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Abstract 

We introduce a modification of the quadratic-Leontieff multi-output cost function that is 
particularly suitable for the data of the Farm Accountancy Data Network. We present least squares and 
entropy estimates of that function and compare their results for a sample of crop farms. Our results are 
encouraging for the use of entropy estimators in cases in which farms are not assumed to share the 
same technology. Our approach can be seen as an extension of the Positive Mathematical 
Programming approach (Howitt, 1995). The extension consists in an explicit specification of inputs in 
the cost function and in the possibility of modeling several farms simultaneously. 
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Multi-input Multi-output Farm-level Cost Functions:   
A Comparison of Least Squares and Entropy Estimators 

 

1. Introduction 

In a recent issue of the American Journal of Agricultural Economics, Paris (2001) suggested 
the Symmetric Positive Equilibrium Problem (SPEP) generalization of the well-known Positive 
Mathematical Programming (PMP) developed by Howitt (1995) and Paris and Howitt (1998). The 
main advantages of SPEP with respect to PMP are to treat inputs explicitly and to model a sample of 
farms instead of the typical implicit-input one-farm PMP. SPEP is criticized by Britz et al. (2003). 
These critiques are detailed later on. A first objective of this paper is to address some of them and 
suggest an alternative extension of PMP to several farms and to an explicit specification of the inputs.  

PMP is essentially a method to calibrate a multi-output cost function with implicit inputs. 
Generalized Maximum Entropy (GME) is an econometric technique that is used in conjunction with 
PMP to estimate the parameters of the cost function on the basis of very few observations – even as 
little as one farm can be used to estimate the cost function. The second objective of this paper is to 
compare the results of the GME estimation technique with the more conventional multi-equations 
Ordinary Least Squares (OLS) estimator.  

The paper is intended for the same type of data as SPEP is: output prices and quantities, 
technical coefficients (input use per unit of output) and input prices data, either at a detailed farm-level 
sample, or an aggregated sample (for example at regional level). These data correspond to the 
European Union Farm Accountancy Data Network (FADN) data. The third objective of this paper is to 
present a multi-output cost function that fully accommodates for that type of data. It is a modification 
of a quadratic cost function, similar to Paris and Howitt’s (2001) quadratic-Leontieff cost function, but 
modified to fully satisfy the regularity properties of a cost function. It also has an additional 
“decomposition” property that is desirable with FADN data. The framework that is presented in this 
paper can be used with as little as one farm, but can accommodate any number of farms.  

We apply the method to the year 2000 FADN sample of 37 farms from the crops sector of the 
Belgian Walloon Loam region. The cost function is estimated imposing a common technology to the 
whole sample by OLS and GME. These estimates are then compared to an average of farm-specific 
estimates using GME, for which the common technology restriction is relaxed.  

The next section reviews the PMP and SPEP methodologies and underlines their advantages 
and shortcomings. Section 3 specifies the cost function and its properties. Section 4 introduces the 
OLS and GME estimators. Section 5 presents the data and section 6 the results. Section 7 discusses the 
model and the results; only limited conclusions are presented at this stage of development of the paper 
as the estimation process can be improved in several clearly marked ways. 

 

2. The Positive Mathematical Programming and alternative methodologies 

PMP (Howitt, 1995) is primarily devised as a calibration method in low information 
conditions. The purpose is to estimate a cost function that is capable of reproducing exactly the 
behavior of a single farm given information on output prices and quantities, and on yields in terms of 
land and possibly other inputs. PMP has three phases: calibration, estimation and simulation. The 
objective of the calibration phase is to estimate the marginal cost of each output, but as pointed out by 
Heckelei and Wolff (2003), this phase can be integrated in the estimation phase by means of 
Lagrangean multipliers. Also if there is no constraint on input quantity, the marginal cost is equal to 
the output price; that is what is assumed in this paper. We will return on this point later. The 



 
 
    

 Page 4 of 15 

CHAIRMAN - PROGRAM COMMITTEE 

EAAE X I
th

 CONGRESS – COPENHAGEN 

estimation phase is concerned with the method of estimation of the coefficients of a special type of 
cost function. The cost function is special because its only arguments are output quantities while 
inputs are not modeled explicitly. Howitt (1995) argues that such a function can in fact capture the 
decreasing marginal productivity of input provided the matrix of second derivatives (with respect to 
output quantities) of the function is positive semi-definite. The simulation phase uses the estimated 
cost function in a profit maximization program to simulate the farm’s behavior when some condition 
changes, such as output price or yield. PMP calibrates automatically, that is, in the simulation phase, 
given the original output prices, the original output quantities are recovered exactly. Several papers 
have demonstrated the usefulness of the approach to model agricultural supply, e.g. Röhm and Dabber 
(2003). One of the key assumptions of PMP is that farm behavior is optimum at the observed data 
point. Another key assumption in PMP, implemented through the GME estimator (Paris and Howitt, 
1998) is that much information on the farm behavior is already contained in a single data point (a 
single farm), provided the researcher can “guide” the estimation by means of prior information. 

