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Determinants of Agricultural Disaster Payments in the  

Southeastern U.S.: County Level Analysis 

 
 

Introduction 

Direct disaster payments are considered the least efficient form of agricultural disaster relief 

(Goodwin and Smith, 1995). Several pieces of legislation were passed in the early 1990s in an 

attempt to make the process more market oriented, in particular by tying the payments to crop 

insurance. However, disaster relief is determined on an ad hoc basis by the legislators after a 

disaster occurs. Consequently, the disaster payments have often been a substitute for insurance 

(Gardner, 1994), and the disaster payment allocation has been described as a result of rent seeking 

by interest groups (Schmitz, Furtan, and Baylis, 2002). This process is more transparent at the 

higher levels of fund allocation (Brooks, Cameron, and Carter, 1998). It has been suggested that, on 

the congressional level, legislators are pressed by organized agriculture interest groups to subsidize 

farmers who experienced a disaster. As a result, the disaster payment allocation was found to be 

less dependent on the weather and more on those socio-economic and political variables that proxy 

the lobbying power of interest groups (Garrett, Marsh, and Marshall, 2006). 

In this paper, we test a similar hypothesis on the county level. The area chosen for this 

analysis consists of crop producing counties in Alabama, Georgia, and Florida. The time period 

covers 11 years (1995-2005). In comparison to the more aggregate analysis, our local weather data 

is more representative of the unfavorable conditions causing agricultural disasters. However, as the 

process of disaster aid allocation at the county level is less transparent and, therefore good data are 

hard to obtain, the proxies for political forces that may be behind the process are less precise.  
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An agricultural disaster occurs when damages and losses due to a natural disaster amount to 

at least a 30-percent production loss of at least one crop in a county. The amount of money 

distributed as disaster payments is substantial: $25.8 billion has been distributed to 2 million 

recipients nationwide during 1985-2005. In 2006, USDA provided $250 million for crop disaster, 

livestock, tree, and aquaculture assistance through five new programs. In the Southeastern U.S., the 

aid for agricultural producers affected by hurricanes in 2005 was $2.8 billion, and disaster 

payments to farmers, ranchers and others through eight separate programs to producers in 

Alabama, Florida, Louisiana, Mississippi, North Carolina, and Texas was $1.2 billion.  

Under perfect information, agricultural disaster payments should be affected only by the 

incidence of catastrophic climate events and the losses they cause. Since it is not always possible to 

measure the exact amount of the losses that a catastrophic event creates, in the absence of perfect 

information, actual payments may be affected by non-climate factors. To address the criticisms that 

payments are biased/inequitable (e.g. Environmental Working Group reports), this study tests the 

hypothesis that both climate related and non-climate variables such as economic, political, and 

community characteristics affect distributions of disaster payments.  

The rest of the paper is structured as follows. Section 2 describes the methodology used in 

the analysis.  Section 3 contains description of the data, Section 4 discusses the results, and Section 

5 concludes. 

 

2. Methodology 

Following Garret et al. (2006), annual disaster payments (by county) are modeled as a function of 

climate data such as the minimum and maximum temperature during growing season, precipitation, 
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and ENSO variables as well as socio-economic variables to proxy for producers’ lobbying potential 

to receive disaster-related payments.  Specifically, the model is   

Payacresit = f (X1it, X2it, ai,)+ uit     (1) 

where Payacres is the crop disaster payments per acre, X1 contains the weather variables, and X2 

contains the socio-economic variables expected to affect county-level crop disaster payments. ai is 

the latent time-invariant variable and uit is the idiosyncratic random error. 

The methodology is dictated by the nature of the cross-sectional time series (panel) data. 

Panel data methods accommodate an unobserved (latent) time invariant variable in the 

fixed/random effect regression framework. Since Garret et al. found that disaster payments on the 

state level was affected by weather independent, and likely time invariant variables applying these 

methods using county level panel data permits estimating correctly the impact of climate variables 

even if weather  independent factors are non-observable.  

