|
View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by Research Papers in Economics

A
BANK OF GREECE

EXACT ELLIPTICAL DISTRIBUTIONS
FOR MODELS OF CONDITIONALLY
RANDOM FINANCIAL VOLATILITY

George A. Christodoulakis
Stephen E. Satchell

A

<O o,

Working Paper

No. 32 January 2006


https://core.ac.uk/display/6780731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BANK OF GREECE

Economic Research Department — Special Studies Division
21, E. Venizelos Avenue

GR-102 50 Athens

Tel:  +30210-320 3610

Fax:  +30210-320 2432

www.bankofgreece.gr

Printed in Athens, Greece

at the Bank of Greece Printing Works.

All rights reserved. Reproduction for educational and non-commercial purposes is permitted provided
that the source is acknowledged.

ISSN 1109-6691



EXACT ELLIPTICAL DISTRIBUTIONS FOR MODELS OF
CONDITIONALLY RANDOM FINANCIAL VOLATILITY

George A. Christodoulakis
Manchester Business School and Bank of Greece

Stephen E Satchell
Trinity College, University of Cambridge and Bank of Greece

ABSTRACT

Assuming the time series of random returns to be jointly elliptical, we derive a
relationship between its conditional variance and the probability density function of
the conditioning set. In the case that such a relationship is linear in a quadratic form
for of the conditioning variables, we show that the probability density function of the
conditioning variables is multivariate t. This result is then applied to models of
conditionally random volatility and used to derive exact results for the GARCH(p,q)
class of processes previously thought to be intractable.
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1. Introduction

ARCH and GARCH models are familiar examples of a large number of econo-
metric specifications that assume independent error processes and a pattern of
conditionally random volatility, see Engle (1982) for the origin and Bollerslev et
al. (1992) for a summary. Ignoring trivial cases, there are no finite sample results
known to the authors that give anything other than numerical/Monte Carlo mea-
sures for the unconditional distributions of the volatility or the variable whose
volatility is under investigation, see Knight and Satchell (1998) for a discussion of
the difficulties. The building of conditional volatility models is based on specific
assumptions about the distribution generating the conditioning information set,
usually asset returns. Likewise, the form of the asset volatility generating process
is also based on specific assumptions. However, there are no theoretical results
available linking the form of conditional volatility process and the form of the
distribution generating asset returns.

The purpose of this paper is to provide some results in this direction. We
assume that our variables are generated by distributions within the elliptical class
and extend a result by Chu (1973) which enables us to characterize exactly the
distribution of the variables given the pattern of conditional volatility. We then in-
vestigate the implications of our results for arbitrarily general GARCH processes.
In particular, we indend to answer to questions of the following form: if asset re-
turns are generated withing the Elliptical class of distributions and asset volatility
follows a particular process, e.g. GARCH, then what should be the exact form of
the asset return distribution? Elliptical distributions are of interest to economists
for several reasons, they are a tractable generalization of multivariate normality,

(see Genton 2004; 2005), they are used in portfolio selection and asset pricing the-



ories (Ingersoll, 1987; Zhou, 1993; Hodgson et al, 2002 and Vorkink, 2003); and
they give interesting extensions to standard micro-structure models, (see Owen
and Rabinovitch, 1983 and Foster and Viswanathan,1993 for details).

Our general results which are extensions of results in Satchell (1994), are then
specialized to patterns of conditional volatility which are linear functions of a
quadratic form of the conditioning variables, resulting in that such an elliptical
distribution will be multivariate ¢. Finally we further specialize to the class of
GARCH(p,q) processes and derive the appropriate distribution. Our basic theo-
retical results are given in Section 2, followed by our results on GARCH in Section
3. We present some remarks on these results and their relationship to what we
already know about GARCH models and our conclusions in Sections 4 and 5

respectively.

