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Abstract

We introduce a modification of the quadratic-Leontieff multi-outpast function that is
particularly suitable for the data of the Farm Accountancy Data NetWée present least squares and
entropy estimates of that function and compare their resultsstample of crop farms. Our results are
encouraging for the use of entropy estimators in cases in whitls e not assumed to share the
same technology. Our approach can be seen as an extension of ilne Pdathematical
Programming approach (Howitt, 1995). The extension consists in aniegpécification of inputs in
the cost function and in the possibility of modeling several farms sinewoltesty.
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Multi-input Multi-output Farm-level Cost Functions:
A Comparison of Least Squares and Entropy Estimatas

1. Introduction

In a recent issue of thsmerican Journal of Agricultural Economid3aris (2001) suggested
the Symmetric Positive Equilibrium Problem (SPEP) generalizatidmeofvell-known Positive
Mathematical Programming (PMP) developed by Howitt (1995) and Paris@mitk K1L998). The
main advantages of SPEP with respect to PMP are to treat inpltitixghd to model a sample of
farms instead of the typical implicit-input one-farm PMP. SPEPtigized by Britz et al. (2003).
These critiques are detailed later on. A first objective of this paperaddress some of them and
suggest an alternative extension of PMP to several farms and to ant epgldification of the inputs.

PMP is essentially a method to calibrate a multi-output cost functionmgilicit inputs.
Generalized Maximum Entropy (GME) is an econometric techniquéstiiaed in conjunction with
PMP to estimate the parameters of the cost function on the basiy/déw observations — even as
little as one farm can be used to estimate the cost function. The second®ljitttis paper is to
compare the results of the GME estimation technique with the moreramnal multi-equations
Ordinary Least Squares (OLS) estimator.

The paper is intended for the same type of data as SPEP is: outpuapdagsantities,
technical coefficients (input use per unit of output) and input priceseltitar at a detailed farm-level
sample, or an aggregated sample (for example at regional level).ddiasmorrespond to the
European Union Farm Accountancy Data Network (FADN) data. The third olgexdtthis paper is to
present a multi-output cost function that fully accommodates for thabfygegta. It is a modification
of a quadratic cost function, similar to Paris and Howitt's (2001) quadretintieff cost function, but
modified to fully satisfy the regularity properties of a cost functibalso has an additional
“decomposition” property that is desirable with FADN data. The frapnkwhat is presented in this
paper can be used with as little as one farm, but can accommodate any numbes. of farm

We apply the method to the year 2000 FADN sample of 37 farms from the cropsoééicto
Belgian Walloon Loam region. The cost function is estimated imposing a comamolegy to the
whole sample by OLS and GME. These estimates are then compared to an avieragseécific
estimates using GME, for which the common technology restriction is delaxe

The next section reviews the PMP and SPEP methodologies and underimnadvietages
and shortcomings. Section 3 specifies the cost function and its propestibeng introduces the
OLS and GME estimators. Section 5 presents the data and section @lise $estion 7 discusses the
model and the results; only limited conclusions are presented at tfeso$tdevelopment of the paper
as the estimation process can be improved in several clearly marked way

2. The Positive Mathematical Programming and alternative methodologies

PMP (Howitt, 1995) is primarily devised as a calibration method in low infiioma
conditions. The purpose is to estimate a cost function that is capabpeanfueing exactly the
behavior of a single farm given information on output prices and quantitiéenayields in terms of
land and possibly other inputs. PMP has three phases: calibration, estiaratisimulation. The
objective of the calibration phase is to estimate the marginal teatb output, but as pointed out by
Heckelei and Wolff (2003), this phase can be integrated in the estmpditase by means of
Lagrangean multipliers. Also if there is no constraint on input quartiymiarginal cost is equal to
the output price; that is what is assumed in this paper. We will retuhisopaint later. The
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estimation phase is concerned with the method of estimation of the eoeffiof a special type of
cost function. The cost function is special because its only arguarentsitput quantities while
inputs are not modeled explicitly. Howitt (1995) argues that such a functidn &ct capture the
decreasing marginal productivity of input provided the matrix of secondatiggs (with respect to
output quantities) of the function is positive semi-definite. The sinamgthase uses the estimated
cost function in a profit maximization program to simulate the farm’adiehwhen some condition
changes, such as output price or yield. PMP calibrates automatically, thahie simulation phase,
given the original output prices, the original output quantities are ressbegactly. Several papers
have demonstrated the usefulness of the approach to model agricultphal sigp R6hm and Dabber
(2003). One of the key assumptions of PMP is that farm behavior is optimum at thesdlokda
point. Another key assumption in PMP, implemented through the GME estimataer §RarHowitt,
1998) is that much information on the farm behavior is already containeihigladata point (a
single farm), provided the researcher can “guide” the estimation by roEprier information.