The fixed effects (FE) estimation is simply a pooled OLS on data transformed using time 

averages to eliminate the unobserved time-invariant variable assumed to be correlated with the 

regressors (such as socio-economic characteristics or lobby power). This assumption is necessary 

for efficient estimation with the FE technique. It is also plausible in the context of the problem 

addressed because possible lobby power (or other variables affecting distribution of disaster pay) 

are likely to be correlated with the climate related variables and socioeconomic variables. For 

example, farmers living in areas more prone to disasters will be more likely to organize to seek 

such payments.  

The alternative random effects (RE) estimation allows for time-invariant regressors, such as 

some socioeconomic variables available from one census data during the study period, but it is 

based on the assumption that the unobserved variable is uncorrelated with the other regressors.  The 
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FE is preferred to RE approach because RE assumes that the county-level observations are random 

draws from a large population. In addition, while it may be possible that the unobserved variables 

are uncorrelated with the weather variables, they are likely to be correlated with the census 

variables, such as farm concentration or production volumes. Empirical test of this assumption is 

done with a Hausman test (Wooldridge, 2002, Ch. 10). 

The estimation choice, however, needs to account for the fact that disaster payment data 

used in the analysis are censored – some counties receive zero payments in some years (zero 

payments comprise only 12% of the data). To accommodate this, a Tobit estimation is used. While 

the FE model is in general preferred when counties are used because it is hard to make the 

argument that the counties are drawn from a random distribution, panel data Tobit models with 

fixed effects are inconsistent. These challenges are addressed by estimating fixed effects, random 

effects and Tobit random effect and comparing the robustness of the results. Given the small 

fraction of the censored observations linear FE and RE estimation provide good approximations for 

conditional distributions of the disaster payments (model coefficients) near the mean values.  

 

3. Data Description 

Variable definitions are described in Table 1 and summary statistics are in Table 2. The data for the 

analysis come from several sources. Data on disaster payments were collected from the 

Environmental Working Group’s Farm Subsidy Database that lists county level payments for the 

period from 1995 to 2005. The payments only include crop related programs and not livestock 

related payments because the focus of the study is on the effects of weather and climate and 

livestock program payments are likely to be affected by different variables. In addition, metro 

counties and counties in the mountainous regions of Georgia and Alabama without significant crop 
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production were excluded. The counties in the analysis produce mostly cotton, peanuts, corn, and 

soybeans. The panel dataset is comprised of 65 counties in Alabama, 15 counties in Florida, and 91 

counties in Georgia, or a total of about 1,800 annual observations for the sample. 

The payments used in the analysis include Crop Disaster Program Payments, Non-Insured 

Assistance Payments, Natural Disaster Payments, Disaster Reserve Assistance Payments, Quality 

Losses Program Payments, Disaster - Quality Adjustment Payments, Disaster Supplemental 

Payments, and Disaster Assistance Payments. All the payments were adjusted for inflation using 

data from the BLS.  

In the context of this paper, the term “disaster payments” pools all of the above 

components. Some of the original annual payments (paydis) were negative (although small in 

absolute value), which was a result of excessive payments made in the previous year. The data 

were adjusted accordingly by applying the negative payments to the previous year.1 Zero disaster 

payments constitute 12% of the data, most of which belong to 1996 and 1998 years. The per county 

crop disaster payments were divided by the total harvested crop acres in a county. The resulting per 

acre payment data (payacre) is more suitable for the analysis of the payment distribution. As Table 

2 shows, the average annual per acre disaster payment was in Florida ($25), followed by Alabama 

($14), and Georgia ($12) with all data presented in 2005 dollar equivalent. 

The weather data were collected from the Florida State University’s Center for Oceanic-

Atmospheric Prediction Studies (COAPS) database provided by the South Eastern Climate 

Consortium (SECC). The database includes daily observations on minimum and maximum daily 

temperature and (cumulative) precipitation from all weather stations in Alabama, Florida, and 

Georgia. As there are fewer stations than counties and the stations’ location is not always 

                                                 
1 Estimation results are not changed by this adjustment. 
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representative of a county, a list of weather station – county correspondence compiled by the SECC 

meteorologists was used to assign the weather observations to counties. 

