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Abstract: Many places, including the island of Oahu in Hawaii, have a number of 

groundwater aquifers. Consumers located in one aquifer area can be supplied from water 

extracted and transported from another aquifer if this results in cost savings over local 

extraction. Incorporating such interdistrict transport is necessary for a fully efficient 

allocation framework. We derive efficient water management and pricing plans for two of 

the four aquifer zones in the Central Oahu corridor, taking into account the possibility of 

inter-district water trade. Efficient management requires not only intertemporal efficiency 

within zones but also spatial efficiency between zones, where water is transferred from one 

zone to the next if, without the transfer, the intertemporal efficiency price in the receiving 

zone is greater than the efficiency price in the source zone plus the cost of transfer. 
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Introduction

The central groundwater corridor on the island of Oahu in Hawaii has four major 

underground aquifers that are the main source of freshwater on the island. These are 

Honolulu, Pearl Harbor (including Ewa), Schofield, and North (Waialua & Kawailoa). The 

aquifers on Oahu are interconnected through semi-permeable barriers. Water flows naturally 

across adjacent aquifers depending, among other things, on the head level gradient between 

aquifers. Previous studies have shown that efficient intertemporal allocation of groundwater 

may result in head level drawdown in some aquifers and head level buildup in others. This 

will result in changes in subsurface flows between aquifers, which have not previously been 

taken into account in economic modeling. In addition to these natural transfers, consumers 

located in one aquifer area can be supplied from water extracted and transported from 

another aquifer if this results in cost savings over local extraction. Incorporating such 

interdistrict transport is necessary for a fully efficient allocation framework.

We derive efficient water management and pricing plans for two of the four zones in 

the Central Oahu corridor, namely, Honolulu and Pearl Harbor, taking into account the 

possibility of inter-district water trade. Efficient management requires not only intertemporal 

efficiency within zones but also spatial efficiency between zones, where water is transferred 

from one zone to the next if, without the transfer, the efficiency price in the receiving zone is 

greater than the efficiency price in the source zone plus the cost of transfer.  



The model

To solve for the efficient trajectories of groundwater extraction and shadow values, we 

envision a social planner maximizing the present value of consumer benefits net of 

extraction and distribution costs. As groundwater is extracted, the efficiency price (full 

marginal cost of groundwater, including the marginal user cost) changes over time with the 

changes in extraction cost and water scarcity. Desalination of seawater is available as a 

backstop resource. When the efficiency price has risen to the unit cost of desalination, the 

backstop is used to supplement steady state groundwater recharge.

We set up a regional hydrologic-economic model to optimize groundwater use, along 

the lines of Krulce et al. (1997), which extends previous models (e.g., Brown and Deacon, 

1972; Cummings and Burt, 1969; Moncur and Pollock, 1988, among others) by allowing 

recharge to continuously vary with the head level. Water is extracted from a coastal 

groundwater aquifer that is recharged from a watershed and leaks into the ocean from its 

ocean boundary depending on the aquifer head level, h. Because of the lens shape of the 

aquifer, the volume of water stored in the aquifer increases at a decreasing rate with the head 

level. Moreover, as the volume of the stored water increases, leakage to the ocean increases 

and the net rate of recharge decreases. Thus, we model net recharge, n, (inflow minus 

leakage) as a positive, decreasing, concave function of head, i.e.,

( ) 0, ( ) 0, ( ) 0n h n h n h′ ′′≥ < ≤ . The aquifer head level, h, changes over time depending on the 

net aquifer recharge, n, and the quantity extracted, qt. 

The rate of change of head level at time t is given by: ( )t t th n h qγ ⋅ = −& where γ is a 

factor of conversion from volume of water in gallons (on the R.H.S.) to head level in feet. In 

the remainder of this section, however, we subsume this factor, i.e., h is considered to be in 



volume, not feet. Thus, we use ( )t t th n h q= −&  as the relevant equation of head motion. If the 

aquifer is not utilized (i.e., quantity extracted is zero), the head level will rise to the highest 

level h , where leakage exactly equal balances inflow, ( ) 0n h =  As the head cannot rise 

above this level, we have ( ) 0n h >  whenever the aquifer is being exploited ( h h< ). 