Paris (2001) suggested SPEP as a multiple farms extension of PMP that treats inputs 
explicitly. SPEP has the same three phases as PMP but resorts to a quadratic cost function that is 
explicit in input prices. As demonstrated by Britz et al., (2003), SPEP has several drawbacks: the 
simulation phase has no straightforward economic interpretation and the quadratic cost function does 
not have the regularity properties that it should (see e.g. Chambers, 1988). Furthermore SPEP is 
impractical: it is devised as a complementary slackness (or equilibrium) problem instead of a profit 
maximizing problem. That means that each constraint in the problem must have a dual counterpart; 
that makes introduction of additional, in particular non-economic, constraints difficult.  

In a more econometric register, agricultural supply has often been analyzed using a production 
or profit function approach. Notable and recent examples are Moro and Sckokai (1999) and Chambers 
and Just (1989). In this paper, we are interested in a cost function approach essentially because it is 
better suited to capture the FADN data: prices can be seen as marginal cost and input demand (derived 
through Sheppard’s lemma) can be decomposed per output. The latter is a special property of the cost 
function presented in this paper. An additional advantage of the cost function, comparatively to the 
production function or the profit function, is the possibility to include constraints on quantities directly 
in the estimation process as shown in Heckelei and Wolff (2003). 

Several functional forms are available in the literature, but none is very much suited to the 
FADN data. The well-known Translog cost function can be extended straightforwardly to the multi-
output case. However in multi-farm agricultural data most farms do not produce all the products. The 
Translog cannot accommodate zero output quantities because it is expressed in logarithm of output 
quantities. The Symmetric Generalized McFadden cost function introduced by Kumbhakar (1994) is 
similar to a quadratic cost function. Without modifications, quadratic cost functions do not satisfy the 
standard regularity conditions (Chambers, 1988) because (among other things) they are not directly 
linearly homogenous in input prices. That problem has been addressed in the Symmetric Generalized 
McFadden cost function by dividing the quadratic form in input prices by the sum of input prices. 
Although apparently a simple and attractive solution, the derivatives become messy and guaranteeing 
the concavity in input prices is more complicated. In the modified quadratic-Leontieff cost function 
that is presented in the next section, that problem is addressed by using the square root of the input 
prices in the quadratic term as suggested by Paris and Howitt (2001). That cost function has however 
useful additional properties; they will become apparent in the next section. Finally the Hildreth-Houck 
functional form as used in Peeters and Surry (2003) does not make use of all the information available 
in a FADN sample. 
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3. Specification of the cost function  

The modified quadratic-Leontieff cost function can be stated as follows: 

( ) ' '
'

' '
'

, / 2n n n jn jn j n j j jn in
j j j i

in in i n i i in jn
i i i j

jn ji in jn jn in in
j i j i

C X R f X X q X R

g R R s R X

X d R X µ Rε

 
= +  

 + +  
  + +     

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

   (1) 

The indexes are j for the J outputs, i for the I inputs, and n for the N farms in the sample. The 
lower-case Latin letters f, q, g, s and d represent unknown coefficients. The q and s coefficients must 
be symmetric: ' 'jj j jq q=  and ' 'ii i is s= , otherwise the same variable would have two distinct 

coefficients; for example the variable 'jn j nX X  would have two coefficients 'jjq  and 'j jq . The 

upper-case Latin letters represents data: X is for outputs, R for prices. The terms in ε and µ are 
stochastic and determine the stochastic structure of the functions to estimate (see below); they may 
represent unobservable variables or measurement errors. Similarly to PMP, two sets of equations are 
derived from the cost function; both will be used in the estimation of the coefficients of the cost 
function. 

The first is the set of marginal cost equations: 

' 'n ' '
1 ' 1 ' 1

I J I

jn jn jj j in ii i n in ji jn in in jn
i j i

mc f q X g s R R d R Pε µ
= = =

 
= + + + + + ≥  ∑ ∑ ∑ . (2) 

The term mc stands for marginal cost, while P represents the output prices. One of the 
“positive” ideas of PMP is that a farmer has produced up to the point where marginal cost equals the 
marginal return. Provided there are no constraints on input availability and perfect expectation on 
prices, the marginal return is the output price. For each output, each farm fetches a different unit price 
than the other farms. This is not surprising as under the name of one output, each farm produces in fact 
a somewhat different product: the quality or the variety may be different, or some farms may have 
specific selling contracts. Farms sometimes produce rather heterogeneous crops that are small in terms 
of the farm revenue, but their nature varies widely across farms. Some farms may produce a small 
amount of one such crop while it is fetching a price much higher than its neighbor who produces a 
large quantity of a product with an identical name. In the Belgian agriculture, some bean or potato 
crops are typical examples. As a result, we prefer excluding those crops from the sample. For the same 
reason, in the present context, it is advisable to remove small crops from the sample rather than to 
lump them together.  