As the analysis is done on relatively aggregate data (not “bottom-up” construction), the 

temperature data is used to approximate the probabilities (or incidences) of freezes and draught and 

the precipitation data are used to approximate the positive (watering) and negative (flooding) 

effects of rain. Rather than using an absolute minimum temperature, which is not representative of 

the damage caused by freezes, we constructed panel variable (per county and per year) consisting 

of the first percentile of the minimum daily temperatures for the growing and harvesting seasons 

defined as mid-March to mid-November (min1pcgs), corresponding to the major crops grown in 

the state. Table 2 contains the average temperature and for each state shows values roughly 

correspond to the below freezing points (slightly below 32F ensures frost damage). Similarly, the 

95th percentiles of the maximum annual growing season daily temperatures (max95pc) were 

constructed to reflect possible damages from heat as well as benefits from solar radiation, necessary 

for plant growth and are shown as state averages in Table 2.  

Cumulative precipitation is calculated for the growing season and for the year in ‘000 per 

inch (rain and raings) and is also contained in Table 2. Squared cumulative precipitation is 

included to reflect the negative effect of excessive rain on crop yields (possibility of flooding). 

The ElNino Southern Oscillation (ENSO) data used for grouping the yield series was 

constructed by the SECC climatologists from FSU and UFL specifically for the purpose by 

adjusting the monthly ENSO indices to reflect the ENSO conditions prevailing during the crops’ 

growth season, not calendar time. The importance of the ENSO phases comes from the 

meteorological research findings that, in general, the weather is more variable during non-neutral 

ENSO years (LaNina and ElNino) and, in the Southeast, LaNina years are usually relatively dryer 
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and hotter. The expectation is thus that the ENSO dummies (el, la, with neutral year as basis) 

should matter for disaster payments. The 1995-2005 time period contains only 2 El Nino and 2 La 

Nina years. Apart from the ENSO dummies, we also use annual dummies. 

We did not include data on official disaster (area) declarations, number of payment 

applications, etc for two reasons. One is simultaneity: such data are likely to be endogenous (i.e., 

determined by the same variables as the payments). The other is that, even if it were not, disaster 

declaration data would be just a more precise substitute for the weather/climate data. 

Data that serve as proxies for possible lobbying or local political power of farm groups on 

the county level were collected from the disaster payment census of agriculture. The last two 

censuses were conducted only in 2002 and 1997, but that does not preclude using them in the 

analysis as the data are largely time invariant (2002 census is more complete and time relevant). 

The data can be used in the random effects panel data regressions, fixed effects panel data 

regressions when interacted with annual dummies, and in the tobit models.  

Understandably, there are no perfect indicators of the ambiguous (often alleged to be 

significant) lobbying power of various farm groups that may lead to inequitable and distorted 

distribution of agricultural payments. One of the best candidates is perhaps the disaster payment 

concentration (collected from the EWG’s Farm Subsidy Database). This variable represents the 

percentage of the total disaster payments for a county in a given year distributed to the top one 

percent of the recipients (pmt1pc), and can proxy for political (redistributive) power of the farm 

lobby (or influential/connected producers) if we assume that such power is associated with small 

groups and that these groups, apart from getting a disproportionately bigger share of the available 

disaster payments, are also capable of increasing a county payments’ total. Table 2 shows that the 
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payment concentration is highest in Alabama (25 percent), followed by Florida (18 percent), and 

Georgia (15 percent). 

County level agricultural census data include a number of socio-economic indicators that 

may approximate the “payment extracting” power of agricultural producers only to a certain extent. 

However, better data (such as perhaps data on the matching between the actual loss and the 

payment received and on the composition of the county Farm Service Agencies) are not available, 

and the span of the payment data is not long enough to use time-series analysis. Several variables 

from the 1997 and 2002 agricultural census were used. These are bigfarmshare (the share of farms 

with more than 1,000 acres, used to proxy the lobbying power and farm concentration in a county; 

harvshare (share of harvested cropland), operatorfarm (share of operators whose primary 

occupation is farming) and govpayments consisting of all government payments net of disaster 

payments per acre of harvested cropland in $1,000. 

 

4. Discussion of the results 

Tables 3 to 5 have two panels each and present the results from several regression specifications 

with weather-related and socio-economic variables as the dependent variables. In each table Panel 

A shows the results from a tobit model and Panel B shows the results from a FE and RE 

regressions. Due to possible high correlation of some of the socio-economic explanatory variables, 

to avoid multicolinearity, they are included in a step-wide fashion.  