Paris (2001) suggested SPEP as a multiple farms extension of PMatsairtputs
explicitly. SPEP has the same three phases as PMP but resorts to aqoesirainction that is
explicit in input prices. As demonstrated by Britz et al., (2003), SPEP hexakdrawbacks: the
simulation phase has no straightforward economic interpretation and thatueaost function does
not have the regularity properties that it should (see e.g. Chambers, 1888 rmRore SPEP is
impractical: it is devised as a complementary slackness (dibeigumn) problem instead of a profit
maximizing problem. That means that each constraint in the problem must aakcounterpart;
that makes introduction of additional, in particular non-economic, comsti@ifficult.

In a more econometric register, agricultural supply has often been ahaking a production
or profit function approach. Notable and recent examples are Moro and SE@8@) and Chambers
and Just (1989). In this paper, we are interested in a cost functioncappssantially because it is
better suited to capture the FADN data: prices can be seen agsahaggit and input demand (derived
through Sheppard’s lemma) can be decomposed per output. The latter is a speeity pf the cost
function presented in this paper. An additional advantage of the cosbfuyraimparatively to the
production function or the profit function, is the possibility to include comssran quantities directly
in the estimation process as shown in Heckelei and Wolff (2003).

Several functional forms are available in the literature, but noreryswuch suited to the
FADN data. The well-known Translog cost function can be extended straightityi@the multi-
output case. However in multi-farm agricultural data most farms do naigeadl the products. The
Translog cannot accommodate zero output quantities because it is expréggadthm of output
quantities. The Symmetric Generalized McFadden cost function intrddydéumbhakar (1994) is
similar to a quadratic cost function. Without modifications, quadraticfaostions do not satisfy the
standard regularity conditions (Chambers, 1988) because (among othgy thé@ygare not directly
linearly homogenous in input prices. That problem has been addressed in thetByi@eneralized
McFadden cost function by dividing the quadratic form in input prices by thesinput prices.
Although apparently a simple and attractive solution, the derivativesrteemessy and guaranteeing
the concavity in input prices is more complicated. In the modified quadmedictieff cost function
that is presented in the next section, that problem is addressed by usqgatreroot of the input
prices in the quadratic term as suggested by Paris and Howitt (2081 xobh function has however
useful additional properties; they will become apparent in the nextisegtnally the Hildreth-Houck
functional form as used in Peeters and Surry (2003) does not make uséefrdibrmation available
in a FADN sample.
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3. Specification of the cost function
The modified quadratic-Leontieff cost function can be stated as follows:

Cn(xn’ &):(ZJ: fjnxjn+jz; xj'n; q'j anz]lzz Iﬁ
EREE RN N @

ogon (s fzu)

The indexes argfor the J outputs,for the | inputs, and for the N farms in the sample. The
lower-case Latin letters g, g, sandd represent unknown coefficients. T(pands coefficients must

be symmetric:qjj. =0 ands,. = g, , otherwise the same variable would have two distinct

coefficients; for example the variabbéjn Xj.n would have two coefficientqjj. and q;- The

upper-case Latin letters represents ddta:for outputsR for prices. The terms inandy are
stochastic and determine the stochastic structure of the funtiiesmate (see below); they may
represent unobservable variables or measurement errors. Similak{Ptawo sets of equations are
derived from the cost function; both will be used in the estimation of théateefs of the cost
function.

The first is the set of marginal cost equations:

Z(f +Z 4 Xt g +Z |§\/7/\/7 d+e JinRz o @

The termmcstands for marginal cost, whikerepresents the output prices. One of the
“positive” ideas of PMP is that a farmer has produced up to the poinéwkraginal cost equals the
marginal return. Provided there are no constraints on input availability #edtpxpectation on
prices, the marginal return is the output price. For each output, eaclefah@sfa different unit price
than the other farms. This is not surprising as under the name of one outhdsreaproduces in fact
a somewhat different product: the quality or the variety may be diffenesbme farms may have
specific selling contracts. Farms sometimes produce rather heterogermsushat are small in terms
of the farm revenue, but their nature varies widely across farms. @ome rhay produce a small
amount of one such crop while it is fetching a price much higher than its neighbor who praduce
large quantity of a product with an identical name. In the Belgianudignie, some bean or potato
crops are typical examples. As a result, we prefer excluding those wopthe sample. For the same
reason, in the present context, it is advisable to remove small crops froamihie sather than to
lump them together.