2. The Link Between Volatility and Elliptical Asset Returns

Following the definition of Blake and Thomas (1968), we shall define the vector
x to be elliptically distributed if and only if its probability density function (pdf)

can be expressed as a function of a quadratic form, i.e.

pe0 = f (3x0 %) =19 (21)

where s = %x’ C~'x. The matrix C is positive definite and is known as the
characteristic matriz. It is proportional to the covariance matrix if the latter
exists.

There is a unique function w (¢) defined as 0 < ¢ < oo which together with
C' defines the elliptical distribution, see Theorem 1 of Chu (1973). Indeed Chu



shows that for x a 7' x 1 vector,
w(0) = (21)7 det (C)? ¢ 5L (f (s)) (2.2)

where 0 < ¢ < oo and L (-) is the Laplace transform operator. Chu gives examples
of w (¢) functions for some of the more familiar members of the elliptical class.
There is a linkage between the pdf p (x) and w (£). Equation (2.2) can be inverted
so that

p(x) = /Ooow (O) N, (¢71C) dt (2.3)

where N, (¢7'C) is the pdf of a T' x 1 vector of normal random variables with
mean zero and covariance matrix ¢~1C.

In what follows we shall restrict C' to be a diagonal matrix with diagonal
elements not necessarily equal. We regard x as a vector of returns in which case

the following holds

Proposition 2.1. C' is diagonal if and only if x is uncorrelated.

Proof. It is well known, see Chu (1973) Theorem 2, that

Cov (zg, z5) = (/Ooow (t) tldt> Chs
so that Cys = 0 implies that Cov (xy, zs) = 0. Also
/Ooow ()t 'dt >0
since Cov (x4, z,) > 0 and Cy > 0 V¢ by assumption.l]

Thus uncorrelatedness can be explained by the diagonality of C'. We turn now

to conditional volatility.



Let us consider the variance of z; conditional on xq,xs,...,2;_1. Since the
distribution of (z1,xs,...,x;) is elliptical, we can use Theorem 5 of Chu which

tells us that

00 v ,
Adv (Ot,t - (Ot,17 A Ct,t—l) C11_;t171,1;t71 (Ol,t7 X3 Ct—l,t) )
st J1 (8¢-1)

(2.4)

Uf (5i-1) =

where fi (s;_1) is a positive definite function of (x1, xs, ..., z;_1) defined as in equa-
tion (1), Ci_y 141 is a (t — 1) X (¢t — 1) matrix and

1

St—1 = 5 (Zlfl, T2y -uuy Zlft_l) 1_:,51_1’1:,5_1 (1’1, T2y eeny l’t_l)/ (25)

In the diagonal case discussed in Proposition 1 we see obvious simplifications
arising. Indeed, in this case it follows that
_ 74
20141

where t = 2,...,T. Equation (2.4) has another interpretation of some interest. It

St—1 + S¢_o (26)

is proportional to the reciprocal of a hazard function with value s;_i; thus in a
hazard analysis one should be able to specify a functional form for o2 as a function
of s;_1 and then see what the density for x should be. The function f; (s;_1) is
not the density function of s;_; so that our interpretation of Equation (2.4) in
terms of hazard functions does not have the usual probabilistic meaning. With

this goal in mind we note the following result.

Proposition 2.2. Within the elliptical class, for given C, there is a 1-1 relation-
ship between o? and the function f; (s;_1).
Proof. Chu, Theorem 5, proves the result in one direction. For the reverse

direction, without loss of generality, let C' = I. From equation (2.4)

52 f;:: fi(v)dv
b f(sie)
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then for

it follows that

L filse)
U% Fy (St—l)
and .
Ri=on( [ )0
Hence .
filsen) =2 : ;0> exp (_ /0 U;fg)) (2.7)
O

Proposition 2 tells us that if we specify o? as a function of s;_; then we can
deduce p (x;_1) where x;_; = (21,...,2,_1)’. In some cases, knowledge of f; (s;_1)
will enable us to deduce f (s) and hence we can find p (x;) rather than p(x;_1).
Prior to presenting the next theorem, we shall consider an example. Consider a

simple relationship given by

2 ’U—|—2St_1
w4t —3

where t = 2,3, ..., T, then

_ PO@rt=3) o [l
filos) = = m P( (o1 3>/0 ng)

