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Abstract— Agricultural production relies to a great ex-

tent on biological processes in natural environments. In ad-

dition to volatile prices, it is thus heavily exposed to risks 

caused by the variability of natural conditions such as rain-

fall, temperature and pests. With a view to the apparently 

lacking support of risky farm production program decisions 

through formal planning models, the objective of this paper 

is to examine whether, and eventually by how much, farm-

ers’ “intuitive” program decisions can be improved through 

formal statistical analyses and stochastic optimization mod-

els. In this performance comparison, we use the results of 

the formal planning approach that are generated in a quasi 

ex-ante analysis as a normative benchmark for the empiri-

cally observed ones. To avoid benchmark solutions that 

would possibly exceed the respective farmer’s risk toler-

ance, we limit the formal search to a subset of solutions that 

are second-degree stochastically dominant compared to the 

farmer’s own decision. We furthermore compare the suit-

ability of different statistical (time series) models to forecast 

the uncertainty of single gross margins. 

 

Keywords— stochastic optimization, program planning, 

time series analysis 

I. INTRODUCTION 

Agricultural production relies to a great extent on 
biological processes in natural environments. It is hea-
vily exposed to the variability of natural conditions 
such as rainfall, temperature and pests. Due to climate 
change these risks are likely to increase in the future, 
especially in developing countries. While neither be-
ing able to avoid production nor market risks, farmers 
always have adapted, and always will adapt, to chang-
ing conditions. One important strategy is the adapta-
tion of the production program. Hence, the question 
arises whether the decisions associated with such ad-
justment processes can be supported by formal statisti-
cal analysis and stochastic program optimization. 

 

Optimization procedures have been receiving a lot 
of attention in agro-economic research and teaching 
for several decades (see e.g. [1], [2], [3]). Nonetheless, 
even in developed countries, where technological in-
novations in general have been readily adopted by 
farmers, formal optimization has scarcely found its 
way into the farm planning practice. With regard to 
teaching the question has even been raised whether 
valuable time at universities is wasted with linear op-
timization [4]. 

Questioning the extra value of formal risk pro-
gramming, a widespread opinion is that farmers - in 
particular with regard to program decisions in crop 
farming - make near-optimal choices based on experi-
ence, incremental learning and simple heuristics (see 
also [5]). This means that information such as the 
available acreage, the labour capacities, the potential 
cropping activities, the crop rotation requirements, the 
risk associated with various production activities and 
the individual risk aversion are considered implicitly 
in the mental model of the farmer. In contrast to that, 
the planning of the production program based on for-
mal optimization procedures requires the explicit defi-
nition of the set of choices and restrictions and the ob-
jective function. Especially the difficulties arising 
from an explicit quantification of the uncertainty of 
single gross margins (see [6]) and the subjective risk 
attitude of the decision maker (see [7], [8]) are reasons 
why optimization has scarcely found its way into on-
farm planning. 

With a view to the apparently lacking support of 
risky farm decisions through formal planning models, 
the objective of this paper is to examine empirically 
whether, and eventually by how much, farmers’ “intui-
tive” program decisions can be improved through ade-
quate and manageable stochastic optimization proce-
dures. A final answer to this question requires the con-
sideration of two issues (see e.g. [9]): (i) the overall 
performance of the formal planning tool if adequately 
used, and (ii) its practical usefulness and de facto po-
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tential to increase profits given both the costs associ-
ated with using it and the cognitive constraints of po-
tential users. This paper addresses only the former is-
sue.

1
 It compares farmers’ empirical performance with 

the performance that could have been realized if for-
mally optimized programs had been implemented. We 
are the first, to our knowledge, to use the results of 
theoretical models generated in a quasi ex-ante analy-
sis as a normative benchmark for empirically observed 
ones. From a methodical perspective, this requires the 
solution of two problems: firstly, the development of a 
manageable method to consider farmers’ risk attitudes 
in the formal planning model and secondly, the ex-
amination of the suitability of different statistical 
models to quantify the uncertainty of single gross 
margins. 

The rest of the paper is structured as follows: the 
database and the method are described in section two. 
This includes the statistical analysis of the single gross 
margin time series as well as the formal optimization 
model and the procedure of the benchmark compari-
son. Section three presents the results of the bench-
mark comparison. Finally, we provide conclusions in 
section four. 