The second set of equations comes from the total inpu oser the farm, derived through
Shephard’s lemma:

B.n-JZl( 1un>< +%+Z§J_/J7+P+n.ru}%< 3

Shephard’s lemma also has a positive interpretation: in the same Weyfasmer increases
production until marginal cost equals output price (or does not produce), tleg fargs inputs until
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his marginal willingness to pay equals the input price (or does not buy. &xamination of the input
use function shows that it can be decomposed into a ketjofations corresponding to the technical

coefficientsﬁn.n (input use per unit of output, i. e. inverses of yield):

J |
A= T t32 65X, + g, +i§lwﬁ/F+ RTANTE *

This is the “decomposition” property ﬁ( X, R) . Itis very attractive because an analytical

expression forAn.n makes it possible to incorporate a lot of technological infoomatito the cost

function sinceAjn is a data available in the FADN for some inputs such as land aridéesti This

should help to model better diversified farms. For some inputs, the allocationtpat is not known;
this is the case most notably for labor and capital. For those inputs, wdlgasati to equatiol3).
As summarized in the next table, the function define{llbgomplies with all the standard properties

of a cost function.

Table 1. Properties of the modified quadratic-Leontieff cost function

Property

Completion of the property

Continuous irR

C(X, R) is a sum of terms iR and+vR

Non decreasing inR
0C/0R=0

0C/0R= B: observed input demands are positive by construction

Concave irR

The matrix of second derivatives & (X, R) with respect to inpu

prices is negative semi-definite as longsas> 0 for i #i'

Homogeneity of degree
inR

lc(X,AR=AC( X B 0A>0

Non decreasing inX:
0C/0X =0

0C/0X = P: observed marginal costs are no smaller than obsg
prices

arved

No fixed costs

c(0,R)=0

Non negativity: C( X, R)
>0forX>0andR>0

C(0,0) = 0, Cis non-decreasing both ¥iand inR

In contrast to PMPC( X, R) is not required to be convex in outputthe matrix of second

derivative with respect t¥ is not required to be positive semi-definite) because concavity in input
prices implies convexity in output quantities by duality. From an estimatiion g@f view, imposing
convexity in output requires resorting to some form of Cholesky decomposéiere(g. Paris and
Howitt, 1998), while imposing concavity in input prices only requires imposong constraints as
indicated in the above table.

There are at most (J + JI) equations per farm, but when a farm does not sumiyu, all
the equations corresponding to that output (one marginal cost equatidrnteeimuical coefficient
equations) are omitted from the estimation process. If simulatibe Bbjective, it is however
necessary to estimate the coefficients that are specificde #dnpiations. Some hypotheses have to be
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taken regarding the level of pri€and technical coe]‘ficienté,jn that a farm would have obtained if it
had supplied that output. Paris (2001) suggests taking the sample mean.

Over a sample of N farms, there are NJ+J(J+1)/2+NI+I(I+1)/2+Ificieats to estimate
including the restrictions of symmetry. Again, some coefficients may ppeskiif some output is not
supplied. In the sample of the present paper, a typical farm supplies 6 outputesafdnyaits. In that
case, the model is identified with as little as three farms, providgdtheroduce all the outputs with
all the inputs. Because there are as many coefficients to estisfitst and second-order derivatives,

C(X, R) is aflexible functional form.

The model is similar to a panel data model in the sense that for eachamdpoput there is a
coefficientf;, andg;, respectively that is farm-specific. Those coefficients aradd to capture the
effect of relevant explanatory variables for which we do not have datap@magement capacity or
some forms of capital.

4. Ordinary Least Squares and Generalized Maximum Entropy Estimators

Both PMP and the Generalized Maximum Entropy (GME) estimator were gedefor cases
of shortage of data. The typical PMP problem is under-identified iretigeghat there are more
coefficient to estimate than there are equations, therefore onlyrapyeastimator may be applied
(the robustness of such estimator is however little explored). ExtenliRgd@®make use of
information on input prices as in SPEP and in the present paper reganesliata than in the original
PMP, but only the input prices, which are included in the FADN data set. ictse FADN implies
access to a sample of several hundreds or thousands of farm accountingedaeteEU member state.
Therefore, it seems that the sample size is large enough to use moreiooal/&thniques, such as
least squares, and there is little need for the GME estimator anymore.

