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Integrated Prevention and Control of Invasive Species

Basharat A. Pitafi,* Southern Illinois University, Carbondale
James A. Roumasset, University of Hawaii at Manoa

Abstract: An emerging problem for environmental policy is how to design efficient 

strategies for the prevention and control of invasive species. However, the literature has 

mostly focused either on pre-introduction prevention or post-introduction control of an 

invasive. The benefits of prevention cannot be understood or estimated without knowing 

the costs of post-introduction control. This paper provides an integrated framework where 

optimal prevention is combined with optimal pest removal.

Keywords: Invasive species, pest control, optimal prevention

1. Introduction: 

Forest resources, especially tropical forests, are at risk of invasion by exotic 

species, often of an irreversible nature. An emerging problem for environmental policy is 

how to design efficient strategies for the prevention and control of invasive species. 

However, most of the literature has focused either on pre-introduction prevention or post-

introduction control (see e.g., Carter et al., 2004; Eiswerth and Johnson, 2002; Horan et 

al., 2002; Kaiser and Roumasset, 2004; Olson 2004; Olson and Roy, 2002; Settle and 

Shogren, 2002; Perrings and Dalmazzone, 2000). However, the benefits of prevention 
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cannot be understood or estimated without knowing the costs of post-introduction 

control. In order to provide an integrated framework, we solve for optimal prevention in a 

model with optimal pest removal nested therein.

The problem of an invasive is the problem of a natural resource stock that is 

introduced in an area, grows, causes damage, and can be partially or wholly removed. It 

can be imperfectly prevented from entry by appropriate measures. If prevention fails and 

introduction occurs, the stock can be harvested according to an optimal control program 

that leads to a steady-state stock level. There may be a critical stock level, above which 

the stock cannot be appreciably altered by further introduction and, therefore, further 

prevention is not required.

Optimal management of such a stock would require one to choose an optimal path 

of control (harvest) to minimize the control costs and the damage from the invasive. 

Depending on the initial stock level, the cost of control, and the damages from the stock, 

the optimal path may entail doing nothing (zero control level) and letting the stock grow 

to its carrying capacity (or natural steady state), eradicating the stock completely (zero 

stock level), or achieving a steady state with a positive control and stock level. 

Minimized control and damage costs are obtained from this solution.

Once the control problem has been solved, it needs to be embedded in the optimal 

prevention problem. Optimal prevention minimizes the expected present value of 

prevention costs and the minimized control and damage costs determined in the control 

problem. If the steady-state stock is less than the critical level, then one also needs to take 

the possibility of further introductions into account.
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This paper constructs a model of introduction of an invasive where the probability 

of introduction depends on prevention efforts or expenditures and uses the above 

framework to determine the optimal prevention and control strategies.

2. The Model

We first examine the control of an invasive that has already arrived. It can be 

wholly or partially removed or left alone. The objective of management is to minimize 

the costs of control and damage from the invasive. To this end, a social planner chooses 

the optimal harvest path leading to a steady-state population level, which may be zero or 

greater.

Next, we examine prevention before the introduction of the invasive. Prevention 

efforts are meant to reduce the probability of an introduction. The costs associated with 

the optimal control path are the costs resulting from prevention failure. The social planner 

chooses a prevention level to minimize the expected costs of prevention and prevention 

failure.

2.1. Optimal Control

When an invasive population is introduced, its stock causes damage and its 

removal incurs costs. Optimal removal would minimize the present value of damages and 

control costs. One important feature of invasive control is the search needed to find the 

invasive before it can be removed. Cost of the search usually depends on the invasive 

stock. The greater the size of the stock in a particular area, the easier it is to find it and 
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hence lower the search costs. Therefore, the control costs that include search cost, in 

addition to the actual cost of removal, depend on stock level at any time. This feature has 

been ignored in some studies that examine optimal invasive control but assume the 

control cost depends only on the amount of removal (see, e.g., Eiswerth and Johnson, 

2002; Olson and Roy, 2002). Below we present a model in which control costs depend 

both on stock level and removal amount.

Suppose a certain population of an invasive (N0) is introduced. Let Nt be the stock 

of the invasive at time t, g(Nt) be the growth rate of the stock, D(Nt) be the resulting 

damage at time t, C(Nt, xt) be the cost of harvesting xt from the stock, r be the discount 

rate. Then we maximize the present value of the benefits minus the costs of control and 

damage as follows:
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1 To avoid notational clutter, the time subscript (t) and function arguments are suppressed in most of this 
section. 
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The Maximum principle of Pontryagin et al. (1962) provides the following 

Hamiltonian and first-order necessary conditions:

[ ] [ ]( ) ( , ) ( )t t t t t tH D N C N x g N xλ= − − + −  .....( 3 )

( , ) 0,        0
tx t t t t

t t

H HC N x x
x x

λ∂ ∂= − − ≤ =
∂ ∂   .....( 4 )