The second set of equations comes from the total input use B over the farm, derived through 
Shephard’s lemma: 

1
2 ' ' ' '

1 ' 1 ' 1

J J I

in jn jj j n in ii i n in ji jn in jn
j j i

B f q X g s R R d µ Xε
= = =

 
= + + + + +  ∑ ∑ ∑ .  (3) 

Shephard’s lemma also has a positive interpretation: in the same way as the farmer increases 
production until marginal cost equals output price (or does not produce), the farmer buys inputs until 
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his marginal willingness to pay equals the input price (or does not buy at all). Examination of the input 
use function shows that it can be decomposed into a set of I equations corresponding to the technical 
coefficients ijnA (input use per unit of output, i. e. inverses of yield): 

1

J

in ijn jn
j

B A X
=

= ∑ , thus  

1
2 ' ' ' '

' 1 ' 1

J I

ijn jn jj j n in ii i n in ji jn in
j i

A f q X g s R R d µε
= =

= + + + + +∑ ∑ .   (4) 

This is the “decomposition” property of ( ),C X R . It is very attractive because an analytical 

expression for ijnA  makes it possible to incorporate a lot of technological information into the cost 

function since ijnA is a data available in the FADN for some inputs such as land and fertilizers. This 

should help to model better diversified farms. For some inputs, the allocation per output is not known; 
this is the case most notably for labor and capital. For those inputs, we can still resort to equation (3). 
As summarized in the next table, the function defined by (1) complies with all the standard properties 
of a cost function.  

Table 1. Properties of the modified quadratic-Leontieff cost function 
Property Completion of the property 

Continuous in R ( ),C X R  is a sum of terms in R and R  

Non decreasing in R: 
0C R∂ ∂ ≥   

C R B∂ ∂ = : observed input demands are positive by construction 

Concave in R 
The matrix of second derivatives of ( ),C X R  with respect to input 

prices is negative semi-definite as long as ' 0iis ≥  for 'i i≠   

Homogeneity of degree 1 
in R  ( ) ( ), , 0C X R C X Rλ λ λ= ∀ >  

Non decreasing in X: 
0C X∂ ∂ ≥   

C X P∂ ∂ ≥ : observed marginal costs are no smaller than observed 
prices 

No fixed costs  ( )0, 0C R =  

Non negativity: ( ),C X R  

> 0 for X > 0 and R > 0  
( )0,0 0C = , C is non-decreasing both in X and in R 

 

In contrast to PMP, ( ),C X R  is not required to be convex in output X (the matrix of second 

derivative with respect to X is not required to be positive semi-definite) because concavity in input 
prices implies convexity in output quantities by duality. From an estimation point of view, imposing 
convexity in output requires resorting to some form of Cholesky decomposition (see e.g. Paris and 
Howitt, 1998), while imposing concavity in input prices only requires imposing sign constraints as 
indicated in the above table. 

There are at most (J + JI) equations per farm, but when a farm does not supply an output, all 
the equations corresponding to that output (one marginal cost equations and I technical coefficient 
equations) are omitted from the estimation process. If simulation is the objective, it is however 
necessary to estimate the coefficients that are specific to these equations. Some hypotheses have to be 
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taken regarding the level of price P and technical coefficients ijnA that a farm would have obtained if it 

had supplied that output. Paris (2001) suggests taking the sample mean.  

Over a sample of N farms, there are NJ+J(J+1)/2+NI+I(I+1)/2+IJ coefficients to estimate 
including the restrictions of symmetry. Again, some coefficients may be skipped if some output is not 
supplied. In the sample of the present paper, a typical farm supplies 6 outputs and uses 4 inputs. In that 
case, the model is identified with as little as three farms, provided they all produce all the outputs with 
all the inputs. Because there are as many coefficients to estimate as first and second-order derivatives, 

( ),C X R  is a flexible functional form. 

The model is similar to a panel data model in the sense that for each output and input there is a 
coefficient fjn and gin respectively that is farm-specific. Those coefficients are intended to capture the 
effect of relevant explanatory variables for which we do not have data, e.g., management capacity or 
some forms of capital.  

 

4. Ordinary Least Squares and Generalized Maximum Entropy Estimators  

Both PMP and the Generalized Maximum Entropy (GME) estimator were developed for cases 
of shortage of data. The typical PMP problem is under-identified in the sense that there are more 
coefficient to estimate than there are equations, therefore only an entropy estimator may be applied 
(the robustness of such estimator is however little explored). Extending PMP to make use of 
information on input prices as in SPEP and in the present paper requires more data than in the original 
PMP, but only the input prices, which are included in the FADN data set. Access to the FADN implies 
access to a sample of several hundreds or thousands of farm accounting data in each EU member state. 
Therefore, it seems that the sample size is large enough to use more conventional techniques, such as 
least squares, and there is little need for the GME estimator anymore. 