Since some of the census variables were not available for every county, some observations 

were lost in those regressions. Both FE and Tobit models show similar results. While the FE model 

is in general preferred when counties are used because it is hard to make the argument that the 

counties are drawn from a random distribution, panel data Tobit models with fixed effects are 
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inconsistent. Thus, random effects (GLS) transformation, is used results whenever the time 

invariant census data are included. The unobserved variable is absorbed in the error term and the 

estimation involves a GLS transformation of the data followed by OLS estimation. In all our 

regressions, the random effects estimator (lambda) ranges from 0.06 to 0.20 showing that a large 

fraction of the unobserved effect is left in the error term. The residuals were also tested for serial 

correlation (possible due to weather data).2 

There is consistency in the effects of weather and climate variables on the disaster payments 

in all three states. The minimum temperatures during the growing season reflect the 

incidence/frequency of freezes and are inversely related to the per acre disaster payments. For 

example in the state of Georgia, a one percent drop of the 5th percentile of the minimum 

temperature is associated with about 1-1.5 dollars per acre increase in the disaster payment 

(replacing the percentile with the number of days with min temperatures below the freezing point 

produces a comparable estimate). 

Increase in the maximum temperatures is associated with larger payments. For Georgia a 

one degree increase in the 95th percentile of the highest temperature increases the disaster payment 

by 1 to 1.5 dollars per acre, perhaps due to drought.Cumulative precipitation reduces the disaster 

payments (more rain is better, especially for rainfed crops) but the relationship is non-linear and 

concave, as evidenced by the negative squared precipitation term. The non-linearity captures 

probably of flooding brought about by too much rain. We can see that in Georgia rain improves 

yields but precipitation beyond (37.8”) is associated with higher disaster payments. Comparing this 

to the average precipitation of 47.4” suggests that, on average, the area gets more than enough 

precipitation (also, the average share or irrigated harvested cropland is 24%). 

                                                 
2 The coefficient at the AR(1) parameter was very small and negative. Fitting cross-sectional time series linear models 
using feasible GLS did not change the results.  
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However, the weather variables explain the variance in the disaster payments better in 

Georgia than in Alabama, and better in Alabama than in Florida. Table 4 shows that high 

temperature (proxy for drought) is significant in only one of the regressions for Florida. This could 

be attributed to the greater incidence of hurricane related damage (most of the counties analyzed 

are in the Florida Panhandle), whereas we did not use hurricane data.   

Among the most interesting results are those on the impact of ENSO phases. We find that in 

Georgia a La Nina year is associated with about 9 to 11 more dollars per acre compared to a neutral 

year and in Alabama with 10 to 15 more dollars. The results suggest that drier weather during the 

La Nina years affects disaster payment. We find that El Nino years are associated with decreased 

payments in Alabama (from 6 to 14 dollars per year based on several models various models) but 

no difference compared to neutral years in Georgia and Florida. In some of the regressions with 

data from Georgia, El Nino is weakly significant but it is not significant in the fixed effects 

regression. In Florida, however, ENSO phases do not seem to matter for the disaster payments, 

which is strange as the state’s weather is more affected by the ENSO due to its geographic location. 

We can only suggest that the drier La Nino years, the higher frequency of hurricanes during 

Neutral, and more floods in the El Nino years may create the ambiguity. These results should be 

interpreted with caution because of the short span of the data that covers only two El Nino and two 

La Nina years, which is compensated in part by the larger cross-sectional variation.  

The implication of these findings are that, since it has been argued that global warming will 

increase the incidence of El Nino and La Nina, one could expect that, at least in the Southeast, 

agricultural disaster payments will be affected. Given the increasing predictive power of climate 

forecasts, the results from such estimations can be used to better plan for such occurrences. 
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The disaster payment concentration data are used as a proxy for equity in payment 

distribution (EWG). We suggest two possible reasons for high payment concentration. One is the 

local character of crop failures and disastrous conditions affecting only a small number of 

producers. In this case, higher per acre payments could be associated with higher payment 

concentration. Another is the ability of a few to extract the payments. In this case, higher per acre 

payments are associated with higher concentration only if the ability to extract them also implies 

the ability to bias their allocation on the county level.  