However, sample size is a concern in a different sense: the thegeample size, the more
heterogeneous the sample, the less likely the farms share a wehiaology. In other words, with a
small homogenous sample, we may expect that there indeed exists commongparinegt sandd
coefficients) summarizing a technology that is similar acrossatinesfin the sample. But as the
geographical extent of the sample increases, that hypothesis becomeadnoarestrictive. The
presence of error terms ensures that estimation is always fe#siisi¢he investigator must be
relatively confident about the homogeneity of the sample becausetasiinh@es not reveal a lack of
homogeneity. Otherwise, one must resort to estimating one set of affiper farm. In the above
sets of equation@) and(4), that amounts to appending an inae theq, s andd coefficients.

When one is willing to impose a common technology restriction, that is, impostrtgeigas
andd coefficients are the same over the sample, the system of mammghalc technical coefficients
equationg2) and(4) can be estimated using Ordinary Least Squares (OLS). When one is imgt will
to make that hypothesis, a GME technique can be used as described by Golal®e63l.In this
section we present an application of the GME and OLS estimators fonafecific estimation and
in section 6 we compare their results.

Both the OLS and the GME estimators can be described as an optimizatesspr
conditional on the following three sets of constraints corresponding to eqseti?), (4) and to the
negative semi-definiteness of the matrix of second derivativegegtiect to prices of the cost
function:
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. If Xr,, >0: Z:,(f +Zq”>< +%+Z$\/_/\/7 jirR+“:]n

. If inputiisusedbyfarm foroutpyt

A = f+z ZL: \/7/\/7+Jg+..

=1

l\.)ll—\

A

. s“.zo,iii'.

The residuals?‘jn and '[Iijn correspond to a reparametrization of the error terms in the sets of

equationg2) and(4) respectively. The set of OLS coefficient estimates is defindueaset

{fLS.CAILS,@LS,“SLS d o | L} solution to Amll’zlj 22(5 +Zujmj. It is stated here to

8,3
underline the similarity with the GME estimator.
The set of GME coefficient estimates is defined as the set

{f 1 Ouer Over Sver e é E,/JME,A;} solution tomﬁin ZKZZZZ f)iink Iog( bjmk) such that
n j i
f/jm = Z ﬁjink zjink whereyrepresents any of theq, g, s, ord coefficients or of the or L errors
k

(adjusting the indexes where necessary).Kiéstimated probabilitiesﬁ)jink must sum to one (ovéj
and must be non-negative. The parame'ﬁ%[; is the K support point for coefficienyjin . The

restriction y

in ; f)jink Z; States that all the coefﬁcienpsjin of the model are defined as a convex

combination of their support poimBJink . The estimated probabilitie|§jink are the weights of this

convex combination. The support points are therefore a way to incorporatfarioration into the
GME estimator. The support points have to be specified whether thégat@spossesses such prior
information or not; some support points can therefore be quite arbitrarguppert points are
generally ordered from smallest to greatest; of particular sttare the first and the last support
points since they constitute the lower and upper limits of the paraestit®mate. To take an extreme
example, if only one support point is specified, it is equivalent to impdsaigite coefficient
estimate is equal to the support point.

The interesting feature of entropy maximization from an econometric poigwefis that it
makes possible estimation of under-identified systems of equatiorsay/fleat a system is identified
when it has more equations than coefficients to estimate. Otherwise, ieisidentified and can only
be estimated by GME. That is the case when each farm has its ownsmiofents, not only th§,
andg;, coefficients, but also thg s andd coefficients. Only the GME estimator can be applied in
under-identified systems. When the common technology restriction is not anplos&sME estimator
described above is equivalent to farm-by-farm estimation over thaleséine., there arll
independent estimation processes). In identified systems, the only reagppiyta GME estimator is
to incorporate prior information on the possible values of the coefficients

In the definitions of the OLS and GME estimators, no hypothesis has been made on the
distribution of the error termsandp or on the structure of their covariance matrix. Regarding the
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latter, it seems reasonable to assume that there is no correlatieebhéirms but that all the error
terms within one farm are correlated between them (E denotes the trpemparator):

Oifnzn’ Oifn#n’ Oifn#n’
=EinEim = o2ifn=n" =HinHjn = 2jifn=n' ANdEE My = v ifn=n"
jn un ijn

It seems also reasonable to assume an extended version of heterostyedastics, the
whole covariance matrix of the errors is farm-specific, i.e. alatiwve variances and covariances
have an index. These assumptions are rather weak and preclude the use of White gr\Mesie
robust estimator of the covariance matrix or feasible Generalizet! $gaares techniques (see e.g.
Mittelhammer et al., 2000). If we wanted to use a Generalized LeaseSasaimator we would have
to make stronger hypotheses on the covariance matrix of the errors thldeeaduo inconsistency if
they were not true. Regarding the GME estimator, it is known thatdrisistent (provided the
support points are not misspecified) when the covariance matrix ofrtine isrunspecified. It is not
clear whether GME would retain that property if we would specify an iecbcovariance matrix of
the errors.