However, sample size is a concern in a different sense: the larger the sample size, the more 
heterogeneous the sample, the less likely the farms share a similar technology. In other words, with a 
small homogenous sample, we may expect that there indeed exists common parameters (the q, s and d 
coefficients) summarizing a technology that is similar across the farms in the sample. But as the 
geographical extent of the sample increases, that hypothesis becomes more and more restrictive. The 
presence of error terms ensures that estimation is always feasible, thus the investigator must be 
relatively confident about the homogeneity of the sample because estimation does not reveal a lack of 
homogeneity. Otherwise, one must resort to estimating one set of coefficients per farm. In the above 
sets of equations (2) and (4), that amounts to appending an index n to the q, s and d coefficients.  

When one is willing to impose a common technology restriction, that is, imposing that the q, s 
and d coefficients are the same over the sample, the system of marginal cost and technical coefficients 
equations (2) and (4) can be estimated using Ordinary Least Squares (OLS). When one is not willing 
to make that hypothesis, a GME technique can be used as described by Golan et al., (1996). In this 
section we present an application of the GME and OLS estimators for a farm-specific estimation and 
in section 6 we compare their results.  

Both the OLS and the GME estimators can be described as an optimization process 
conditional on the following three sets of constraints corresponding to equation sets (2), (4) and to the 
negative semi-definiteness of the matrix of second derivatives with respect to prices of the cost 
function: 



 
 
    

 Page 8 of 15 

CHAIRMAN - PROGRAM COMMITTEE 

EAAE X I
th

 CONGRESS – COPENHAGEN 

' 'n ' '
1 ' 1 ' 1

1
2 ' ' ' '

' 1 ' 1

'

ˆ ˆ ˆˆ ˆ ˆIf 0 :

If input is used by farm for output :

ˆ ˆˆ ˆ ˆ ˆ

ˆ 0, '.

I J I

jn jn jn jj j in ii i n in ji in jn
i j i

J I

ijn jn jj j n in ii i n in ji ijn
j i

ii

Xr P f q X g s R R d R

i n j

A f q X g s R R d µ

s i i

ε
= = =

= =

 
> = + + + + +  

= + + + + +

≥ ≠

∑ ∑ ∑

∑ ∑

i

i

i

 

The residuals ̂ jnε  and ˆijnµ  correspond to a reparametrization of the error terms in the sets of 

equations (2) and (4) respectively. The set of OLS coefficient estimates is defined as the set 

{ }ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , , ,LS LS LS LS LS LS LSf q g s d ε µ  solution to 2 2

ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , , ,
ˆ ˆmin jn jinf q g s d n j i

µ
ε µ

ε +  ∑∑ ∑ . It is stated here to 

underline the similarity with the GME estimator.  

The set of GME coefficient estimates is defined as the set 

{ }ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , , ,ME ME ME ME ME ME MEf q g s d pε µ  solution to ( )
ˆ

ˆ ˆmin logjink jinkp k n j i

p p∑∑∑∑  such that 

ˆ ˆ
jin jink jink

k

p zγ = ∑  where γ represents any of the f, q, g, s, or d coefficients or of the ε or µ errors 

(adjusting the indexes where necessary). The k estimated probabilities ̂jinkp  must sum to one (over k) 

and must be non-negative. The parameter jinkz  is the kth support point for coefficient jinγ . The 

restriction ˆ ˆ
jin jink jink

k

p zγ = ∑  states that all the coefficients jinγ of the model are defined as a convex 

combination of their support points jinkz . The estimated probabilities ˆ
jinkp  are the weights of this 

convex combination. The support points are therefore a way to incorporate prior information into the 
GME estimator. The support points have  to be specified whether the investigator possesses such prior 
information or not; some support points can therefore be quite arbitrary. The support points are 
generally ordered from smallest to greatest; of particular interest are the first and the last support 
points since they constitute the lower and upper limits of the parameter estimate. To take an extreme 
example, if only one support point is specified, it is equivalent to imposing that the coefficient 
estimate is equal to the support point. 

The interesting feature of entropy maximization from an econometric point of view is that it 
makes possible estimation of under-identified systems of equations. We say that a system is identified 
when it has more equations than coefficients to estimate. Otherwise, it is under-identified and can only 
be estimated by GME. That is the case when each farm has its own sets of coefficients, not only the fjn 
and gin coefficients, but also the q, s and d coefficients. Only the GME estimator can be applied in 
under-identified systems. When the common technology restriction is not imposed, the GME estimator 
described above is equivalent to farm-by-farm estimation over the sample (i.e., there are N 
independent estimation processes). In identified systems, the only reason to apply a GME estimator is 
to incorporate prior information on the possible values of the coefficients.  

In the definitions of the OLS and GME estimators, no hypothesis has been made on the 
distribution of the error terms ε and µ or on the structure of their covariance matrix. Regarding the 
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latter, it seems reasonable to assume that there is no correlation between farms but that all the error 
terms within one farm are correlated between them (E denotes the expectation operator): 

' ' 2

0 '

'jn j n
jn

if n n
E

if n n
ε ε

σ

≠= 
=

, ' ' ' 2

0 '

'ijn i j n
ijn

if n n
E

if n n
µ µ

τ

≠= 
=

, and ' '

0 '

'jn ij n
ijn

if n n
E

if n n
ε µ

υ

≠= 
=

. 