II. DATA AND METHOD 

Our exemplary empirical analysis is a case study 
looking at the performance of four German cash crop 
farms over a period of six years. In the following we 
explain the empirical database in detail. Afterwards 
we describe the statistical models that are alternatively 
used to quantify the volatility of the single gross mar-
gins of each crop. The optimization model is described 
at the end of the section. Unlike the optimization ap-
proaches proposed until now, our approach generates a 
single alternative production program which has the 
following characteristics: 
1. The uncertainty of the single gross margins (of 

wheat, barley etc.) is quantified through a statisti-

cal analysis of individual farm data. The resulting 

probabilistic information is used for the required 

one-year-ahead forecasts that are fed into the risk 

programming model. 

2. The farmer’s risk attitude is seen as being re-

flected by his choice of production program and 

                                                           
1 See e.g. [10] for an investigation of the practical usefulness of 

decision tools in a virtual setting. 

his apparently accepted variance of the total gross 

margin. We consider this expression of his risk at-

titude and use the observed variance as an upper 

bound in the optimization model. 
Finally, for each of the 24 planning occasions, the 

total gross margins which could have been realized if 
the formally optimized programs had been imple-
mented are then ex-post compared to those that were 
actually realized by the farmers. 

A. Empirical database 

We are investigating four cash crop farms in Bran-
denburg, North-East Germany. Farms 1, 2, and 3 are 
about 50 km west of Berlin, and farm 4 is about 
100 km north of Berlin. The acreage of these farms 
has virtually not changed over the last six years. Their 
average size amounts to 729 ha (farm 1), 1 111 ha 
(farm 2), 1 210 ha (farm 3), and 175 ha (farm 4). With 
the farm owner/manager, three permanent workers are 
engaged on farm 1, five on farm 2, four on farm 3, and 
one on farm 4. The major production activities consid-
ered by farmers 1, 2, and 3 include winter and spring 
wheat, winter rye, winter and spring barley, winter 
canola, corn, and non-food canola or set-aside land. 
Having an otherwise similar crop mix, farmer 4 does 
not include spring crops in his repertoire.  

For all farms, minor crops such as alfalfa, oil flax or 
peas are excluded from the performance comparison. 
These crops represent something close to hobbies, ra-
ther than serious production activities. Proportionately 
they are almost irrelevant on all farms. On the con-
trary, sugar beets are very relevant and profitable 
without question. They are left out of the analysis in 
that their acreage is a priori presumed to amount to the 
maximum level defined by the production quota allo-
cated to each farm. Excluding both hobby activities 
and the most competitive crop from the model does 
not impede the insight to be gained from the analysis. 
It only leads to a shift in the level of both the empirical 
and the optimized total gross margins and is therefore 
irrelevant for the performance comparison.  

The farmers were interviewed with respect to their 
factor endowment (human resources and farm land) 
over the last six years. We also inquired about the 
number of field working days, the maximum working 
hours per day, the time required for the various activi-
ties in the critical seasons (March/April, May/June, 
mid-July/mid-September, and mid-September/mid-
November) and possible purchasing activities such as 
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hiring seasonal labor. Furthermore, crop rotation con-
straints (minimum and maximum proportions of the 
particular crops) were taken into consideration. 

Both production and market risks are embedded in 
the single gross margins of each crop. Thus, farm-
specific time series of single gross margins are needed 
to specify the probabilistic information relevant to 
each farmer for his program decision. In principle, 
data sets should be as large as possible for time series 
analysis. However, due to the structural discontinuity 
at the beginning of the nineties (collapse of the cen-
tralized economy and transition to market economy), 
farm-specific gross margins before 1992/1993 in the 
new federal states of Germany often contain ambigu-
ous information or are not available at all. Hence, whi-
le using individual farm data after 1992, we construct 
proxies for the years 1980 to 1992. These proxies are 
site-specific single gross margins which are based on 
yields obtained on comparable soils and natural condi-
tions in the old federal states of Germany and on West 
German price data ([11], [12]). 

B. Time series analysis 

The time series available at the respective planning 
dates 1* −t  comprise the years 1980=t  to 1* −t . The 
considered planning dates 1* −t  are 1998, 1999, 2000, 
2001, 2002 and 2003. Thus, a farm-specific time series 
of 19 data is available for each crop at the first plan-
ning date “fall 1998”. For each of the following plan-
ning dates, the available time series increases by one 
year. For each single gross margin and farm/year 
combination (1) static distributions, (2) linear time 
series models, and (3) unbiased (non-linear) time se-
ries models are tested as alternative statistical methods 
and thus forecasting models. 