The drawback of such weak assumptions is that the conventional methods &rdafisr
available. However, bootstrap methods can still be used. Furthermore, exeehall made stronger
hypotheses on the covariance matrix of the errors, we would still hate rembrt to bootstrap
technique for calculating the confidence interval of the elstiteasures derived from this model. A
final advantage of bootstrap methods is that no hypothesis needs to be made oriltgodistf the
errors, neither for the OLS nor for the GME estimator.

Finally, with both estimators, it is easy to incorporate additionaiecgshs to account for
specific policy aspects. One can add equations describing the subsidy nraatfahigenda 2000
such as in Moro and Sckokai (1999), or to impose that land use is fixed fdagacuch as in
Heckelei and Wolff (2003).

5. The data

The data that the model needs are the yields for each input per output (intkesk; of
coefficients), the output pricé% the output quantitiex, and the input priceR. That data are
available from the FADN sample at farm level, but the availatfternation on input prices has to be
supplemented for the needs of the model. The FADN sample does not have ingulipeitdy, but
has expenses per variable input; however, there is not always a n&apuaatity. The land quantity
per output is simply the acreage and is well documented, but depending on natioatibregtie
FADN sample may report expenses based only on an official lease prliaedavhich may differ
widely from the actual price paid. For the present paper, each farm is assigrstoiated lease price
for land based on (i) the share of leased land in total land for that farthe (official lease price for
land (both data from the FADN sample), and (ii) the sale prices pectdifom the Belgian National
Institute for Statistics).

For fertilizers prices, the available information is the totplemses and the quantities of each
N, P and K fertilizer. If one assumes that the prices of theseZersilare the same across outputs
inside a single farm, then it is possible to estimate their pricesedratis of a least square or entropy
estimator. The FADN sample does not provide information on quantities phittoy, seeds, and
hired services inputs; for each of these inputs, only the total expesrsastjput are included in the
FADN sample. That sample also includes some data on labor, capital gmaheoflinputs. We have
momentarily excluded those inputs from the cost function and we assumesthahgiacts are
properly captured through the outputs and through the farm-specific cogffigi@andg,. In other
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words, it is assumed that they always remain in fixed proportions todlieled inputs. Future
versions of this paper will include a more proper treatment those inputstidulgarthrough equation
(3) for the inputs that are not allocated per output.

In this paper, we use the 37 crops farms of the year 2000 FADN sample of tizen Belg
Walloon Loam region. The sample information is summarized in the followingeatbles.

Table 2. Output descriptive statistics

Crop OQutput X (T)) Average P (§) Land (hp) N (u) P (u W (| Nbr farms
Winter Wheat 9 030 130.4 11 031 203 441 8 16p 13 5p0 3
Winter Barley 1088 124.1 1 507 24 90( 5412 8 0413 17|
Beet Sugar 31 557 53.0 4 647 67 390 35 640 85 520 36
Potato 9725 63.8 1940 32 664 14 571 44 612 13
Green Pea 228 260.0 287 81 220 2476 3
Chicoree 8 884 48.4 1942 10 907 8 339 23731 20
Table 3. Input descriptive statistics

Average H Nbr of farms that use input i in crop j
Input Total B (€) W. Wheat W. Barley Beet Sugar P Potato P JGreen Pea Chicpree
Land 21 354 (hg| 0.292 36 17 36 13 3 20
Nytrogen | 339384 (J) 0.008 36 17 35 13 1 17
Potassium | 74 331 ({) 0.028| 9 8 27 12 1 14
Phosphor | 177931 () 0.042 9 8 31 12 1 15
6. Results

We consider that the sample described in the previous section is homggdkabiss the 37
crops farms share the same technology. That hypothesis is motivated by agramdblimatic
considerations, the small size of the region (about 3000 km?) and its tagekhistory (a long stretch
of cereals and beet sugar cultivation). In that section, we compare aesi&tor that imposes
equality of they, s andd coefficients over the sample with a GME estimator that doeisnpatse such
equality. The test is that since the sample is homogenous, the faificSpBiE estimates should not
significantly differ from the OLS estimates. More explicitly,iEtassumption of homogenous
technology is imposed, then both OLS and GME should produce similar coefficieratest When
the homogenous technology assumption is not imposed in GME, if the sample is indeednousog
the same estimates should still obtain. If they do not, then we cannot know whethssumption is
wrong or GME is unable of extracting the common elements from each farm teghnolog

However, contrarily to OLS, GME requires the specification of supportgant it is well-
known that GME is consistent only if the support points are well-specFiar that reason, we present
results with different choices of support points.