It seems also reasonable to assume an extended version of heteroskedasticity, that is, the 
whole covariance matrix of the errors is farm-specific, i.e. all the above variances and covariances 
have an index n. These assumptions are rather weak and preclude the use of White or Newey-West 
robust estimator of the covariance matrix or feasible Generalized Least Squares techniques (see e.g. 
Mittelhammer et al., 2000). If we wanted to use a Generalized Least Squares estimator we would have 
to make stronger hypotheses on the covariance matrix of the errors that could lead to inconsistency if 
they were not true. Regarding the GME estimator, it is known that it is consistent (provided the 
support points are not misspecified) when the covariance matrix of the errors is unspecified. It is not 
clear whether GME would retain that property if we would specify an incorrect covariance matrix of 
the errors. 

The drawback of such weak assumptions is that the conventional methods for inference is 
available. However, bootstrap methods can still be used. Furthermore, even if we had made stronger 
hypotheses on the covariance matrix of the errors, we would still have had to resort to bootstrap 
technique for calculating the confidence interval of the elasticity measures derived from this model. A 
final advantage of bootstrap methods is that no hypothesis needs to be made on the distribution of the 
errors, neither for the OLS nor for the GME estimator. 

Finally, with both estimators, it is easy to incorporate additional restrictions to account for 
specific policy aspects. One can add equations describing the subsidy mechanism of Agenda 2000 
such as in Moro and Sckokai (1999), or to impose that land use is fixed for each farm such as in 
Heckelei and Wolff (2003). 

 

5. The data  

The data that the model needs are the yields for each input per output (inverse of the Aij 
coefficients), the output prices P, the output quantities X, and the input prices R. That data are 
available from the FADN sample at farm level, but the available information on input prices has to be 
supplemented for the needs of the model. The FADN sample does not have input prices directly, but 
has expenses per variable input; however, there is not always a measure of quantity. The land quantity 
per output is simply the acreage and is well documented, but depending on national regulations the 
FADN sample may report expenses based only on an official lease price for land which may differ 
widely from the actual price paid. For the present paper, each farm is assigned an estimated lease price 
for land based on (i) the share of leased land in total land for that farm, (ii) the official lease price for 
land (both data from the FADN sample), and (ii) the sale prices per district (from the Belgian National 
Institute for Statistics).  

For fertilizers prices, the available information is the total expenses and the quantities of each 
N, P and K fertilizer. If one assumes that the prices of these fertilizers are the same across outputs 
inside a single farm, then it is possible to estimate their prices on the basis of a least square or entropy 
estimator. The FADN sample does not provide information on quantities phytosanitary, seeds, and 
hired services inputs; for each of these inputs, only the total expenses per output are included in the 
FADN sample. That sample also includes some data on labor, capital and equipment inputs. We have 
momentarily excluded those inputs from the cost function and we assume that their impacts are 
properly captured through the outputs and through the farm-specific coefficients fjn and gin. In other 
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words, it is assumed that they always remain in fixed proportions to the included inputs. Future 
versions of this paper will include a more proper treatment those inputs, in particular through equation 
(3) for the inputs that are not allocated per output. 

In this paper, we use the 37 crops farms of the year 2000 FADN sample of the Belgian 
Walloon Loam region. The sample information is summarized in the following two tables. 

Table 2. Output descriptive statistics 

Crop Output X (T) Average P (€) Land (ha) N (u) P (u) K (u) Nbr farms
Winter Wheat 9 030 130.4 11 031 203 441 8 169 13 550 36
Winter Barley 1 088 124.1 1 507 24 900 5 412 8 043 17
Beet Sugar 31 557 53.0 4 647 67 390 35 640 85 520 36
Potato 9 725 63.8 1 940 32 665 14 571 44 612 13
Green Pea 228 260.0 287 81 2 200 2 475 3
Chicoree 8 884 48.4 1 942 10 907 8 339 23 731 20 

Table 3. Input descriptive statistics 

W. Wheat W. Barley Beet Sugar Potato Green Pea Chicoree
Land 21 354 (ha) 0.292 36 17 36 13 3 20
Nytrogen 339 384 (u) 0.008 36 17 35 13 1 17
Potassium 74 331 (u) 0.028 9 8 27 12 1 14
Phosphor 177 931 (u) 0.042 9 8 31 12 1 15

Nbr of farms that use input i in crop j
Input Total B

Average R 
(€)

 

 

6. Results 

We consider that the sample described in the previous section is homogenous, that is, the 37 
crops farms share the same technology. That hypothesis is motivated by agronomic and climatic 
considerations, the small size of the region (about 3000 km²) and its agricultural history (a long stretch 
of cereals and beet sugar cultivation). In that section, we compare an OLS estimator that imposes 
equality of the q, s and d coefficients over the sample with a GME estimator that does not impose such 
equality. The test is that since the sample is homogenous, the farm-specific GME estimates should not 
significantly differ from the OLS estimates. More explicitly, if the assumption  of homogenous 
technology is imposed, then both OLS and GME should produce similar coefficient estimates. When 
the homogenous technology assumption is not imposed in GME, if the sample is indeed homogenous, 
the same estimates should still obtain. If they do not, then we cannot know whether the assumption is 
wrong or GME is unable of extracting the common elements from each farm technology.  