Forecasting model 1: static distributions 

Forecasting model 1 determines a static parametric 
distribution for each of the single gross margins. Ac-
cording to the Chi-Square, Kolmogorov-Smirnov and 
Anderson-Darling tests, the normal distribution cannot 
be rejected for any of the considered single gross mar-
gin time series (at a significance level of 5%). How-
ever, when compared to the normal distribution, Beta, 
logistic and/or triangular distributions show a slightly 
better match with the empirical distributions in some 
cases. In agreement with the standard approach (cf. 
[13]), we nonetheless assume a normal distribution for 

all single gross margins. 
Let j

tGM  be the gross margin per unit of produc-
tion activity j  observed at time t . Then a static nor-
mal distribution for a single gross margin can be de-
scribed as follows: 

j
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error term j

t*σ  reflects the standard deviation of all 
observed values. We introduce notation (1) - even 
though it is rather unusual for simple distributions - on 
grounds of consistency with the notation for the sto-
chastic processes. 

Forecasting model 2: linear time series models 

Allowing for stochastic processes implies that one 
examines the time-dependent pattern of random vari-
ables through time series analysis. Abstracting from 
discontinuities, a stochastic process represents the best 
estimation with regard to the variable’s distribution at 
future points in time. Auto-Regressive-Integrated-
Moving-Average models of the order p, d and q 
(ARIMA(p,d,q)-models) are linear time series models. 
Due to their flexibility, ARIMA(p,d,q)-models are 
used to represent a multitude of stochastic economic 
processes (cf. e.g. [14]). 

The ARIMA(p,d,q)-model that fits best to a particu-
lar time series can be determined with the Box-Jenkins 
test procedure [15]. According to this test, an AR(p)-
process results for all single gross margin time series 
in our illustrative analysis: 
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j

0α  denotes a constant, j
uα  denote the weight fac-

tors that need to be estimated for the last p  observa-
tion values j

utGM −* , and j
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j
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normally distributed error term. It should be noted that 
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the expected value as well as the error term can, and 
mostly will, differ from the ones obtained with the 
static distribution model even if the same data are ana-
lyzed. 

Forecasting model 3: non-linear time series models  

Recent research emphasizes the importance of non-
linear dependencies in time series (e.g. [16]). Non-
linearity cannot be identified with standard statistical 
procedures such as the Box-Jenkins test procedure (cf. 
[15]). These “conventional” tests presume a priori li-
nearity. Hence, more sophisticated statistical methods, 
which do not predispose linearity but facilitate the un-
biased identification of both linear and non-linear pro-
cesses, are needed. The method of “heuristic self-
organizing time series models” originally described by 
[17] offers an alternative for the identification and 
specification of non-linear stochastic relationships (cf. 
[18]). A special class of self-organizing algorithms is 
the so-called Group Method of Data Handling 
(GMDH). GMDH-algorithms combine the connection-
istic approach to artificial neural networks with the 
classical method of regression. They generate general 
polynomial process models (cf. [18]: 77): 
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These polynomials take into account up to p  pre-
ceding values with different weights as well as non-
linear terms, the potential number of which exponen-
tially increases with the number of the considered pre-
ceding values. Thus, the functional form of the poly-
nomial may easily get quite large. Its general structure 
can be understood as an AR(p)-process (upper line) 
which is extended by a non-linear component (lower 
line). While the GMDH-model has the principal ca-
pacity to account for any kind of distribution, we as-
sume normally distributed error terms since the results 
of the Chi-Square, the Kolmogorov-Smirnov and the 
Anderson-Darlings tests show that the normal distribu-
tion cannot be rejected at a significance level of 5%. 

C. Optimization model and performance analysis 

Fig. 1 illustrates the methodical steps of data collec-
tion and processing that are needed to optimize the 
production program.  

As described above, data are collected for each year 
and farm. This concerns the realized single gross mar-
gins up to the planning date, the constraints such as 
acreage, labor and crop rotation requirements, the em-
pirically observed production program, and the single 
gross margins realized in the target year. In the next 
step the single gross margin time series up to the re-
spective planning date are statistically analyzed. The 
resulting probabilistic information includes the corre-
lations, variances, and expectation values of the single 
gross margins. These values are specified separately in 
each of the three variants of statistical analysis. De-
pending on the consequently differing model inputs, 
the optimization model, of which the general structure 
is described below, will thus provide three alternative 
planning variants for each target year and farm. 

As described above, data are collected for each year 
and farm. This concerns the realized single gross mar-
gins up to the planning date, the constraints such as 
acreage, labor and crop rotation requirements, the em-
pirically observed production program, and the achie-
ved single gross margins realized in the target year. In 
the next step the single gross margin time series up to 
the respective planning date are statistically analyzed. 
The resulting probabilistic information includes the 
correlations, variances, and expectation values of the 
single gross margins. These values are specified sepa-
rately in each of the three variants of statistical analy-
sis. Depending on the consequently differing model 
inputs, the optimization model, of which the general 
structure is described below, will thus provide three 
alternative planning variants for each target year and 
farm. 

