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for Tree Games ∗
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October 27, 2009

Abstract

For the class of tree games, a new solution called the average tree solution has been

proposed recently. We provide a characterization of this solution. This characteriza-

tion underlines an important difference, in terms of symmetric treatment of the agents,

between the average tree solution and the Myerson value for the class of tree games.
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1 Introduction

In a cooperative game, cooperation is not always possible for all coalitions of agents. The

limited possibilities of cooperation can often be represented by an undirected graph or tree in

which cooperation is only possible if agents are directly or indirectly connected to each other.

The study of graph games was pioneered in Myerson (1977). He proposed as solution concept

the Myerson value, which equals the Shapley value of the induced restricted game. Other

characterizations of Myerson value are given in Myerson (1980) and Borm et al. (1992). For

the subclass of tree games Herings et al. (2008) recently introduced the average tree solution

(AT solution), being the average of the marginal contribution vectors corresponding to all

directed spanning trees of the graph. The AT solution is easy to compute and belongs to the
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core of the game if the game is superadditive, as is proved in Herings et al. (2008) and follows

from earlier results in Demange (1994), Demange (2004), Kaneko and Wooders (1982), and

Le Breton et al. (1992).

How does the average tree solution differ from the Shapley and Myerson value? We

address this question in this paper. We show that for tree games the average tree solution is

uniquely characterized by efficiency, dummy, linearity, strong symmetry, and independence

in unanimity games. The first three are also used by Shapley (1953) to characterize the

Shapley value. The other two axioms replace the symmetry axiom for the Shapley value.

Strong symmetry is also satisfied by the Shapley value and requires that if only the grand

coalition has non-zero worth, then every agent receives the same payoff. Independence in

unanimity games requires that if a player joins a coalition in a unanimity game, then the

payoff of any agent in the coalition that is not linked to that player remains the same. While

in a unanimity game the Shapley value treats all members of a coalition equally, the AT

solution treats each of them in proportion to the number of agents this agent is connected

to outside the coalition.

2 The Average Tree Solution and the Myerson Value

We follow the notations in Herings et al. (2008). A tree game is denoted by (N, v, L), where

N = {1, . . . , n} is a finite set of agents, G = (N, L) is a tree, an undirected graph without

cycles, on N , and v is a characteristic function assigning to each connected subset S of N

the worth v(S) of coalition S. Only coalitions that are connected in (N, L) are assumed to

be able to cooperate. Without loss of generality, it is assumed that the grand coalition N

is connected. For a graph (N, L) the collection of connected coalitions in a graph (N, L) is

denoted by C(N, L) and, for a subset T of N , Cm(T, LT ) denotes the collection of maximally

connected subsets or components in the subgraph (T, LT ) of (N, L) restricted to T . Finally,

G denotes the class of tree games.

Let (N, L, v) be a tree game. Since (N, L) is a tree, every i ∈ N induces a unique directed

spanning tree, denoted by T (i), with node i being the root. With respect to T (i), i ∈ N ,

the marginal payoff of player j ∈ N is defined by

tij(N, L, v) = v(ST (i)(j)) −
∑

k∈FT (i)(j)

v(ST (i)(k)), (1)

where, for j ∈ N , FT (i)(j) is the set of nodes that come immediately after j in tree T (i) and

ST (i)(j) is the set of nodes consisting of j and all nodes that come after j in tree T (i). The

average tree solution is the average of these marginal payoffs over all n directed spanning

trees.

Definition 1 For a tree game (N, L, v) ∈ G the average tree solution (AT solution)
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assigns the following payoff to agent j ∈ N :

ATj(N, L, v) =
1

n

∑

i∈N

tij(N, L, v). (2)

The Myerson value (Myerson, 1977) is defined as follows.1 For a graph game (N, L, v), let the

induced restricted game be the cooperative game (N, vL), where the characteristic function

vL : 2n → R is defined as:

vL(S) =
∑

T∈Cm(S,LS)

v(T ) ∀ S ⊆ N.

The Myerson value of graph game (N, L, v), denoted as µ(N, L, v), is the Shapley value of

the game (N, vL), i.e., µ(N, L, v) = Sh(N, vL).

3 Axioms

In this section, we state the axioms we use in our characterization of the average tree solu-

tion. The objective is to use axioms similar to the ones in Shapley (1953). The first three

axioms are standard in the cooperative game literature, while the last two axioms replace

the symmetry axiom in Shapley (1953).

Definition 2 An allocation π : G → Rn satisfies efficiency if for any game (N, L, v) ∈ G,

∑

i∈N

πi(N, L, v) = v(N).