The results of the OLS estimation(b( X, R) are presented in Table 4 under the form of

elasticities. We have chosen this presentation because it appearedtaitive than presenting the
coefficient estimates directly. Table 4 presents the elastarity fuantity (output supply or input use)
on the left hand side column with respect to a price on the top row. The coagp95%

confidence intervals are represented with the 2.5 and 97.5 percentilésa(iel 2 97.5 respectively).
Italics indicate significance at the 95% level. Percentiles haate t@mputed by bootstrap (1000
replications); no distributional assumption has been made at any point aftestior inference. The
fourth row of each output indicates the number of times the (quantity — paicdias been observed,
for example, out of the 36 farms producing wheat, 16 also produce barley.
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Table 4. OLS Elasticities

Quantity | Price WWwW WB SB Po GP Chi Land NF PF KF

P25 049 -199 -472 -206 -019 -050 -6.09 0.00 0.00 0.00
W. Wheat Estim 15 -010 -0.05 -0.28 0.00 0.51 -3.05 0.00 0.01 0.01

P 975 6.23 0.58 1.14 1.54 0.10 416  -2.39 0.00 0.02 0.02

N 36 16 35 13 3 20 36 36 9 9

P25 -0.57 096 -0.34 -024 -0.06 -0.14 -3.70 0.00 0.00 0.00
W. Barley Estim -0.03 140 -0.03 -0.09 -0.02 0.05 -3.10 0.00 0.00 0.0p

P 975 0.15 2.03 0.53 0.15 0.03 0.19 -1.46 0.00 0.00 0.01

N 16 17 17 4 2 6 17 17 8 8

P25 -5.50 -1.10 0.59 -360 -013 -547 -5.66 0.00 0.00 1{0.0
Beet Sugar Estim -0.05 -0.09 252 -0.75 0.02 -045 -354 0.00 0.01 0.01

P 975 1.18 1.63 9.31 0.81 0.27 055 -1.54 0.01 0.01 0.01

N 35 17 36 12 3 19 36 35 27 B1

P25 -1.90 -167 -2.57 1.15 -0.06 -1.37 -11.23 0.00 0.00 0|0.0
Potato Estim -0.26  -0.54 -055 457 0.00 -0.48 -4.90 0.00 0.01 0.01

P 975 1.38 0.85 0.67 9.80 0.03 137  -1.19 0.01 0.03 0.03

N 13 4 12 13 1 8 13 13 12 12

P25 -0.09 -0.21 -0.04 -0.05 050 -0.10 -2.93 0.00 0.00 0.00
Green Pea Estim 0.00 -0.08 0.01 0.00 058 -0.03 -229 0.00 0.00 0.0p

P 975 0.05 0.11 0.09 0.02 0.71 0.01 -1.52 0.00 0.00 0.00

N 3 2 3 1 3 2 3 1 1 L

P25 -0.28 -0.56 -199 -0.76 -0.18 0.64 -8.32 0.00 0.00 0.00
Chicoree Estim 0.27 0.17 -0.18 -023 -0.04 134 -337 0.00 0.00 0.01

P 975 2.13 0.71 0.21 0.74 0.02 390 -2.15 0.00 0.01 0.02

N 20 6 19 8 2 20 20 17 14 15

P25 121 0.41 141 1.10 0.34 0.53 -14.98 0.001 0.01 0.01
Land Estim 1.82 0.61 1.87 1.92 0.38 0.68 -12.47  0.002 0.01 0.02

P 975 4.35 0.88 3.29 2.93 0.44 1.00 -10.87 0.01 0.03 0.03

N 36 17 36 13 3 20 37 37 37 B7

P25 0.88 0.30 0.93 0.81 0.17 0.34 -11.64 -0.61 0.01 0.01
N Fertilizer Estim 1.52 0.47 1.27 161 0.25 043 -924 -0.29 0.01 0.01

P 975 4.28 0.69 2.44 2.58 0.30 058 -7.94 -0.09 0.05 0.06

N 36 17 36 13 3 20 37 37 37 B7

P25 2.42 0.73 3.55 2.29 0.30 0.99 -66.89 0.003 -8.04 0.02
P Fertilizer Estim 3.66 1.49 5.63 4.55 3.44 183 -39.18 0.01 -3.39 0.04

