proof follows from Definition 3.  QED.
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The above analysis concerns the statistical inference of one structural equation given all other

equations.  To gauge the overall statistical reliability of the ML-estimated effects on economic

variables to exogenous shifts, we now take into account the parameter uncertainty of all

structural equations.  As discussed before, the impact effect on the vector of variables y of an

exogenous shift in the kth equation is proportional to the kth row of 1−A .  The following

proposition provides a powerful result about the relationship between the normalized 1−A  and

the ML estimate 1ˆ −A .

Proposition 4.  For A a a= ∈1| |� n R , ka  and �a k  lie on the same side of Γk  ( 1, ,k n= � ) if and

only if

1 1

1 1 1 1

ˆ
ˆ ˆ( )g

− −

− − − −

Ω Ω
− ≥ −A A A A

)

where ( )g A  is the normalized value of A and 1ˆ −Ω
⋅  is defined as

[ ] 1

1
1 ˆ

1

ˆ| |
n

n i i
i

−
−

Ω
=

′= Ω∑x x x x� , (6)

in which ( ) 1ˆ ˆˆ
−

′Ω = AA .

Proof.  Let ( ) [ ]1 1 | | n ng ξ ξ=A a a�  for ξ i = ±1.  Since A is non-singular, the set 1 1, , n nξ ξa a�

forms a basis for R n .  Thus, there exists unique scalars α α1, ,� n  such that

1

ˆ
n

k i i i
i

α ξ
=

=∑a a .

By Proposition 2, ka  and �a k lie on the same side of Γk  if and only if α k > 0 ; otherwise ˆ k k∈Γa ,

which is a trivial case.  The proof follows once we show that 0kα > if and only if

1 1

1 1 1 1

ˆ ˆ
ˆ ˆ( )g

− −

− − − −

Ω Ω
− ≤ −A A A A .

The distance between 1( )g −A  and 1ˆ −A  is
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( ) ( )

( )( )
1

1 1 1 1 1 1

ˆ
1

1 1 1

1

ˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ2 .

n

i i i i i i
i

n

i i i i i i i
i

g ξ ξ

ξ

−

− − − − − −

Ω =

− − −

=

 ′ ′′ ′ ′− = − −  
′′ ′ ′= − +

∑

∑

A A e A e A AA A e A e

e A A A A e e A a e e

The necessary and sufficient condition for minimizing this distance is that 1ˆ 0k k kξ −′ ≥e A a .  Thus,

1 2

1

ˆ0
n

k k k k k i i i k k k
i

ξ ξ α ξ ξ α α−

=

 ′ ′< = = =  
∑e A a e e , (7)

which completes the proof.  QED

In Proposition 4, the distance is weighted by the inverse of Ω̂  which is the ML estimate of

the variance-covariance matrix of the residuals for y.12  This weight ensures that the minimized

distance is invariant to variance changes introduced by not only the scale of the variables but any

non-singular, linear transformation of the variables.

Proposition 5.  The effects of the LP normalization are invariant to the transformation z P yt t= ′

where P  is an n n×  non-singular matrix.

Proof.  Substituting z P yt t= ′  into (2), the contemporaneous parameter matrix becomes

H P A= −1 .  Because the transformation is linear, the ML estimate of H is � �H P A= −1 .  Let

( ) 1ˆ ˆˆ
−

′Σ = HH .  We thus have

( )( )

( ) ( )( )
( )( )

1

1

1 1 1 1 1 1

ˆ
1

11 1 1 1

1

1 1 1 1

1

1 1

ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ .

n

i i i i
i

n

i i i i
i

n

i i i i
i

−

−

− − − − − −

Σ =

−− − − − −

=

− − − −

=

− −

Ω

 ′ ′′ ′ ′− = − −  
 ′ ′′ ′ ′ ′ ′= − −  

 ′ ′′ ′ ′= − −  

= −

∑

∑

∑

1

H H e H e H HH H e H e

e A e A P P AA P P A e A e

e A e A AA A e A e

A A

                                                
12 This weighted measurement resembles that used in the generalized least squares method.  A
recent paper of Cogley and Nason (1994) suggests a similar measurement.
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The last equality proves the proposition.  QED

5. The empirical example revisited

We revisit the empirical example discussed in Section 3.  When the 11 0a >  rule is used to

implement normalization, the bimodal distributions of the equilibrium effects on the variables

(Figure 2) are the primary source of the ill-determined probability bands displayed in Figure 1.

The normalized value of the effect randomly drawn from the likelihood function is arbitrarily far

away from the normalized ML estimate.  Under the LP normalization, the bimodal conditional

distributions are eliminated and consequently the normalized value of the effect is closest to the

normalized ML estimate among all possible values produced by sign changes, even when the

parameters in all equations are allowed to vary (Proposition 4).

Figure 6 displays the impact and dynamic effects of a one-standard-deviation shift in money

supply under the LP normalization implemented by Algorithm 1.  The .68 and .90 equal-tail

probability bands take account of the parameter uncertainty in all the structural equations.  In

sharp contrast to Figure 1, the error bands around the ML estimates in Figure 6 provide an

accurate measurement about how informative these estimates are.  The positive response of M is

persistent for the entire time horizon; The interest rate falls initially as a result of the liquidity

effect, and rises in two years in anticipation of a rise in inflation; Output, employment, and

investment all rise within two years, but the response of the price level has a lag of four years as

gauged by both error bands.  The error bands indicate the asymmetric, long-tail distributions of

the effects on many variables in various time periods.

The .90 bands in Figure 6 indicate some small probability of the negative impact on M and

the positive impact on R in the initial period.  This phenomenon occurs partly because of the

positive interest elasticity of money demand.  There are situations in which a demand curve can

be upward sloping, such as the demand for used-cars (Wilson 1979).  In such a case, the

probability bands give us an accurate measure of the effects due to upward sloping demand

curves.  In our example, it is difficult to justify an upward sloping demand for money despite the

great uncertainty about the elasticity.  The probability bands, therefore, give us a useful piece of

information about how badly the model is specified in this dimension.  The results shown in

Figure 6 suggest that the probability of such a “misspecification” is quite small.
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6. Conclusion

Despite an essential role in understanding the causal relationships among economic variables,

multiple equation modeling is not yet widely practiced because of many difficulties associated

with simultaneity.  One difficult issue is normalization.  The standard normalization rule

designed to work for recursive systems may lead to misleading inferential results when applied

to simultaneous systems.  Previous empirical work has adopted ad hoc rules to avoid distorting

the shape of the normalized likelihood.  But ad hoc rules are limited in scope and may be

difficult to find in highly simultaneous systems.

In this paper we have developed a general method, the LP normalization, that always

preserves the shape of the likelihood after normalization for both recursive and simultaneous

systems.  The LP normalization is easy and inexpensive to implement, especially in large

systems of multiple equations.  It always maintains an unambiguous economic interpretation of

inferential results about the impact effects of an exogenous shift in the structural equation.

Because the LP-normalized values of these effects derived from the likelihood function are

closest to their ML estimates among all other normalized values, the resulting statistical

inference gives an accurate picture of how informative the estimates are.  We hope that the

general method developed here helps advance the application of multiple equation modeling in

economic analysis.
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