_ F(0)(v+t— :j)) (2.8)

o1+

and thus
K(v+t—3)
pdf (Xt_l) - / —1 vtt—1
v (1 + xt*101:t71,1;t71><t71) 2

v

To calculate K, the constant of integration, we use f pdf (x4-1) dx;—1 = 1.
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_1 1
If we carry out the transformation z = C 2 ; 1., ;X;—1 with Jacobian = det |Cht—1,1:0-1 ]2

and transform z to polar coordinates, where we use the fact that z isnow E;_; (0, I;_1),

and
z1 = rsin(0y)sin(0s)...sin (6;_2)
zg = rsin(fy)...sin (0;_3) cos (0;_3)
(2.9)
2t—g = rsin(60;)cos (6s)
2.1 = rcos(6)

where 0 < r < 00,0 < 6; <7, fori=1,..,t —3 and 0 < 6;_5 < 27. We apply

Theorem 1.5.5 of Muirhead (1982); after integrating out #; we arrive at

27T (v+t —3) K rt=2det [Cry 11442
pdf (r) = = (v+ VK r € |t711.t 1,1:¢ 1 (2.10)

eT () (5

for 0 < r < co. Changing variables, let w = %

o' (v+t—3) K det \Cl;t_l,lzt_l\% v w's dw

pdf (w) = — X —— (2.11)
21 (5 (1+w)™7
for 0 < w < co. Integrating (2.11) from 0 to oo, we see that
(&=
K = — ( 2 ) - r— = (212)
(’U +t— 3) w2z det ‘Clzt—l,lzt—l‘a V2 fO %

(1+w) é

v

where the integral on the right side is equal to B (%, 5), see Abramowitz and

Stegun (equation 6.2.1, p. 258). Substituting back into equation (2.8),
r v4+t—1
pdf (x;-1) = ) . ( 2 ) vtt—1 .
i— x4 . X¢— 2 1
(71'1])7 T (%) (1 + t—1cl;t—11},1:t—1 1) % det ‘Clzt—l,lzt—l‘Q
(2.13)
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Equation (2.13) describes a multivariate ¢ of dimension ¢ — 1, characteristic matrix
C1.t—1,1:4—1 and v degrees of freedom. It can be thought of as a set of normals with
covariance matrix C1.;_1,1.4—1 all divided by the same independent chi-squared with
v degrees of freedom. Applying the argument after Proposition 2, given the full C'
matrix, allows us to find f (s) and hence we can deduce that x; = (z1,x2, ..., 7¢)
has a multivariate ¢ distribution with v degrees of freedom and characteristic

matrix C.

3. The GARCH(p,q) Class of Processes

Conditional volatility processes are now widespread in the economic literature. It

is then clearly of some interest to examine linear patterns such as

O'? =a; + bt St—1 (31)

where a; and b; may both be functions of t. We present the results for (3.1) in
Proposition 3 and then examine the implications of our results for the GARCH(p,q)

class of volatility processes.

Proposition 3.1. If conditional volatility follows a pattern given by equation
(3.1) and we know that x, = (x1, 2, ...,x;) is E; (0,C), then the marginal pdf of
x;_1 IS given by

l

BT (1 +5)

4+ 1
b
t—1 1 — 1 3
(%) 2 det |Cry—11:4-1|2 T (% %—% (a Xt 101:t1—1,1:t—1xt—1) o

p (thl) =

Proof. Let x; 1 = (21,2, ..., T4-1), X¢—1 18 By 1 (0, Cro—1,1:0-1)