Optimization model 

The farm-specific constraints and the expectation 
values, variances and correlations of the single gross 
margins are fed into a quadratic optimization model. 
While considering the probabilistic information de-
rived from the time series of single gross margins up 
to each planning date, we do not model the actual pro-
gram decisions as dynamic or multi-period optimiza-
tion problems. 
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Fig. 1 Synopsis of the methodological procedure 

 
 

Instead, the program for each year is optimized sub-
ject to the constraints that are effective in the respective 
year as indicated by the individual farmer. Interdepend-
encies between the activities of subsequent years are 
considered through crop rotation constraints that may 
vary from year to year. For each farm and planning date 

1* −t  (1998 to 2003), formally optimized alternative 
programs are determined according to expectations re-
garding the respective target year *

t  (1999 to 2004). 
The optimization model can be described as follows: 
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)(TGME  denotes the expected total gross margin 
in the respective target year of the optimized produc-
tion program. The objective function coefficients 

)( *
j

tGME  represent the expected gross margins per 
unit of production activity j . j

tx *  describe the levels of 

the production activities. i
tb *  denote the capacities (re-

strictions), and ji
ta
,
*  represent the capacity require-

ments per unit of production activity. empV  is the total 
gross margin (TGM-) variance inherent to the empiri-
cally observed production program. V , in contrast, 
denotes the TGM-variance of the optimized program. 
Using empV  as an upper bound ensures that the reflec-
tion of the farmer’s risk attitude as observed in his 
own choice of production program is taken into ac-
count in the optimization.

2
 

The calculation of the variance is based on the re-
sults of the statistical analysis. Since the J  random 
variables (single gross margins) are normally distrib-
uted and additively combined, the TGM-variance of 
the empirical production program empV  can be calcu-
lated in a way analogous to a portfolio consisting of J  
asset positions (cf. [19]: 150): 
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kj ,ρ  denote the correlation coefficients between the 
single gross margins j  and k  (in the case of static 
distributions), or between their error terms (in the case 
of stochastic processes). 

jσ  and 
kσ  describe the re-

spective standard deviations. The correlation coeffi-
cient and the standard deviation are determined on the 
basis of the data collected up to the particular planning 
date. 

j
emptx *,  and 

k
emptx *,  respectively, represent the 

weight (acreage) of the production activities in the 
farmer’s empirically observed program. The TGM-
variance of the optimized program V  is to be deter-
mined in a way analogous to (5). One merely needs to 
replace the observed production levels 

j
emptx *,  and 

k
emptx *,  by the optimized production levels j

tx *  and k
tx * . 

Crop rotation requirements justifying the model’s 

linearity assumption (i.e. the assumption that resources 

used and revenues derived are linearly linked with the 

activity level) are represented in each year’s optimiza-

tion model as upper and lower bounds on the crop 

acreages. In a first optimization run, we use the maxi-

mum and minimum crop proportions as indicated by 

the farmers in the interviews as constraints. We then 

cross-check with farmers whether they consider the 

resulting programs feasible and consistent both with 

their preferences and the specific farm situation. If 

necessary, constraints are changed or added to the 

model. This includes changes of the feasible minimum 

and maximum crop proportions which may vary de-

pending on the production program(s) of the previous 

year(s). This feasibility check is repeated until no fur-

ther modifications are needed. This step by step pro-

cedure ensures that the optimized programs, while dif-

fering from the farmers’ realized programs, are both 

feasible and acceptable for the real decision-makers. 

Benchmark comparison 

We finally calculate the normative benchmark, i.e. 
the total gross margin TGM  which would have been 
realized in the target year if the optimized production 
program had been implemented: 

∑
=

⋅=
J

j

j
t

j
t xGMTGM

1

**  (6) 

 
j

tGM *  indicate the actually realized single gross 
margins in the target year. j

tx *  denote the planned pro-
portions of crops as derived from the formal planning 
model. An ex-post comparison between the bench-
mark TGM  and the farmer’s realized total gross mar-

gin empTGM  reveals whether an extra value could ha-
ve been derived from the formal planning model. 

empTGM  is to be determined in a way analogous to 
(6). One merely needs to replace the optimized pro-
duction level j

tx *  by the farmer’s observed production 
levels 

j
emptx *, . Regarding the validity of the perform-

ance comparison, it is to be noted that no informa-
tional advantage was accorded to the formal planner. 
The single gross margins realized in the target year are 
only used for the final benchmark comparison. 

A brief comparison with conventional quadratic risk 

programming 

While bearing resemblance to conventional ex-
pected-value variance (EV-) models the proposed op-
timization approach exhibits some particularities: EV-
models handle the problem of unknown risk attitudes 
by carrying out variant calculations regarding the risk 
aversion coefficient, thus providing a set of efficient 
combinations of variance and expected total gross 
margin (cf. Fig. 2, left). 