The unit cost of extraction is a function of the vertical distance water has to be lifted, 

f = e – h, where e is the elevation of the well location. At lower head levels, it is more 

expensive to extract water because the water must be lifted further, requiring greater energy. 

Thus, we model unit extraction cost, cq as a positive, increasing, convex function of the lift, 

( ) 0qc f ≥ , where ( ) 0, ( ) 0q qc f c f′ ′′> ≥ . Since the well location is fixed, we can redefine the 

unit extraction cost as a function of the head level: ( ) 0qc h ≥ , where ( ) 0,  ( ) 0q qc h c h′ ′′< ≥ . 

The total cost of extracting water from the aquifer at the rate q given head level h is cq(h).q. 

The unit cost of distribution from wells to users is cd. Distribution cost affects 

welfare estimates as well as optimal extraction paths, and without its inclusion in the model, 

the welfare estimates will not be realistic. In the presences of fixed costs, average distribution 

cost might be declining with volume, and allowing such variable distribution costs may 

provide insight into the effect of the fixed costs on welfare. For simplicity, we assume that 

the distribution pipes and pumps are already in place and that the distribution costs consist 

primarily of energy and maintenance costs. These costs are roughly constant per unit of 

water delivered, at least within the volume range considered. 

The unit cost of the backstop (desalination) is represented by cb and the quantity of 

the backstop used is bt. The demand function is D(pt , t), where pt is the price at time t, and 

the second argument, t, allows for any exogenous growth in demand (e.g., due to income or 



population growth).

A hypothetical social planner chooses the extraction and backstop quantities over 

time to maximize the present value (with r as the discount rate) of net social surplus.

1

, 
0 0

 ( , ) [ ( ) ] [ ]
t t

t t

q b
rt

q t d t b d t
q b
Max e D x t dx c h c q c c b dt

+∞
− −

 
 − + ⋅ − + ⋅
  

∫ ∫ ……….(1) 

Subject to: ( )t t th n h q= −&  ……….(2) 

The current value Hamiltonian for this optimal control problem is:
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where λt is the shadow price of the stock of water in the aquifer.

Applying Pontryagin’s Maximum Principle (see Kamien and Schwartz, 1991, 

chapter 8) leads to the following condition for optimal groundwater usage:

Extraction and distribution cost
Marginal User Cost
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where 1( , )t t tp D q b t−≡ + , is the retail efficiency price of the water delivered to users and, 

therefore, includes the distribution cost, which would be excluded in computing the 

wholesale price, i.e. the price before distribution. Equation (4) implies that at the margin, the 

benefit of extracting water must equal actual physical costs (extraction and distribution) plus 

marginal user cost (decrease in the present value of the water stock due to the extraction of 

an additional unit). If water charges omit user costs, as is common in many areas, overuse 

will occur. Equation (4) also implies that the retail (consumer) price is equal to the 

distribution cost plus the wholesale price (i.e., the price before distribution).

Re-arranging (4), we get the equation of motion for efficiency prices:



[ ( )] [ ( ) ] ( ) ( )t t t q t d t q tp r n h p c h c n h c h′ ′= − ⋅ − − + ⋅& ……….(5) 

The first term on the R.H.S. is positive and the second is negative. Their relative magnitudes 

determine whether the price is increasing or decreasing at  any time. However, if the net 

recharge is large and the extraction cost is sensitive to the head level, the second term is large 

and may dominate by the first term, making the price fall. 

The solution to the optimal control problem is governed by the system of differential 

equations (2) and (5). When desalination is used, the price must exactly equal the cost of the 

desalted water, and we can use 0t b d tp c c p= + ⇒ =&  in (4) to get: 
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Since we have ( ) 0, ( ) 0, 0n h n h n′ ′′≥ < ≤ , and ( ) 0,  ( ) 0q qc h c h′ ′′< ≥ , the derivative of the 

R.H.S. with respect to ht is negative, and the ht that solves equation (6) is unique. We denote 

it as h*. Whenever desalination is being used, the aquifer head is maintained at this optimal 

level, and therefore, the quantity extracted from the aquifer equals the net inflow to the 

aquifer, i.e., *( )tq n h= . In this steady state, any excess of quantity demanded is supplied by 

desalination.