~ F(0) / dv
fl(Stl)_a+bSt_1exp< 0 a+bv

F1(0) av
(a+b st,l)H%
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changing to polar coordinates as in (2.8) and integrating out the 0's leaves us an

expression for pdf (r) where r = ,/x, O} 11:4-1%Xt—1

t—1

27 Fy(0) rt2 det|C1t <BUL 12

pdf () = -
T () (a+5r2)
K rt=2
pdf (r) = —————%
(1+2) "
where L -
K— 217z det |Chri—1.1.4-1]2 F1(0)

()

2 . . . .
b we arrive at a Beta distribution,

Transforming v = -
a

C(3)7 vFav
pdf( ) 2(1 ) +1

Integrating we see that
— al(1+1)
Fi1(0) = .
1 (0) (M)t;zldeﬂo ET (2411
b 1:t—1,1:t—1 2 b 2

and the result follows.[]

As a check, if a; = b, = then Proposition 3 reduces to example

_v _2
v+t—3? v+t—37

(1). In general, Proposition 3 tells us that seemingly simple patterns of conditional
volatility, coupled with the assumption of ellipticity or sphericity (C' = I) lead to
rather restrictive results.

Turning now to the GARCH(p,q) class of processes, the great drawback of this
model, as mentioned in the introduction, is that so little is known about the joint

distribution of its conditioning set. Consider

o} =witlo? | +vi (3.2)
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/ !/
where o? = (at,at 1,...,Ut2_q+1) , w=(w,0,...,0), vy{_1 = (B'xf_l,O,...,O) and

/6 = (517527 "'J/Bp),7 Xt271 = (xt27171?727 "'71‘?7];),

Y1 V2 Yg—1 Vg

1 0 -0 0

r=1(0 1 0 0
i 0 0 1 0 |

Equation (3.2) can be seen as a representation of a GARCH(PL) process. Assum-

ing o2 is constant, upon recursive substitution we obtain
t
ol =(I-T)(I-T) " wiTleg+ ) Vv
j=1
from which we define
a=1(I-T)(I-0I)" 'w+1T'0}
where 1 is a vector with unit in the first element and zero elsewhere. Also,
t t ‘
D Sy
j=1 j=1
p
= D B% ,C %y
j=1

where x;,_; = (a:t,j, L1y oemy :Ut_j_(t_l)), isatx1vector, ' =T'xI'x..., ttimes,
'y is the (1,1) element of T" and C~! is a diagonal matrix where Cj_jl is given by

7', The last expression can be used to derive coefficients 6%1 such that

P

< A1z < A-lg
E Bx;;C Xy =X 107 Xy
Jj=1

13



where %1 = (241, 242, .., x,(p,l))/ isat+p—1x1 vector and C! is a diagonal

matrix with

j—1
Cyit = Y Gt iforj=1,..,p—1 (3.3)
:01
C'jgl = ZCJ_IM_Z. for j =p, ...t (3.4)
tlfz?flfj
Ciit = Y. Gl forj=t+1,.t+p—1 (3.5)
i=0
Thus
ol=a+%,_,C'%_, (3.6)

We now state our main result for the general GARCH(p,q) process in the following

proposition.

Proposition 3.2. Ifo? is generated by a GARCH(p,q) process given by equation
(3.2) and the matrix C is given by equations (3.3), (3.4) and (3.5), then for
X1 = (azt,l,xt,Q, ...,x_(p_l))/, pdf(X;_1) is given by

a’T (2)

pdf (X4—1) = t—1 =13 9 ?
(ra) T det|CI* T (3+1— 1) x (a+3%,C %)

where
a=1(I-T)(I-0I)" 'w+1T'0}
and C~1 is given by equations (3.3) to (3.5).
Proof. From (3.6) substitute the values ofa = 1' (I —T'*) (I = T') "' w + 1'T"0?3

and b = 1 in Proposition (3). Noting that this holds for every t, gives us the joint
pdf of >_(t_1.[|

14



The special case of GARCH(1,1) is very common in applied work. For lengthy
discussions on its distributional properties see Knight and Satchell (1994). We

present our results in the form of a corollary.