Alternatively, disaster payment concentration could be inversely related to the disaster 

payments if an agricultural disaster, when it occurs, affects a large number of producers leading to 

a more even payment distribution but, when the disaster incidence is small, only a few producers 

get the payments (for one reason or another), hence the higher payment concentration. In light of 

this, even the data on chronic disaster aid recipients cited by the EWG is not a strong indicator of 

unfair play. Our results show that the indicator of payment concentration used in the analysis (the 

% of total received by the top 1 percent of the recipients), not significant in Georgia and Florida 

negative and significant in Alabama. This suggest that the observed high payment concentration is 

not associated with the total amount of payments received by a county, i.e., the “appropriative” 

power of the top payment recipients does not affect apportioning of disaster assistance to the 

counties. 

The indicators of farm concentration, the share of big farms and the average farm size (a 

proxy for the power of farm groups) matter for the disaster payments only in Alabama. Only the 

share of harvested land in the total cropland, a proxy for the intensity of the cropland usage, is 

marginally significant in Florida.  
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These results suggest that the weather and climate related factors alone explain most of the 

crop disaster payments at the county level while socioeconomic variables do not. Therefore, while 

there might be discrepancies in disaster fund allocations at state level, at the county level, it is 

distributed according to actual damage.  

In summary, the results indicate that, in Alabama and Georgia but not in Florida, weather 

and climate variables explain a relatively large portion of the variation in the disaster payments. 

The significance ENSO phases may be important for disaster budget planning, as the phases are 

predictable with high confidence levels. Contrary to the countrywide study which found that non-

weather related factors also affected distribution of agricultural disaster payments and that lobbying 

power and congressional committee representation mattered, we found only a limited impact of 

non-weather related factors on the county level in the analysis of the three Southeastern states. 

Many of the census variables described in the data section were experimented with but only a few 

were found significant. Considering this, and the state level differences in the estimation results, it 

is premature to conclude at this point whether there is any effect of lobbying and political 

preferences on the disaster payments at county level.  

One of the reasons for lack of significance in socioeconomic variables is a possible 

selection bias: the counties were selected for analysis on the basis of their agricultural production 

volume (i.e., main crop producers in the state) because of insufficiency and sketchy character of the 

data on small producers. However, crop disaster payments are non-negative in counties with even 

little agricultural production. It is more likely that payments to counties with little production are 

more dependent on farm size distribution, payment concentration, and other socioeconomic 

variables. Exclusion of these small producers may have downplayed the importance of payment 

structure and farm concentration. We plan to extend the analysis by including more counties. 
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5. Conclusions 

Using county level data we study if weather and climate variables or variables used as proxies for 

rent-seeking behavior determine disaster payment in the Southeast. The most important observation 

is that the weather variables (temperature and precipitation) are highly significant. Moreover, the 

ElNino Southern Oscillation phase dummies explain a large portion of the variation in the crop 

disaster payments. The socio-economic variables originally hypothesized to serve as proxies for 

lobbying power of farm groups and other rent-seeking behavior are significant only in Alabama bu 

have opposite to the expected sign. However, the variances of the time-invariant error components 

suggest that county effects not described by the census of agriculture variables are also significant 

in Georgia: both fixed and random effects models show greater relative significance of the latent 

time-invariant variable suggesting that the “behind the scenes” forces affecting disaster payment 

distribution on the county level may be present. However, the results neither support nor negate the 

existing criticisms of inequitable distribution of agricultural disaster payments but they suggest that 

future exploration of this topic with better data is warranted. 
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 Table 1 Variables Definition 
 
Weather and climate variables:  
Min1pc 1th percentile of min annual temperature, F 
max5pc 5th percentile of max annual temperature, F 
rain cumulative annual precipitation, HI 
rain2 cumulative annual precipitation squared 
El Dummy for ElNino years  
La Dummy for LaNina years  
d95 … d05 Dummies for years  
   
Dependent variables:   
payacres crop disaster payments/total harvested cropland acres, pure $ 
   
Socio-Economic variables:   
pmnt1pc % of disaster payments received 

by the top 1% of recipients 
proxies the "equity" of payment 
distribution  

bigfarmshare # of farms with >1,000 acres/# of 
farms in county 

proxies the lobbying power and 
farm concentration in a county 

govpmts all government payments per farm, $1,000 
Operatorfarm share of farm operators with principal occupation "farming" 
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Table 2 Summary Statistics 
Variable State Obs Mean Std. 