Aiming at supporting practical decision-making, we 
maximize the expected total gross margin subject to 
the constraint of not exceeding the empirically ob-
served willingness to accept risk. This means taking 
the variance of the total gross margin empV , inherent to 
the production program chosen by the farmer, as an 
observable, albeit incomplete, reflection of his subjec-
tive risk attitude (cf. Fig. 2, right).  

We do not argue that this reflection represents the 
farmer’s risk attitude completely. Nor do we presume 
that our procedure necessarily identifies the produc-
tion program that maximizes the farmers’ utility. We 
rather focus on the manageability and applied useful-
ness of the approach which allows for a clear endoge-
nous recommendation by reducing the efficient solu-
tion set to one single combination of variance and ex-
pected total gross margin. Technically speaking, we 
limit the set of feasible solutions to those yielding a 
higher or identical expected total gross margin at a 
lower or identical variance as the one previously ac-
cepted by the farmer. This is equivalent to limiting the 
formal search to an identifiable subset of solutions that 
are second-degree stochastically dominant compared 
to the farmer’s own decision. We are thus sure to in-
crease (or at least meet) the farmer’s expected utility 
compared to the one resulting from his own program. 
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Fig. 2 Classical procedure in the EV-model (left) vs. practical decision support (right) 

 

 

III. RESULTS 

A. Profitability comparison 

Until now, none of the decision-makers of the con-
sidered farms has been using formal optimization pro-
cedures to determine the production program. In fact, 
production planning is completely based on non-
formal planning and intuition. Table 1 compares the 
average annual total gross margins realized by the 
farmers with those that could have been realized if the 
formally optimized programs had been implemented.  

As an additional point of reference, the first row of 
Table 1 shows the hypothetical room for improvement 
(extra value) that would be generated if one had a 
“perfect forecasting model“, i.e. a model, which ex-
actly predicts the single gross margins in the respec-
tive target years. If such perfect information was 
available, the total gross margin could be improved by 
15.9% on average over all farms and all years. When 
interpreting this figure one should note that a perfect 
prognosis is never possible in reality because any time 
series contains unsystematic and unpredictable random 
errors. Hence, the figures depicted in the first row of 
Table 1 are only a first hint that it is worthwhile exam-
ining the potential for improvement that might be gen-
erated by using formal procedures of statistical analy-
sis and stochastic optimization. 

Rows 2 to 4 of Table 1 depict the extra value that is 
added by formal planning based on the three different 
forecasting models described above. Only farm 2 
could have improved its average annual performance 
considerably through the formal approach 1. The in-
crease would have been quite low in farm 4, and on 
farm 1 and 3 the average annual performance would 
even have been inferior to that of the actual programs. 
Although not shown in Table 1, a look at the crop mix 
of farm 2 reveals that the optimized program suggests 
a sharp decrease of the proportion of corn. Farmer 2 
has in reality planted corn on 15% of his acreage on an 
average whereas it is virtually irrelevant in the pro-
grams of the other three considered farms. Its com-
parative competitiveness being low, the 15% propor-
tion of corn on farm 2 must be interpreted as a serious 
planning mistake. It seems that the mistake is so seri-
ous that it could even have been alleviated through an 
optimization approach based on an ill-founded fore-
casting model. Despite its positive effect on farm 2, 
the overall change of performance caused by ap-
proach 1 over all farms and all years is nearly zero. 
We must therefore conclude that a “standard” risk pro-
gramming approach which incorporates risk through 
static distributions may even be inferior to informal 
decision-making of reasonably good farm managers. 
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Table 1 Average annual total gross margins (in €) of realized and optimized production programs 

Farm 1 Farm 2 Farm 3 Farm 4 Sum over all farms  

Empirical Optimized Change Empirical Optimized Change Empirical Optimized Change Empirical Optimized Change Empirical Optimized Change 

“Perfect fore-

casting model“ 
323 002 360 063 11.5% 325 636 413 944 27.1% 432 118 482 390 11.6% 78 894 87 826 11.3%1 159 6501 344 224 15.9%

Approach 1:  

assuming static 

distributions 
323 002 307 874 -4.7% 325 636 360 656 10.8% 432 118 420 384 -2.7% 78 894 80 286  1.8%1 159 6501 169 200 0.8%

Approach 2:  

assuming linear 

time series  
323 002 344 679 6.7% 325 636 373 466 14.7% 432 118 450 237  4.2% 78 894 82 878  5.1%1 159 6501 251 259 7.9%