To obtain the time-paths of prices and the corresponding head levels, a computer 

algorithm was designed using Mathematica software. The algorithm first solves equation (6) 

to obtain the steady-state head level and then uses it as a boundary condition to numerically 

solve equations (2) and (5) simultaneously for the time paths of efficiency price and head 

level.  Welfare  is  computed as  the  area  under  the  demand curve minus extraction and 

distribution cost (objective function (1)). 



Application

This section applies the above model to the two adjacent water districts of Pearl Harbor and 

Honolulu.

Pearl Harbor

The aquifers is a Ghyben-Herzberg lens where the volume of water stored in the aquifer 

depends on the head level, the aquifer boundaries, lens geometry, and rock porosity (Mink, 

1980). Although the freshwater lens is a paraboloid, the upper and lower surfaces of the lens 

are nearly flat.  Thus, the volume of aquifer storage is modeled as linearly related to the head 

level. Using GIS aquifer dimensions and effective rock porosity of 10%, Pearl Harbor 

aquifer has 78.149 billion gallons of water stored per foot of head.  This value is used to 

calculate a conversion factor from head level in feet to volume in billion gallons.  Extracting 

1 billion gallons of water from the aquifer would lower the head approximately by 1/78 or 

0.012796 feet, giving us γ = 0.000012796 ft/million gallons (mg). We follow Krulce et al. 

(1997) in using Mink’s estimates of leakage increasing with head level (Mink, 1980, Table 

18) and inflow constant at 281 million gallons per day (mgd) including rainfall and 

subsurface flows (Mink, 1980, Table 18 and p. 46), yielding a net recharge function (inflow 

minus leakage): 
2( ) 281 0.24972 0.022023t t tn h h h= − − .

The cost is a function of elevation (and, therefore, the head level), specified as: 

( ) ( )0 0( )q t tc h c e h e h
θ

 = − −  , where c0 is the initial extraction cost when the head level is at the 

current level, h0 = 15 feet. There are many wells from which freshwater is extracted and, 

using a volume-weighted average cost, we have separately estimated the initial average 

extraction cost in Pearl Harbor at $0.407 per thousand gallons (tg) of water. The average 

elevation of these wells, e, is estimated at 50 feet, and n is an adjustable parameter that 



controls the rate of cost growth as head falls. We assume θ = 2. Sensitivity analyses for θ = 1 

and θ = 3 did not change the conclusions of this article. Since the head level does not change 

much over time relative to the elevation, the value of θ does not affect the results 

appreciably.

The unit cost (
bc ) of desalted water has been separately estimated at $7/tg. This 

includes a cost of desalting ($6.79/tg) and additional cost of transporting the desalted water 

from the seaside into the existing freshwater distribution network that we assume to be 

$0.21/tg. 

We use a demand function of the form: -µ
t

g t
t  ) (pA e, t)D(p = , where A is a 

constant, g is the demand growth rate, pt is the price at time t, and µ is the price elasticity of 

demand. The demand growth rate, g, is assumed to be 1% (based on projections in DBEDT, 

2005). The constant of the demand function, A (=221.35 mgd) is chosen to normalize the 

demand to actual price and quantity data. Following Krulce et al. (1997), we use µ = – 0.3 

(also see Moncur, 1987, and Malla, 1996). We calculate the distribution cost, cd = 

$1.363/tg, from the water utility data (Honolulu Board of Water Supply, 2002).

Honolulu

Repeating the above calibration methods for the Honolulu aquifer, we find that it has 

61 billion gallons of water stored per foot of head. Thus, extracting one billion gallons (or a 

thousand MG) of water from the aquifer would lower the head by 1/61 or 0.0163934 feet, 

giving us γ = 0.0000163934 ft/MG.  At the current level, h0 = 22 feet (at Beretannia wells). 

The initial average extraction cost (c0) in Honolulu is $0.16/tg, A=83.77 mgd, and  cd = 

$1.81/tg. The cost of transporting water from Pearl Harbor to Honolulu is about $0.5/tg.



Using these numbers, the model yields the following price paths for the two water 

districts.

The price in Honolulu rises faster due to smaller aquifer size and larger demand. In year 45, 

the Honolulu price exceeds by more than the cost of transporting water from Pearl Harbor to 

Honolulu. Thus, it would be worthwhile to transport water in that direction after that time.
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