Dev. 
Min Max 

payacres (2005$) AL 726 13.81 19.75 0 111.74 
 FL 180 24.98 32.89 0 176.28 
 GA 1001 12.36 15.36 0 109.24 
min1pcgs AL 698 25.94 4.31 11 38 
 FL 177 32.29 4.28 0 41 
 GA 994 29.25 3.77 16 39 
max95pcgs AL 698 94.22 2.83 82 103 
 FL 177 94.48 2.36 84 101 
 GA 994 93.36 4.32 80 99 
rain AL 698 5.59 1.14 1.24 10.22 
 FL 177 5.38 1.43 1.70 8.98 
 GA 994 0.05 0.01 0.01 0.08 
raings AL 698 4.16 1.02 0.94 8.77 
 FL 177 4.31 1.23 1.02 7.55 
 GA 994 3.64 0.88 0.77 6.21 
El AL 726 0.18 0.39 0 1 
 FL 180 0.18 0.39 0 1 
 GA  994 0.18 0.39 0 1 
La AL 726 0.18 0.39 0 1 
 FL 180 0.18 0.38 0 1 
 GA 1001 0.18 0.39 0 1 
pmt1pc AL 108 20.46 7.67 6 40 
 FL 45 18.42 5.68 9 31 
 GA 152 15.01 6.42 0 36 
bigfarmshare AL 726 0.04 0.04 0.0031 0.1471 
 FL 180 0.03 0.02 0.0077 0.0728 
 GA 1001 0.07 0.06 0.0024 0.2653 
harvshare AL 726 0.49 0.12 0.2771 0.7834 
 FL 180 0.54 0.11 0.3607 0.7947 
 GA 1001 0.69 0.15 0.3570 0.9111 
govpmts AL 726 1.87 1.60 0.1053 7.6012 
 FL 180 1.63 1.72 0.2442 6.9272 
 GA 990 3.93 3.38 0.0424 14.5092 
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Table 3. Panel A: Results from a tobit regressions for Alabama 
The dependent variable is payment per acre 
 (1) (2) (4) (3) 
min1pcgs -0.713 -0.476 -0.451 -0.856 
 (2.88)*** (2.23)** (2.21)** (3.98)*** 
max95pc 0.464 2.249 2.095 0.218 
 (5.31)*** (6.23)*** (5.98)*** (1.50) 
rain -6.381 -10.400 -10.177 -9.923 
 (4.00)*** (5.54)*** (5.52)*** (5.26)*** 
raings2 1.359 1.573 1.540 1.585 
 (6.62)*** (6.51)*** (6.51)*** (6.58)*** 
el  -14.872 -14.785 -14.565 
  (6.29)*** (6.30)*** (6.18)*** 
la  15.351 14.885 8.471 
  (5.77)*** (5.76)*** (3.42)*** 
pmt1pc -0.314    
 (2.68)***    
bigfarmshare  72.282  79.513 
  (2.39)**  (2.95)*** 
govpmts  1.530 3.571  
  (2.21)** (6.26)***  
harvshare   -35.086  
   (4.91)***  
operatorfarm    62.470 
    (3.02)*** 
County dummies yes   yes 
     
Year dummies yes yes yes yes 
     
Constant  232.117 234.286  
  (6.73)*** (6.99)***  
Observations 106 698 698 698 
Number of countyn 54 65 65 65 
sigma_u 2.53 3.37 .51 4.15 
 1.51 2.37 0.07 3.07 
sigma_e 7.35 19.98 19.95 20.32 
 10.25 32.14 32.21 32.03 
rho 0.10 .027 .0007 .04 
     