Approach 3:  

allowing for 

non-linear time 

series 

323 002 349 028 8.1% 325 636 374 385 15.0% 432 118 446 061  3.2% 78 894 82 619  4.7%1 159 6501 252 093 8.0%

 

 

 

Table 2 Average crop proportions (in %) realized by farmers compared to those derived from the superior planning approach 3 

Farm 1 Farm 2 Farm 3 Farm 4 Sum over all farms  

Difference Increase* Decrease* Difference Increase* Decrease* Difference Increase* Decrease* Difference Increase* Decrease* Difference Increase* Decrease* 

Winter wheat -1.8 3 3 3.8 3 3 8.7 3 2 -1.6 2 4 0.8 11 12 

Spring wheat 0.9 1 0 0.0 0 0 – 0 0 0.6 1 0 0.4 2 0 

Winter rye 16.6 5 0 22.1 6 0 7.3 5 1 11.4 6 0 16.1 22 1 

Winter barley -13.6 1 5 -5.6 0 5 -17.5 0 6 -7.2 0 6 -8.6 1 22 

Spring barley -1.2 0 1 2.5 3 0 – 1 0 1.5 1 0 1.2 5 1 

Winter canola -3.1 3 3 -6.8 0 6 3.7 2 4 -3.5 1 5 -4.2 6 18 

Corn 0.0 0 0 -14.9 0 6 – 0 0 -1.7 0 3 -5.8 0 9 

Non-food canola 2.8 5 1 0.1 1 0 -3.1 3 3 2.0 5 1 1.3 14 5 

Set-aside -0.7 1 4 -1.3 1 5 0.8 2 4 -1.5 1 5 -1.1 5 18 

* 
Number of years - out of the six planning years considered for each farm - in which changes should have been made according to formal modeling. Cases in which 

the crop proportion remains unchanged can be calculated as residuals. 
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On the contrary, very encouraging results were 
found for the other two planning approaches (see the 
third and fourth row of Table 1). The average total 
gross margin could have been improved noticeably on 
all four farms if farmers had used formal optimization 
based on probabilistic information derived from sys-
tematic time series analysis: farmer 1, for instance, 
achieved in reality an average total gross margin of 
€ 323 002. Optimized production programs based on 
forecasting model 3 would have increased that amount 
to € 349 028. In other words: the average annual total 
gross margin for farm 1 could have been increased by 
8.1% (or € 26 026 per annum). For farm 2 the respec-
tive figures amount to 15.0% (or € 48 749 per annum), 
in the case of farm 3 to 3.2% (or € 13 943 per annum), 
and for farm 4 to 4.7% (or € 3 725 per annum). 

Averaged over all farms, the potential for improve-
ment compared to the farmers’ actual programs 
amounts to nearly 8% (7.9% for approach 2, and 8.0% 
for approach 3). That is, even though much more ef-
fort went into the statistical analysis of approach 3, the 
results are only slightly superior to those derived from 
linear time series models. This might be interpreted as 
preliminary evidence that, with GMDH models which 
allow for non-linear time series, we have arrived at a 
stage of model sophistication where the marginal re-
turns of increasing planning efforts sharply decrease. 

Going beyond the consideration of averages, the 
most essential results can be summarized as follows: 
firstly, the optimized programs derived from ap-
proach 3 surpasses in performance the empirical ones 
in 23 out of the 24 cases. It can be added that the same 
applies to approach 2. Approach 1, in contrast, outper-
forms the realized programs in merely 11 out of the 24 
cases. Second, being the odd exception, the total gross 
margin realized in the year 2001 by farmer 3 is higher 
than the one that would have been achieved with ap-
proach 3. At the planning date in the year 2000, how-
ever, the expected total gross margin of the optimized 
production program was 1.5% higher than the one of 
the farmer’s program. This underlines the well-known 
fact that in an uncertain environment a faulty decision 
may by chance result in higher profits, but uninformed 
choices will not be superior in the long run. 

B. Comparison of production programs 

Table 2 provides a rough characterization of produc-
tion programs by comparing the farmers’ crop mix with 
the optimized and more profitable mix that would have 

been derived from approach 3. While only commenting 
on the benchmark comparison with approach 3, identi-
cal conclusions are to be drawn from the comparison 
with approach 2. Comparing the programs and identify-
ing the main divergences provides first evidence for 
systematic planning mistakes made by farmers. 