P 975 5.25 2.51 9.23 7.06 6.57 3.38 -17.01 0.07 -1.60 0.15

N 27 13 27 12 2 14 28 28 28 28

P25 1.39 0.56 2.49 1.03 0.30 0.70 -111.37  0.002 0.01 [8.64
K Fertilizer Estim 4.56 0.96 590 10.97 311 222 -50.75 0.01 0.05 -4.19

P 975 10.30 1.45 1172 32.08 7.71 436 -12.74 0.08 0.16 2/-0.6

N 31 16 31 12 3 17 32 32 32 B2

From Table 4, it is apparent that output elasticities with respexitput prices are
significantly different from zero only for own prices. All the own prites#cities of output are
positive as expected. Elasticities of output with respect to input prieesgaificantly different from
zero only for land prices, but not for fertilizers prices. Input demanda@taestion the other hand are
significantly different from zero with respect to all the output or inpiges. Elasticity of input with
respect to output prices is positive for all inputs as expectetelBsticities of input with respect to
own prices are negative and significant as expected. The crogsitatastf fertilizer quantities with
respect to fertilizer prices are positive, significant and lsfakdsticity of input with respect to land
price is negative for all inputs. To understand the latter, interjuretatterms of cross-section are to
be favored over in dynamic ones. In a dynamic setting, a positive elasticity wdiddté that when
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price of land increases, at constant land productivity, it might be reasdoabiie farmer to increase
fertilizer intensity so as to substitute some land for fertilitea cross-section sample, it simply
means that the crops on the most expensive lands tend to be the ones wiht tlegtilizer intensity.
The reason might be that those lands are not very productive while theypansieg because they
are located near cities. Such a “cross-section interpretation” dopeechide the dynamic
interpretation that could be inferred with time series data.

To compare the elasticities derived from the GME estimates modetof Table 4 derived
from the OLS estimates, it is important to consider two aspectM& €stimation. First, the choice of
support points and second, whether the system is identified or not. We shgggshbices of support
points in each identification condition. Therefore, the elasticitiesetkfrom the OLS estimates can
be compared with six sets of elasticities derived from the GME es8mbb specify a set of support
points, we first specify its center and then its range.

Three choices of support points appear relevant. First, OLS-edrsepport points can be
used when the researcher believes that although each farm has a spguiblogy (and thus specific
coefficients), there are enough similarities across farms th&te3timates can be seen as a kind of
average. The range of the support points can be calculated using the “ttm&erslg recommended
by Golan et al., (1996) where sigma is the estimated standard deviatiorcoétfigents estimates.
The standard deviation has been estimated using bootstrap, as for the 95% comfideradef the
elasticities. In identified systems (imposing homogeneity), such a obfosegport points should lead
to GME estimates identical to OLS; in unidentified systems, the @sliEnates may differ widely
from the OLS ones.

A second choice for the support points is zero, corresponding to a priditieiieo regressor
explains the variations of the dependent variable. For the range of thoseztned support points,
we have chosen an arbitrary [-1000; +1000], but the estimated elastio#tigsbust to a change in the
range of a factor 100. It is important to realize that not only the rangd@wcdnter of the support
points intervals are important, but also the relative size of the;rdregefore, multiplying the range
by a factor of 100 may not change the estimates because it does not chaelgéithesize of each
coefficient support points range. Nevertheless, it corresponds to i easeh the investigator has no
prior belief on the effect of the explanatory variables on the depenaiéaibles.

A third possible choice of support points follows an idea indicated by HAWi#5] that a
priori each output is independent from the others and all the equationbrpasggithe origin, that is,
all the intercept$, andgi,, the cross-product ternds and the off-diagonal termjj. ands;. for

j %" andi #i" are assumed to be zero. The support points ranges for these coefficidrgsaca
arbitrary [-1000; +1000]. For the remaining coefficierq?f, ands; , we substitute the zero values in

the marginal cost and input demand equat{@nand(3) and we solve foqjj ands; interms of the

observed outputX and input price®. We write these squtionG}jj andS§; ; they can be taken as the

centre of the support points interval, and the range can be assigned by addinigamting a multiple
of their observed sample standard deviation to the support point centdndetget sigma rule). In a

farm-by-farm estimation process, each farm has then its own support ﬁﬁ)r;'nmd S, therefore,

this choice of support points only applies to heterogeneous samples. To fhgassumption of
homogenous sample, and therefore idengjcalandd coefficients across the sample, the support