Absolute value of z statistics in parentheses 

* significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 3. Panel B: Results from FE and RE regressions for Alabama 
The dependent variable is payment per acre  
 FE MLE (RE) RE RE 
min1pcgs -0.522 -0.705 -0.308 -0.333 
 (2.45)** (2.86)*** (1.75)* (1.81)* 
max95pc 1.577 0.459 1.338 1.446 
 (4.40)*** (5.28)*** (4.49)*** (4.70)*** 
rain -7.264 -6.297 -6.074 -6.061 
 (4.23)*** (3.97)*** (3.86)*** (3.78)*** 
raings2 0.932 1.350 0.939 0.936 
 (4.33)*** (6.62)*** (4.69)*** (4.58)*** 
el -5.615  -6.229 -6.154 
 (3.01)***  (3.36)*** (3.30)*** 
la 9.771  10.990 11.284 
 (3.87)***  (4.78)*** (4.79)*** 
pmt1pc  -0.316   
  (2.72)***   
harvshare   -31.979  
   (5.13)***  
govpmts   3.259 1.527 
   (6.53)*** (2.58)*** 
bigfarmshare    55.260 
    (2.13)** 
County dummies  Yes   
     
Year dummies Yes yes Yes yes 
     
Constant 170.928  156.588 151.176 
 (4.90)***  (5.53)*** (5.17)*** 
sigma_u 7.49 2.31 0 2.51 
sigma_e 18.09 7.37 18.09 18.09 
rho 0.15 0.09 0 0.02 
Observations 698 106 698 698 
R-squared 0.14    
 
Absolute value of z statistics in parentheses 

* significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 4. Panel A: Results from tobit regressions for Florida 
The dependent variable is payment per acre  
 FE MLE 

(RE) 
RE RE 

min1pcgs 0.969 -0.014 1.229 1.197 
 (1.71)* (0.01) (2.31)** (2.21)** 
max95pc -0.091 0.713 -0.468 -0.353 
 (0.08) (1.23) (0.45) (0.33) 
rain -0.026 -0.011 -0.024 -0.024 
 (5.53)*** (1.46) (5.26)*** (5.25)*** 
raings2 0.000 0.000 0.000 0.000 
 (5.15)*** (1.63) (4.97)*** (4.95)*** 
el -6.418  -6.762 -6.674 
 (1.10)  (1.16) (1.15) 
la -4.879  -5.514 -5.462 
 (0.84)  (0.95) (0.94) 
pmt1pc  -0.874   
  (1.39)   
harvshare   -101.637  
   (1.85)*  
govpmts   3.537 -1.918 
   (0.99) (0.79) 
bigfarmshare    -40.973 
    (0.19) 
County dummies  yes   
     
Year dummies yes yes yes Yes 
     
Constant 79.762  149.475 95.242 
 (0.80)  (1.48) (0.97) 
sigma_u 13.1 0 7.79 9.67 
sigma_e 28.44 21.88445 28.44 28.44 
rho .17 0 .069 .10 
Observations 177 43 177 177 
Number of county 15 15 15 15 
R-squared 0.23    
Absolute value of z statistics in parentheses 

* significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 4. Panel B: Results from FE and RE regressions for Florida 
The dependent variable is payment per acre  
 (1) (2) (3) (4) 
min1pcgs -0.014 -1.805 -1.803 -1.711 
 (0.01) (2.52)** (2.56)** (2.50)** 
max95pc 0.713 0.030 0.184 0.680 
 (1.23) (0.02) (0.15) (2.20)** 
rain -0.011 -0.035 -0.035 -0.036 
 (1.46) (6.13)*** (6.11)*** (6.59)*** 
raings2 0.000 0.000 0.000 0.000 
 (1.63) (5.73)*** (5.74)*** (6.12)*** 
el  -5.004 -5.060 -4.988 
  (0.75) (0.76) (0.75) 
la  -6.668 -6.420 -6.218 
  (0.97) (0.94) (0.91) 
pmt1pc -0.874    
 (1.39)    
bigfarmshare  -110.636  -147.774 
  (0.47)  (0.86) 
govpmts  -1.370 3.832  
  (0.52) (0.99)  
harvshare   -105.481  
   (1.77)*  
principaloperatorbyp
rimaryoccupa 