For i ∈ S, S ∈ C(N, L), let the marginal contribution of agent i to coalition S in game

(N, L, v) be ∆N,L,v
i (S) = v(S) − vL(S \ {i}).

Definition 3 An allocation π : G → Rn satisfies dummy if for any game (N, L, v) ∈ G

and i ∈ N it holds that πi(N, L, v) = 0 whenever ∆N,L,v
i (S) = 0 for all S ∈ C(N, L) and

S ∋ i.

Definition 4 An allocation π : G → Rn satisfies linearity if for any two games (N, L, v)

and (N, L, w) in G and any a, b ∈ R,

πi(N, L, av + bw) = aπi(N, L, v) + bπi(N, L, w) ∀ i ∈ N,

where the game av + bw is defined as (av + bw)(S) = av(S) + bw(S) for all S ∈ C(N, L).

1The Myerson value is defined for any graph game, also for graphs which contains cycles.
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In the cooperative game literature, a standard axiom for the Shapley value is symmetry.

However, in trees, agents are typically not in a symmetric position. For example, a leaf is

in a different position than a node that is connected to more than one node. Therefore, we

replace the symmetry axiom in Shapley (1953) by a weaker version and add a new axiom

that reflects the asymmetric position of nodes in a tree.

The next axiom is also satisfied by the Shapley value.

Definition 5 An allocation π : G → R
n satisfies strong symmetry if for any game

(N, L, v) ∈ G with v(S) = 0 for all S ∈ C(N, L) and S 6= N , we have πi(N, L, v) =

πj(N, L, v) for all i, j ∈ N .

The strong symmetry axiom says that if all proper coalitions have worth zero, then every

agent receives the same payoff. Together with efficiency this axiom implies that when v(S) =

0 for all S ∈ C(N, L), S 6= N , each player gets an equal share of v(N)/n.

The last axiom is on the class of unanimity tree games. For T ∈ C(N, L), let uT (S) = 1

if T ⊂ S and uT (S) = 0 otherwise. The triple (N, L, uT ) defines the unanimity tree game

for coalition T .

To motivate the axiom, we use a result of Herings et al. (2008). Consider any S ∈ C(N, L).

For j ∈ S we say that agent j represents agent k /∈ S for coalition S if on the unique path

connecting j to k every agent except agent j is outside S. Let pL
S(j) be the number of agents

that agent j ∈ N represents for S, with pL
S(i) = 0 when i 6∈ S. Herings et al. (2008) show

that for any unanimity tree game (N, L, uT ), T ∈ C(N, L), it holds that

ATj(N, L, uT ) =

{

1+pL

T
(j)

n
∀ j ∈ T

0 otherwise.

The ratio (1 + pL
T (j))/n reflects the representation power of agent j ∈ T for coalition T in

tree (N, L). The AT solution distributes the payoff in unanimity games according to the

representation power of the agents.

On the other hand, the Myerson value for unanimity game (N, L, uT ), T ∈ C(N, L), is

equal to

µj(N, L, uT ) =

{

1
|T |

∀ j ∈ T

0 otherwise.

Thus, in unanimity games the Myerson value treats agents within T equally. We now intro-

duce an axiom that captures this difference in its weakest form.

Definition 6 An allocation π : G → Rn satisfies independence in unanimity games if

for any game (N, L, v) ∈ G and T, T ∪ {j} ∈ C(N, L) with j ∈ N \ T it holds that for all

i ∈ T with {i, j} /∈ L

πi(N, L, uT ) = πi(N, L, uT∪{j}).
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Independence in unanimity games says that, when an agent joins a coalition, any agent in

the coalition not being linked to that agent receives the same payoff. Since the graph is a

tree, a player outside any coalition is linked to just one player in that coalition. Only for

this player in the coalition the representation power, and therefore the payoff, will change.

4 Characterization

In this section we prove that the average tree solution is uniquely characterized by the axioms

stated in the previous section and show that these axioms are independent from each other.

Theorem 1 On the class of tree games, the average tree solution is the unique solution

satisfying efficiency, dummy, linearity, strong symmetry, and independence in unanimity

games.

Proof : It is easy to verify that the average tree solution satisfies all five axioms. Therefore,

let π be any allocation satisfying all axioms. Consider the unanimity game (N, L, uN). By

efficiency and strong symmetry,

πk(N, L, uN) =
1

n
∀ k ∈ N.

Since pL
N (j) = 0 for all j ∈ N , we have

ATk(N, L, uN) =
1

n
∀ k ∈ N.