However, contrarily to OLS, GME requires the specification of support points, and it is well-
known that GME is consistent only if the support points are well-specified. For that reason, we present 
results with different choices of support points. 

The results of the OLS estimation of( ),C X R  are presented in Table 4 under the form of 

elasticities. We have chosen this presentation because it appeared more intuitive than presenting the 
coefficient estimates directly. Table 4 presents the elasticity for a quantity (output supply or input use) 
on the left hand side column with respect to a price on the top row. The corresponding 95% 
confidence intervals are represented with the 2.5 and 97.5 percentiles (P 2.5 and P 97.5 respectively). 
Italics indicate significance at the 95% level. Percentiles have been computed by bootstrap (1000 
replications); no distributional assumption has been made at any point of estimation or inference. The 
fourth row of each output indicates the number of times the (quantity – price) pair has been observed; 
for example, out of the 36 farms producing wheat, 16 also produce barley.  
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Table 4. OLS Elasticities 

Quantity Price WW WB SB Po GP Chi Land NF PF KF
P 2.5 0.49 -1.99 -4.72 -2.06 -0.19 -0.50 -6.09 0.00 0.00 0.00
Estim 1.55 -0.10 -0.05 -0.28 0.00 0.51 -3.05 0.00 0.01 0.01
P 97.5 6.23 0.58 1.14 1.54 0.10 4.16 -2.39 0.00 0.02 0.02
N 36 16 35 13 3 20 36 36 9 9
P 2.5 -0.57 0.96 -0.34 -0.24 -0.06 -0.14 -3.70 0.00 0.00 0.00
Estim -0.03 1.40 -0.03 -0.09 -0.02 0.05 -3.10 0.00 0.00 0.00
P 97.5 0.15 2.03 0.53 0.15 0.03 0.19 -1.46 0.00 0.00 0.01
N 16 17 17 4 2 6 17 17 8 8
P 2.5 -5.50 -1.10 0.59 -3.60 -0.13 -5.47 -5.66 0.00 0.00 -0.01
Estim -0.05 -0.09 2.52 -0.75 0.02 -0.45 -3.54 0.00 0.01 0.01
P 97.5 1.18 1.63 9.31 0.81 0.27 0.55 -1.54 0.01 0.01 0.01
N 35 17 36 12 3 19 36 35 27 31
P 2.5 -1.90 -1.67 -2.57 1.15 -0.06 -1.37 -11.23 0.00 0.00 0.00
Estim -0.26 -0.54 -0.55 4.57 0.00 -0.48 -4.90 0.00 0.01 0.01
P 97.5 1.38 0.85 0.67 9.80 0.03 1.37 -1.19 0.01 0.03 0.03
N 13 4 12 13 1 8 13 13 12 12
P 2.5 -0.09 -0.21 -0.04 -0.05 0.50 -0.10 -2.93 0.00 0.00 0.00
Estim 0.00 -0.08 0.01 0.00 0.58 -0.03 -2.29 0.00 0.00 0.00
P 97.5 0.05 0.11 0.09 0.02 0.71 0.01 -1.52 0.00 0.00 0.00
N 3 2 3 1 3 2 3 1 1 1
P 2.5 -0.28 -0.56 -1.99 -0.76 -0.18 0.64 -8.32 0.00 0.00 0.00
Estim 0.27 0.17 -0.18 -0.23 -0.04 1.34 -3.37 0.00 0.00 0.01
P 97.5 2.13 0.71 0.21 0.74 0.02 3.90 -2.15 0.00 0.01 0.02
N 20 6 19 8 2 20 20 17 14 15
P 2.5 1.21 0.41 1.41 1.10 0.34 0.53 -14.98 0.001 0.01 0.01
Estim 1.82 0.61 1.87 1.92 0.38 0.68 -12.47 0.002 0.01 0.02
P 97.5 4.35 0.88 3.29 2.93 0.44 1.00 -10.87 0.01 0.03 0.03
N 36 17 36 13 3 20 37 37 37 37
P 2.5 0.88 0.30 0.93 0.81 0.17 0.34 -11.64 -0.61 0.01 0.01
Estim 1.52 0.47 1.27 1.61 0.25 0.43 -9.24 -0.29 0.01 0.01
P 97.5 4.28 0.69 2.44 2.58 0.30 0.58 -7.94 -0.09 0.05 0.06
N 36 17 36 13 3 20 37 37 37 37
P 2.5 2.42 0.73 3.55 2.29 0.30 0.99 -66.89 0.003 -8.04 0.02
Estim 3.66 1.49 5.63 4.55 3.44 1.83 -39.18 0.01 -3.39 0.04
P 97.5 5.25 2.51 9.23 7.06 6.57 3.38 -17.01 0.07 -1.60 0.15
N 27 13 27 12 2 14 28 28 28 28
P 2.5 1.39 0.56 2.49 1.03 0.30 0.70 -111.37 0.002 0.01 -8.64
Estim 4.56 0.96 5.90 10.97 3.11 2.22 -50.75 0.01 0.05 -4.19
P 97.5 10.30 1.45 11.72 32.08 7.71 4.36 -12.74 0.08 0.16 -0.62
N 31 16 31 12 3 17 32 32 32 32