    
0.036 

    (2.01)** 
County dummies yes   Yes 
     
Year dummies Yes yes yes Yes 
     
Constant  73.652 132.245  
  (0.65) (1.14)  
sigma_u 0.00 9.61 7.78 7.77 
 (0.00) (2.61) (2.04) (2.09) 
sigma_e 21.88 31.95 31.90 31.97 
 (9.27) (15.82) (15.85) (15.84) 
rho 0 .08 .05 .055 
     
Observations 43 177 177 177 
 
Absolute value of z statistics in parentheses 

* significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 5. Panel A: Results from tobit regressions for Georgia. 
The dependent variable is payment per acre  
 (1) (2) (3) (4) 
min1pcgs -3.194 -1.274 -1.203 -1.305 
 (4.42)*** (7.48)*** (7.22)*** (7.59)*** 
max5pc 3.425 0.314 0.099 0.401 
 (6.04)*** (1.95)* (0.76) (2.37)** 
rain -2.359 -0.534 -0.886 -0.529 
 (2.71)*** (1.93)* (3.87)*** (1.92)* 
rain2 0.023 0.005 0.008 0.005 
 (2.61)*** (1.45) (2.98)*** (1.43) 
el  0.447 0.665 0.411 
  (0.29) (0.43) (0.27) 
la  11.196 10.975 11.125 
  (7.41)*** (7.27)*** (7.37)*** 
pmt1pc -0.007    
 (0.03)    
bigfarmshare  10.581 -4.703  
  (0.53) (0.43)  
govpmts  -0.422  -0.038 
  (1.25)  (0.14) 
harvshare    -8.680 
    (1.35) 
operatorfarm   -17.091  
   (1.87)*  
County dummies Yes  Yes  
     
Year dummies Yes Yes Yes Yes 
     
Constant  -29.443  -29.618 
  (2.92)***  (2.96)*** 
sigma_u 8.74 3.21 3.12 3.24 
 3.76 3.66 3.58 3.74 
sigma_e 13.41 16.03 16.08 16.01 
 10.13 36.63 36.85 36.65 
rho .29 .03 .03 0.04 
     
Observations 152 983 994 983 
Number of counties 78 90 91 90 
Absolute value of z statistics in parentheses 

* significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 5. Panel B: Results from FE and RE regressions for Georgia 
The dependent variable is payment per acre  
 FE MLE 

(RE) 
RE RE RE 

min1pcgs -0.947 -3.305 -0.863 -0.873 -0.900 
 (6.09)*** (4.67)*** (6.17)*** (6.17)*** (6.34)*** 
max5pc 0.938 3.466 0.448 0.457 0.507 
 (4.98)*** (6.23)*** (3.35)*** (3.43)*** (3.61)*** 
rain -0.444 -2.258 -0.478 -0.487 -0.481 
 (1.81)* (2.65)*** (2.04)** (2.07)** (2.06)** 
rain2 0.005 0.022 0.004 0.004 0.004 
 (1.63) (2.55)** (1.51) (1.56) (1.51) 
el 1.587  2.522 2.363 2.505 
 (1.26)  (2.03)** (1.89)* (2.02)** 
la 9.905  9.502 9.664 9.416 
 (7.65)***  (7.43)*** (7.50)*** (7.36)*** 
pmt1pc  -0.051    
  (0.23)    
harvshare     -8.531 
     (2.03)** 
govpmts    -0.292  
    (1.66)*  
bigfarmshare   -15.081   
   (1.53)   
County Dummies  Yes    
      
Year dummies Yes Yes Yes Yes Yes 
      
Constant -54.531  -23.308 -23.996 -22.559 
 (4.37)***  (2.76)*** (2.84)*** (2.72)*** 
sigma_u 6.37 8.94 3.19 3.17 3.18 
sigma_e 13.64 12.89 13.64 13.67 13.64 
rho .17 .32 .05 .05 .05 
Observations 994 152 994 983 994 
Number of counties 91 78 91 90 91 
R-squared 0.17     
Robust t statistics in parentheses       

*significant at 10%; ** significant at 5%; *** significant at 1%    
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