( ) ( , ) ( )
t t tN t N t t t N t t t

t

H D N C N x g N r
N

λ λ λ∂ = − − + = −
∂

&  .....( 5 )

( )t t t
t

H g N x N
λ

∂ = − =
∂

&
 .....( 6 )

Manipulation of the above conditions yields the following equation of motion for control: 
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Equations (6) and (7) specify the necessary conditions for optimal state and 

control paths over time. Steady state population, N* and harvest rate, x*, can be obtained 

by setting 0t tx N= =&& . The resulting condition is:

( *, *) ( *, *) ( *) ( *, *) ( *)x N N x Nr C N x C N x g N C N x D N⋅ − − ⋅ = .....( 8 )

This equates the one-period opportunity cost of harvesting a unit of stock (r 

Cx>0), the cost increase (–CN>0) due to stock reduction by one unit, and the increase 

(decrease) in cost (–gNCx) due to the resulting increased (decreased) growth, on the L.H.S. 

with the resulting benefit of reduced damage ( ND >0) on the R.H.S. Depending on the 

costs and damages, the value of N* may be positive or zero (implying that eradication of 

the invasive is optimal).

The above conditions give us the optimal time paths of Nt and xt that minimize V. 

We denote the minimized value of V by V*.  Next, we imbed this optimal control solution 

in the optimal prevention problem to determine the efficient level of prevention 

expenditures. 

2.2. Optimal Prevention

Let the prevention expenditure in each period be y, and the resulting probability 

of introduction be p(y). If there is introduction in a period, prevention stops and we 

control according to the optimal control program derived in the previous section. The 

control and damage costs, therefore, equal V*. If there is no introduction, we continue to 

spend on prevention. The resulting infinite probability tree is given in Figure 1.
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Fig.1: Prevention (y) with given control costs (V*)

The expected present value of prevention and control costs (including damage) is:
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We choose y to minimize W. The first-order condition is:
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This gives us the following condition2 for optimal y:

2 For a minimum, we also require 
2

2 0W
y
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∂

. Some manipulation of this condition in combination with (10) 

shows that it will be met if 0p′′ > .
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Using the definition of W from (9) and re-arranging, we get:

{ }
*

MB of prevention MC due to increased probability of further prevention and control

( ) 11 [1 ( )] 
(1 ) (1 )

p y V p y W
r r y

′ ∂− = + −
+ + ∂14243 14444244443 .....( 12 )

This implies that if the control and damage costs in the case of introduction were large 

(large V*), optimal prevention expenditures (y) would also be large (ceteris paribus). 

Similarly, the more sensitive the probability of introduction (p′(y)) is to prevention 

expenditures, the bigger the expenditures. The prevention expenditures would also be 

bigger, the smaller the interest rate (r) is. We denote the minimized value of W by W*. 

2.3. Optimal Eradication

Let Nmin denote the critical stock level below which further introduction can 

occur/matter. For simplicity, assume Nmin = 1. Now, if the steady state determined in the 

optimal control problem above involves eradication of the invasive (i.e., N* = 0 < Nmin), 

we have to consider prevention and possible repeated eradication. Thus, we have the case 

where prevention is continuing and whenever it fails, stock eradication takes place at a 

cost of V*. Let E = V*. The problem can then be represented by the infinite probability 

tree in Fig. 2.
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Fig.1: Prevention (y) with repeated eradication costs (E)

The expected present value of prevention and eradication is:
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We choose y to minimize Z. The first-order condition3 is:
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This gives us the following condition for optimal y:

3 For a minimum, the condition is again 0p′′ > .
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This implies that as the eradication expenditures (E) become larger, so do the prevention 

expenditures (y). The prevention expenditures are also larger, the smaller the interest rate 

(r) is, and the more sensitive the probability of introduction (p′(y)) is to prevention 

expenditures. Let us denote the minimized value of Z by Z*. This is the cost of prevention 

and control when the steady-state stock is zero.

An alternative to this outcome is to solve the optimal control problem with a 

lower limit on stock to prevent it from falling below Nmin. Denote the resulting steady-

state stock level by N** and the new V* by V**. Replacing V* by V** in (9), we get a new 

value of W* and denote it by W**. If W** < Z*, the restricted optimal control approach to 

N** is superior to the N* = 0 and the optimal invasive management strategy is the one 

given in Fig.1 (with V** in place of V*). If V** > Z*, the strategy of choice is that given in 

Fig.2.

3. Conclusion

We provide a framework to combine optimal pre-introduction prevention and 

post-introduction control of invasive species. Optimal prevention depends on the costs 

that would result when prevention fails to stop an invasion. The costs of prevention 

failure are the costs of controlling the invasive in an optimal manner, including the 

damages incurred in the process. For the optimal prevention problem, higher control 

and/or damage costs required after the species is introduced would result in higher 
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optimal prevention expenditures. Similarly lower interest rates and greater prevention 

effectiveness also increase optimal prevention expenditures. 
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