W. Wheat

W. Barley

Beet Sugar

Potato

Green Pea

Chicoree

Land

N Fertilizer

P Fertilizer

K Fertilizer

 

From Table 4, it is apparent that output elasticities with respect to output prices are 
significantly different from zero only for own prices. All the own price elasticities of output are 
positive as expected. Elasticities of output with respect to input prices are significantly different from 
zero only for land prices, but not for fertilizers prices. Input demand elasticities on the other hand are 
significantly different from zero with respect to all the output or input prices. Elasticity of input with 
respect to output prices is positive for all inputs as expected. The elasticities of input with respect to 
own prices are negative and significant as expected. The cross elasticities of fertilizer quantities with 
respect to fertilizer prices are positive, significant and small. Elasticity of input with respect to land 
price is negative for all inputs. To understand the latter, interpretation in terms of cross-section are to 
be favored over in dynamic ones. In a dynamic setting, a positive elasticity would indicate that when 



 
 
    

 Page 12 of 15 

CHAIRMAN - PROGRAM COMMITTEE 

EAAE X I
th

 CONGRESS – COPENHAGEN 

price of land increases, at constant land productivity, it might be reasonable for the farmer to increase 
fertilizer intensity so as to substitute some land for fertilizer. In a cross-section sample, it simply 
means that the crops on the most expensive lands tend to be the ones with the least fertilizer intensity. 
The reason might be that those lands are not very productive while they are expensive because they 
are located near cities. Such a “cross-section interpretation” does not preclude the dynamic 
interpretation that could be inferred with time series data.  

To compare the elasticities derived from the GME estimates with those of Table 4 derived 
from the OLS estimates, it is important to consider two aspects of GME estimation. First, the choice of 
support points and second, whether the system is identified or not. We suggest three choices of support 
points in each identification condition. Therefore, the elasticities derived from the OLS estimates can 
be compared with six sets of elasticities derived from the GME estimates. To specify a set of support 
points, we first specify its center and then its range. 

Three choices of support points appear relevant. First, OLS-centered support points can be 
used when the researcher believes that although each farm has a specific technology (and thus specific 
coefficients), there are enough similarities across farms that OLS estimates can be seen as a kind of 
average. The range of the support points can be calculated using the “three sigma” rule recommended 
by Golan et al., (1996) where sigma is the estimated standard deviation of the coefficients estimates. 
The standard deviation has been estimated using bootstrap, as for the 95% confidence interval of the 
elasticities. In identified systems (imposing homogeneity), such a choice of support points should lead 
to GME estimates identical to OLS; in unidentified systems, the GME estimates may differ widely 
from the OLS ones.  

A second choice for the support points is zero, corresponding to a prior belief that no regressor 
explains the variations of the dependent variable. For the range of those zero-centered support points, 
we have chosen an arbitrary [-1000; +1000], but the estimated elasticities are robust to a change in the 
range of a factor 100. It is important to realize that not only the range and the center of the support 
points intervals are important, but also the relative size of the range; therefore, multiplying the range 
by a factor of 100 may not change the estimates because it does not change the relative size of each 
coefficient support points range. Nevertheless, it corresponds to a case in which the investigator has no 
prior belief on the effect of the explanatory variables on the dependent variables. 

A third possible choice of support points follows an idea indicated by Howitt (1995) that a 
priori each output is independent from the others and all the equations pass through the origin, that is, 
all the intercepts fjn and gin, the cross-product terms dji and the off-diagonal terms 'jjq  and 'iis  for 

'j j≠  and 'i i≠  are assumed to be zero. The support points ranges for these coefficients can be an 

arbitrary [-1000; +1000]. For the remaining coefficients, jjq  and iis , we substitute the zero values in 

the marginal cost and input demand equations (2) and (3) and we solve for jjq  and iis  in terms of the 

observed outputs X and input prices R. We write these solutions jjqɶ  and iisɶ ; they can be taken as the 

centre of the support points interval, and the range can be assigned by adding or subtracting a multiple 
of their observed sample standard deviation to the support point center (e.g. the three sigma rule). In a 
farm-by-farm estimation process, each farm has then its own support points jjnqɶ  and iinsɶ ; therefore, 

this choice of support points only applies to heterogeneous samples. To impose the assumption of 
homogenous sample, and therefore identical q, s and d coefficients across the sample, the support 
point centre can be taken equal to the sample average of the  jjnqɶ  and iinsɶ . 