Therefore, π(N, L, uN) = AT (N, L, uN). Take any 1 ≤ t < n and suppose π(N, L, uS) =

AT (N, L, uS) for all S ∈ C(N, L) with |S| > t. We show that π(N, L, uT ) = AT (N, L, uT )

for any T ∈ C(N, L) with |T | = t. Since N is connected and t < n, there exists j /∈ T such

that T ∪ {j} is connected. Let S = T ∪ {j}. By our induction hypothesis,

πk(N, L, uS) = ATk(N, L, uS) =
1 + pL

S(k)

n
∀ k ∈ S. (3)

Consider any k /∈ T . By definition, for every S ∈ C(N, L) containing k, we have ∆N,L,uT

k (S) =

0. Hence, by the dummy axiom

πk(N, L, uT ) = 0 = ATk(N, L, uT ). (4)

Let i be the unique agent in T such that {i, j} ∈ L. Consider any k ∈ T \ {i}. By the

independence in unanimity games axiom and equation (3),

πk(N, L, uT ) = πk(N, L, uS) = ATk(N, L, uS) =
1 + pL

S(k)

n
. (5)
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We show that pL
S(k) = pL

T (k). Denote the set of agents who k represents for S as P L
S (k).

Clearly, P L
S (k) ⊆ P L

T (k). Assume for contradiction, there exists k′ ∈ P L
T (k) \ P L

S (k). Since

the graph is cycle-free, there exists a unique path (k, k1, k2, . . . , kq, k′) in (N, L) such that

k1, . . . , kq /∈ T . Since k′ /∈ P L
S (k), j ∈ {k1, . . . , kq}. This implies that there is a path

(k, k1, . . . , kr, j) from k to j such that k1, . . . , kr /∈ T . Clearly, r ≥ 1, since {k, j} /∈ L. Since

T ∪ {j} is connected, there also exists in T a path from k to j, yielding a contradiction.

Hence, equation (3) implies that

πk(N, L, uT ) =
1 + pL

S(k)

n
=

1 + pL
T (k)

n
= ATk(N, L, uT ). (6)

By equations (4) and (6), for every k ∈ N , k 6= i, we have

πk(N, L, uT ) = ATk(N, L, uT ).

By efficiency, we get that πi(N, L, uT ) = ATi(N, L, uT ).

Finally, Herings et al. (2008) show that every tree game can be written as a linear function

of unanimity tree games. By the linearity axiom, the result then follows. �

We now show that the axioms are independent. The Myerson value satisfies efficiency,

dummy, strong symmetry, and linearity, but fails independence in unanimity games. This

follows from the fact that in any unanimity game (N, L, uT ) the Myerson value assigns every

agent i ∈ T a payoff equal to 1
|T |

.

Equal sharing, where every agent receives v(N)/n, satisfies efficiency, strong symmetry,

linearity, and independence in unanimity games, but fails dummy.

The zero allocation, where every agent gets zero payoff, satisfies strong symmetry, linear-

ity, dummy, and independence in unanimity games, but fails efficiency.

Next, consider the allocation πd = ti(N, L, v) for some i ∈ N . Clearly, πd satisfies

efficiency, dummy, and linearity. For the unanimity tree game (N, L, uS), S ∈ C(N, L), call

agent k ∈ S a dictator in S if in the tree T (i) node k is the first agent on any directed path

from i to any other agent in S. It is clear that for a dictator agent k in S, πd
k(N, L, uS) = 1 and

πd
j (N, L, uS) = 0 if j 6= k. Now, consider the unanimity games (N, L, uS) and (N, L, uS∪{j}).

Let k ∈ S be such that {k, j} /∈ L. In case agent k is not a dictator in S, he is also not a

dictator in S ∪ {j} and in both games his payoff is zero. In case agent k is a dictator in S,

k will also come first in any directed path from i to any other node in S ∪ {j}. Hence, k

will remain a dictator in S ∪ {j}, and his allocation is one in both games. This shows that

πd satisfies independence in unanimity games. Now consider a tree game (N, L, v) such that

v(S) = 0 for all S ∈ C(N, L) and S 6= N . In that case, πd
i (N, L, v) = tii(N, L, v) = v(N)

and πd
j (N, L, v) = 0 for all j 6= i. Hence, πd fails strong symmetry. Thus, allocation πd

satisfies efficiency, dummy, linearity, and independence in unanimity games, but fails strong

symmetry.
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Finally, consider for unanimity tree games the average tree solution and for every other

tree game the Myerson value. This allocation satisfies efficiency, dummy, independence in

unanimity games, and strong symmetry, but fails linearity.
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