The most noticeable result of the comparison is that, 
according to the superior approach 3, the share of 
(winter) rye should have been increased considerably 
in all farms and in 22 out of the 24 cases modeled. Rye 
is very drought-resistant. From a crop science perspec-
tive it is thus especially well suited for the natural con-
ditions of Brandenburg which is characterized by low 
and uncertain rainfalls and poor and quickly draining 
soils. Searching for the most common and apparent 
change suggested by the formal approach 3, we may 
conclude that, besides farmer’s 2 particular planning 
mistake regarding corn, all farmers should reduce their 
proportion of winter barley in favor of rye. 

This result is an indication for systematic planning 
errors made by the farmers in the past. Evolutionary 
economics (cf. e.g. [20]) could be called upon to ex-
plain this finding: even important economic decisions 
are often not supported by formal decision models. 
Rather, they are based on the decision-maker’s experi-
ence gathered in the course of the past decades and on 
simple heuristics such as “never make any decision 
that differs very much from past ones” (cf. e.g. [5]). In 
an environment where the relative competitiveness of 
different crops, for instance, changes quickly, deci-
sion-makers may thus not be quick enough to adapt to 
changed conditions. In other words: we might ask the 
question whether (boundedly rational) farmers making 
routine production program decisions learn too slowly. 

In the considered context it seems reasonable to 
speculate that farmers have not yet adapted their routines 
to account fully for two major changes of their relevant 
environment: on the one hand, the enormous progress in 
rye breeding over the last years which brought rye pro-
duction up to competitive levels, and, on the other hand, 
the increasingly precarious rainfalls in Brandenburg, 
possibly caused by climatic change. Slow learning and 
adaptation, in turn, justifies the use of formal decision 
aids by farmers and management consultants. 

C. Exploratory research regarding model robustness 

Using a very cautious wording, the above-presented 
results provide evidence that cases exist where an im-
provement of farm production program planning can 
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be provided through formal stochastic optimization. 
However, the variability of circumstances as well as 
the small number (24) of analyzed cases does not al-
low for statistical generalizations. Aiming to identify 
directions for relevant future research we carried out a 
preliminary exploration regarding the influence of dif-
fering soil qualities on the model’s robustness to pro-
vide superior results. 

To do so, in addition to the four farms analyzed 
above we looked at five more crop farms in North-
East Germany. Since farm-specific single gross mar-
gin data had only been recorded on these five farms 
since 1998, we only considered the target years 2002, 
2003 and 2004. Forming equal-sized groups, we at-
tributed three farms to category I (low-quality soil: 
below 30 points according to relative the German soil 
quality classification scheme from zero to 100 points), 
three to category II (medium-quality soil: between 31 
and 44 points), and three to category III (high-quality 
soil: between 45 and 52 points). 

As shown in Table 3 in the three analysed years the 
largest performance improvement of 12% on average 
could have been realized in the three farms of the me-
dium-quality soil category II. This figure is down to 
3.5% in the high-quality soil category, and to 7.1% in 
the low-quality soil category. While not being able to 
fully explain this, some educated guesses may serve as 
hypotheses or research questions in further studies: Let 
us first look for a possible explanation for the lower 
improvement potential in the farms of high-quality soil 
category compared to those on medium-quality soils: 
the number of crops to be considered by farmers on 
high-quality soils may be very small and include only 
very few high-yield cropping activities. In other 
words: if the relative competitiveness of different 
crops is clearly differing and if the farmers’ respective 
knowledge is adequate to allow for a significant reduc-
tion of the planning complexity through an a priori 
exclusion of those crops that are “out of question”, 
little support is needed, and can be given, by a sophis-
ticated planning approach. 

Let us now search for an explanation for the lower 
improvement potential in the farms of the low-quality 
soil category compared to those on medium-quality 
soils: according to their empirically observed pro-
grams the latter also accept a higher total gross margin 
variance, which, in turn, can be attributed partly to a 
lower risk aversion and partly to a steeper risk effi-
cient production frontier. The higher performance po-
tential can thus be seen as an indication that the use of 

the production factor risk generates decreasing mar-
ginal returns, not only due to the decreasing slope of 
the production function, but also to the decreasing 
ability of boundedly rational decision-makers to real-
ize the potential returns. This can again be attributed 
to the higher complexity of the planning problem. 

Table 3 Potential for improvement (in % of the total 

gross margin) in differing soil categories 

 Average 

change
*
 

Standard  

deviation
*
 

category I  

(low-quality soil) 
7.1 6.3 

category II  

(medium-quality soil) 
12.0 19.8 

category III  

(high-quality soil) 
3.5 4.1 

* 
Three farms and years; planning approach 3. 

 
We may thus formulate as a plausible hypothesis 

that the room for improvement opened up by formal 
optimization increases with an increasing complexity 
of the planning problem. 