To compare the elasticities derived from the GME estimates with those of Table 4 derived 
from the OLS estimates, we report the percentage of the former that fall within the 95% confidence 
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interval of the latter. These percentages are reported in Table 5: each choice of support points is 
reported on the rows of Table 5. The columns indicate whether the homogeneity assumption has been 
imposed, that is, whether the system of the equations (2) and (4) is identified (left hand side column) 
or not (right hand side column). The results with the OLS-centered support points indicate that the 
sample is indeed homogeneous since elasticities derived from farm-specific q, s and d coefficients are 
fully (100%) compatible with elasticities derived imposing the same q, s and d coefficients for all the 
farms. Those results also show, as expected, that in these conditions the GME estimates coincide 
perfectly with the OLS ones. The homogeneity of the sample can also be seen with the results derived 
from data-based support points since the numbers of elasticities compatible with the OLS ones are 
quite similar between the identified and under-identified systems. These numbers are quite high 
(above 80%), indicating that the hypothesis of zero effect across outputs is not in fact very wrong. On 
the other hand, elasticities based on zero-centered support points deviates substantially from the OLS 
ones in the farm-by-farm estimation case, but not in the identified system case. That indicates that 
when the investigator has little prior information about the coefficients of the cost function (all support 
points set to zero), there is not enough information in the data in the under-identified case, and the 
GME estimator performs poorly. 

  

Table 5. GME estimates: percent of elasticities within OLS 95% confidence interval 

 
Identified systems:  
Same q, s and d coefficients 
for all the farms 

Under-identified systems: 
Farm-specific q, s and d 
coefficients 

OLS-centered support points, support 
range +/- 3 sigma 

100 100 

Zero-centered support points, support 
range from +/- 10 to +/- 100 0000 

98 42 

Data-based support points, support 
range +/- 3 sigma 87 81 

 

 

7. Partial Conclusions and Discussions 

One interesting aspect of PMP is that inference may be drawn from limited information. Using 
a multi-output multi-input cost function, we extend the PMP approach to cases where some 
information on input prices is available. That cost function has a decomposition property that makes it 
particularly suitable for FADN data sets. 

We also show how ordinary least squares can be used when the investigator has reasons to 
believe that a sample is sufficiently homogenous so that a common technology exists across several 
farms. We empirically test GME. In identified systems, results are identical or very close to the OLS 
ones. In under-identified systems (farm-specific coefficients), the choice of support points determines 
how close the estimated elasticities are from the OLS ones. With OLS-centered support points the 
elasticities are identical, as should be expected from a sample that is truly homogenous. With data-
based support points, assuming that cross-terms are zero, the elasticities are still remarkably close to 
the OLS ones. With zero-centered support points, the elasticities deviate substantially from the OLS 
ones. Those results are an indicator of the sensitivity of GME to the support points: in identified 
systems, the information in the sample is sufficient to “correct” for misspecified support points, to 
some extent. That is not the case for under-identified systems, so that even if GME is the only 
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available estimator, its results should be taken with caution. In other words, in heterogeneous samples 
where OLS estimates are meaningless, even if GME can indeed be used to estimate the coefficients of 
the cost function, the estimates may not approach their true value. 

There remains a series of important problems with our approach. The first is that the 
information contained in one year may not be revealing a supply curve, but merely differences 
between farms reflecting some form of heterogeneity (output, input, management…). That problem 
can be solved by using several years of data instead of a single year, thus resorting to panel data 
methods. The FADN sample is a panel data, therefore the extension consists in applying the 
appropriate techniques to estimate the system of equations presented in section 3 of the present paper. 
Second, there is an issue about the scale of measurement of the variables used in estimation: when 
changing the units of any of the variables in the system of first order conditions described in section 3, 
the residuals of the corresponding equations also change scale. Since the least squares estimator 
consists in minimizing the sum of squares of these residuals, the estimated parameters will change in 
some non-linear way. The general solution is to resort to the generalized method of moments estimator 
because such an estimator is basically a weighting of variable devised to minimize the variance of the 
estimates. Whether this problem also affects the entropy estimator has to be explored. Third, the 
system of first order conditions suffers from endogeneity: prices and outputs are jointly determined, as 
well as yields and outputs. This problem can be solved by resorting to instrumental variable 
techniques. The Generalized Method of Moments is also an instrumental variables method. Fourth, it 
might be necessary to take uncertainty into account: when taking production decisions, the farmer 
does not know what prices or yields he will obtain. Resorting to panel data would let us link current 
output with last year prices, possibly solving at the same time the endogeneity problem. Finally, there 
are two issues on inputs. Primarily, inputs for which there are no data on the allocation per output, 
especially labor and some forms of capital, could be incorporated easily in the estimation process. 
Secondly, the possibility to integrate some constraint on input quantity, especially for family labor or 
some form of credit, should be examined. Integrating such constraints in the estimation process can be 
done as indicated in  section 2.  
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