Corollary 3.3. If p = q = 1 and o? is generated by a GARCH(p,q) process
given by equation (3.2) and the matrix C is given by equation (3.3), then for

1
1, —Ltt-1)\ 2 5
2t ()7 (334 o o)

(=)

1—y

X1 = (T—1, T2, ..o, 930)/; pdfiX; 1) is given by

a1+%F (1 +

=

pdf (Xi-1) =

(

where C~1 is given by equations (3.3) to (3.5) and a =
Proof. For p=q =1 from (3.6) we have that

SIS

w +'o}.

a=1I-T)1I-1)"w+1T'o}

(1-7"
=T ++'op
and X, | C~1%; | reduces to
Bx, 0 %

where X, = (241, %43, ..., 7o) and
C; =y forj=tit-1,.,1
Ci;' =0fori#j

Also

1 —2t(t—1)
- (7)

Substituting in Proposition 3 we obtain the result.[]

15



4. Remarks on Proposition 4

Let us examine Proposition 4 for a GARCH(1,1) as expressed through Corollary 5.
The latter tells us that if we have a stochastic process that is elliptical and whose
unconditional variance decreases at (%)t as t increases and whose conditional
variance follows a GARCH(1,1), then the pdf of (xi,zs,...,2,—1) is a general ¢
distribution. Decreasing Unconditional Volatility is a plausible property of many
financial data sets and is a feature of recent equity markets. Typical sets that
start near 1987 may appear consistent with this phenomenon, theoretical models
of market micro-structure can possess this property as well, see Kyle (1985) or
Easley and O’Hara (1992) for example. Empirical estimates of -y are usually less
than one, typical values for UK daily returns are near 0.9, 3 is often near 0.1.

This result is not in contradiction of the work of Nelson (1990) or Bouigeral
and Picard (1992) who prove that 4+ < 1 is a necessary and sufficient condition
for strong stationarity in a GARCH(1,1) model. We have not restricted § and
7, indeed 3 + v might be less than 1 whilst our ¢? is certainly not stationary.
This seeming contradiction is resolved if we note that the above authors assume
that x; = o6, where ¢; ~ 4id (0,1). In our model &; are the marginals which
are uncorrelated (0,1) but not independent (except for the normal). However
Proposition 4 tells us that the distribution of x’s is not normal. We do not
investigate the implied properties of the GARCH residuals in Proposition 4.

We conclude here that the assumptions of GARCH modelling of independent
g, really eliminates the elliptical class as a plausible parent distribution. This is
not surprising, it is well known that specifying independent marginal ellipticals
will lead to a joint distribution that is non-elliptical, except for the normal case

(for a proof see Muirhead, 1982). However, there is a weaker definition of a

16



GARCH process, see Drost and Nijman (1993) for their definitions of semi-strong
and weak GARCH processes. The above model is consisent with such definitions,
although Drost and Nijman only consider stationary cases in their paper. Our
model, starting with a fixed value, is not stationary, but for certain values, will

converge to a stationary process.

5. Conclusion

The conclusion of Propositions 1 to 4 is to demonstrate that certain sets of data
that are uncorrelated (Proposition 1), that have a conditional volatility linear in
s? (Proposition 2), decreasing unconditional volatility (Proposition 4) will also
be distributed as multivariate ¢ if we assume joint ellipticity. Such a result helps
us to understand many contemporary empirical results. Some tracts of financial
data exhibit the above characteristics. Researchers often find that residuals of
GARCH models are better explained by the ¢ distribution than by the normal.
Decreasing volatility is often a pattern of new financial markets. Finally a direct
assault on the exact distribution of a process that exhibits GARCH volatility
has been thought of as completely intractable, the procedure we develop here
of “inverting” the relationship between the conditional volatility and the density
leads to a partial solution for a wide class of GARCH models, as demonstrated in
Proposition 3. Finally, planned further research could consider the application of

our methods to skew-elliptical distributions, see Genton, et al. (2004, 2005).
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