point centre can be taken equal to the sample average tﬁfjj];]hand S

To compare the elasticities derived from the GME estimates dgetof Table 4 derived
from the OLS estimates, we report the percentage of the former thaittiah the 95% confidence
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interval of the latter. These percentages are reported in Talaelbcleoice of support points is
reported on the rows of Table 5. The columns indicate whether the homygesseinption has been
imposed, that is, whether the system of the equatijrend(4) is identified (left hand side column)
or not (right hand side column). The results with the OLS-centered suppds ipolicate that the
sample is indeed homogeneous since elasticities derived from farrfiespesandd coefficients are
fully (100%) compatible with elasticities derived imposing the sarsendd coefficients for all the
farms. Those results also show, as expected, that in these conditionsEhes@iates coincide
perfectly with the OLS ones. The homogeneity of the sample can also be se#rewdsults derived
from data-based support points since the numbers of elasticities compétibiiee OLS ones are
quite similar between the identified and under-identified systems. Tiuegigers are quite high
(above 80%), indicating that the hypothesis of zero effect across oistpotsn fact very wrong. On
the other hand, elasticities based on zero-centered support pointsdswimiantially from the OLS
ones in the farm-by-farm estimation case, but not in the identified sgsteen That indicates that
when the investigator has little prior information about the coeffigiehthe cost function (all support
points set to zero), there is not enough information in the data in the undifiedecase, and the
GME estimator performs poorly.

Table 5. GME estimates: percent of elasticities within OLS 958ftidence interval

Identified systems| Under-identified systems:
Sameq, s andd coefficients| Farm-specificqg, s and d
for all the farms coefficients

OLS-centered support points, suppoiyoo

range +/- 3 sigma 100
Zero-centered support points, suppog8 42
range from +/- 10 to +/- 100 0000

Data-based support points, suppog7 81

range +/- 3 sigma

7. Partial Conclusions and Discussions

One interesting aspect of PMP is that inference may be drawn fraedimformation. Using
a multi-output multi-input cost function, we extend the PMP approach to cases some
information on input prices is available. That cost function has a gexsition property that makes it
particularly suitable for FADN data sets.

We also show how ordinary least squares can be used when the invebagatesons to
believe that a sample is sufficiently homogenous so that a common technokigyaexoss several
farms. We empirically test GME. In identified systems, resultsdemical or very close to the OLS
ones. In under-identified systems (farm-specific coefficients), thieelf support points determines
how close the estimated elasticities are from the OLS ones. With @it€red support points the
elasticities are identical, as should be expected from a sample titudy l'omogenous. With data-
based support points, assuming that cross-terms are zero, ttaitielsistie still remarkably close to
the OLS ones. With zero-centered support points, the elasticitiesedsuizstantially from the OLS
ones. Those results are an indicator of the sensitivity of GME tafipod points: in identified
systems, the information in the sample is sufficient to “correct” fespecified support points, to
some extent. That is not the case for under-identified systems, so tht @ME is the only
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available estimator, its results should be taken with cautionhér atords, in heterogeneous samples
where OLS estimates are meaningless, even if GME can indeed be usedatedbe coefficients of
the cost function, the estimates may not approach their true value.

There remains a series of important problems with our approach. 3tis tinat the
information contained in one year may not be revealing a supply curve, bly difezences
between farms reflecting some form of heterogeneity (output, input, managem&hat.problem
can be solved by using several years of data instead of a single yeagstiting to panel data
methods. The FADN sample is a panel data, therefore the extensionsciongpplying the
appropriate techniques to estimate the system of equations presesgetioin 3 of the present paper.
Second, there is an issue about the scale of measurement of the vareablasegmation: when
changing the units of any of the variables in the system of first ordertiomsdiescribed in section 3,
the residuals of the corresponding equations also change scale. Sieasttequares estimator
consists in minimizing the sum of squares of these residuals, the estpaedateters will change in
some non-linear way. The general solution is to resort to the generaliteatioé moments estimator
because such an estimator is basically a weighting of variable davisgaimize the variance of the
estimates. Whether this problem also affects the entropy estinzetoo be explored. Third, the
system of first order conditions suffers from endogeneity: prices apdtsure jointly determined, as
well as yields and outputs. This problem can be solved by resorting to iestedwvariable
techniques. The Generalized Method of Moments is also an instrumenadlesurnethod. Fourth, it
might be necessary to take uncertainty into account: when taking produdisiotnks the farmer
does not know what prices or yields he will obtain. Resorting to panel data lebutdlink current
output with last year prices, possibly solving at the same time the emygeroblem. Finally, there
are two issues on inputs. Primarily, inputs for which there are no data alidtation per output,
especially labor and some forms of capital, could be incorporated eaiéyeistimation process.
Secondly, the possibility to integrate some constraint on input quantiggiatypfor family labor or
some form of credit, should be examined. Integrating such constraints inithegiest process can be
done as indicated in section 2.
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