IV. CONCLUSION 

At first view, this paper seems to revive the discus-
sion about the benefits of optimization models in ap-
plied agricultural program planning - a discussion that 
has been virtually closed in the past for the so-called 
good reason that agricultural practitioners have found 
neither need nor want to use formal approaches in on-
farm planning. Our illustrative analysis of 24 
farm/year combinations, however, suggests that a dif-
ferent attitude may be needed.  

The formal approach used in this study provides 
practical assistance for dealing with the problem of 
individual risk attitudes. It includes the variance of the 
total gross margin inherent to the production program 
chosen by the farmer as an additional restriction in the 
stochastic optimization model. Any practical decision 
support procedure which relies on this approach thus 
requires that farmers first specify their “own” produc-
tion programs without the formal planning aid, thus 
providing an observable reflection of their risk atti-
tude. Afterwards, one can search for alternative pro-
grams which - with the same or even less variance - 
lead to superior or at least equal expected total gross 
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margins. With regard to decision theory it must be re-
cognized that the recommended alternative does not 
necessarily represent the solution that maximizes the 
farmer’s utility. Instead the search is limited to sec-
ond-degree stochastically dominant alternatives, thus 
providing decision support without needing to elicit 
the farmer’s risk aversion. 

Our methodical comparison of different variants of 
statistical analysis (static distributions vs. stochastic 
processes) indicates that the extra value to be derived 
from formal optimization methods depends on the 
available data being adequately processed and used. 
Data may be time-dependent and exhibit a trend. This 
simple fact suffices to show that approaches which 
prima facie resort to the mean and variance of past 
values considered equal in weight may not represent 
good forecasting models in many cases. Inserting too 
simplistic assumptions into formal planning models 
may well cause their performance to be inferior to that 
of planning on a rule of thumb basis. This could be an 
explanation why some of the formal optimization ap-
proaches proposed in the past have not been accepted 
by farmers, and rightly so. 

While the analyzed sample is small, the identified 
capacity to outperform farmers’ informal decisions 
provides first evidence that the efficiency of on-farm 
decision-making might be improved through formal 
optimization. However, this needs to be investigated 
through further research. The identified dimension and 
the continuity of the efficiency gains found in the case 
study warrant the effort to do so. In other words, the 
model’s robustness to provide superior results should 
be tested by applying it to a larger number of farms in 
different regions and with different sizes, production 
structures and operating figures. In this context the 
following extensions of the model may prove valu-
able: 
• As long as one looks at program planning on large 

farms, basically any crop rotation requirement can 
be translated into a respective proportion of crops in 
any one year. This may be different on small farms 
where one needs to consider that fields, being of 
smaller and differing size, are not to be further sub-
divided for different crops. Furthermore, soil quality 
may differ from one field to the other. Extending 
the model to include such field-specific information 
requires additional effort but could be implemented 
in principle.  

• We included the total gross margin variance inher-
ent to the farmer’s observed program as a fixed re-

striction in the formal optimization model. Thus, we 
did not consider that farmers might be prepared, for 
instance, to accept some additional volatility if the 
expected increase of the total gross margin covers 
their risk premium. That is, we cannot be sure to 
have found the utility maximizing production pro-
gram. This does not impede the insights and clear-
cut results of the analysis. In fact, the consequence 
is just that there may be even more room for im-
provement. One could investigate this by letting 
farmers choose from alternatives derived from a 
stepwise relaxation of the variance restriction. Ho-
wever, this means abandoning the model-
endogenous recommendation of a single superior 
solution. 

• In our case study, extending the time series model 
to include non-linear structures did not add much 
extra value compared to simple linear models. This 
can be seen as evidence that increasing planning ef-
forts and further model sophistication are not feasi-
ble due to decreasing marginal returns. It might 
nonetheless be worthwhile to search for models that 
perform better still. Such a search could include 
models which allow for process parameters that are 
variable over time. Explicit GARCH-models could, 
for instance, be used in the case of a time-variable 
variance (cf. [21]). 
Decisions regarding the resources to be spent for 

planning are, like all economic choices, subject to ef-
ficiency considerations. Thus, additional efforts such 
as the introduction of formal and more sophisticated 
planning models need to be justified by additional be-
nefits. Before plunging into any of the above-
mentioned activities, it should be checked whether the 
gain in information justifies the additional costs. We 
can assume that the critical farm size allowing for suf-
ficient economies of scale depends on the costs (in-
cluding learning costs) associated with the introduc-
tion of optimization models. These costs, in turn, de-
pend on the knowledge and the skills of farm manag-
ers and thus, amongst other things, on the quality of 
their training. Better trained agricultural managers and 
consultants will need less time and effort to adopt 
more sophisticated approaches because they have less 
learning costs. 
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