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Does Gibrat’s law hold amongst dairy farmers in Northern Ireland? 
 
 

Abstract 
 
This paper tests whether the Law of Proportionate Effects (Gibrat, 1931), which states that farms 

grow at a rate that is independent of their size, holds for the dairy farms in Northern Ireland.  Previous 
studies have tended to concentrate on testing whether the law holds for all farms.  The methodology 
used in this study permits investigation of whether the law holds for some farms or all farms according 
to their size.  The approach used avoids the subjective splitting of samples, which tends to bias results.  
The finding shows that the Gibrat law does hold except in the case of small farms.  This is in 
accordance with previous findings that Gibrat’s law tends to hold when only larger farms are 
considered, but tends to fail when smaller farms are included in the analysis. Implications and further 
extensions, as well as some alternatives to the proposed methodology are discussed.  
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1. Introduction 
Farm structural change and the inter-related issue of farm growth continue to attract the interest 

of agricultural economists, academics and policy makers, because of the wide-ranging implications for 
agricultural output, efficiency and inevitably the economic welfare of rural communities.  Given the 
sweeping changes that have occurred in the recent round of CAP Reforms it is important that the 
factors affecting structural change in the farm sector are understood.  This study will examine some of 
these factors using data from the period 1997 to 2003.  During this period, farm incomes reached very 
low levels (see Figure 1) and this has certainly put pressure on the structure of the farm sector. 
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Figure 1. Net farm income of Northern Ireland dairy farms 
 
Two inter-related components of farm structural change are entry/exit to the farm sector and 

growth/decline in continuing farms (Weiss, 1999).  Historically, there has been a tendency for 
academics to consider these two components separately.  Studies that have investigated the factors 
influencing farm exit include Kimhi and Bollman (1999) and Glauben et al. (2003).  A large number 
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of studies have examined the factors affecting farm growth (e.g. Upton and Haworth, 1987; Shapiro et 
al., 1987; Clarke et al., 1992; and, Bremmer et al., 2002).  However, it has been argued that examining 
the growth of continuing farms only, whilst ignoring exiting farms in the analysis, runs the risk of 
biasing results (Weiss, 1999).  Consequently, several more recent studies have considered both farm 
survival (the opposite of exiting) and farm growth (see Weiss, 1998 and 1999; and, Key and Roberts, 
2003).   

In a seminal paper that describes the Law of Proportionate Effects, Gibrat (1931) provides the 
starting point for most previous studies of farm growth.  He proposed that the growth rate of firms is 
independent of their initial size at the beginning of the period examined.  Gibrat’s law proposes that 
growth is a stochastic process resulting from the random operation of many independent factors.  This 
stochastic process easily generates theoretical farm size distributions (log-normal) that are skewed and 
similar in shape to the farm size distributions that are observed empirically.  Furthermore, this 
stochastic process also means the variance of the distribution increases over-time mirroring observed 
increases in empirical concentration measures.  It is unsurprising, therefore, that Gibrat’s Law, which 
is not inconsistent with the assumption of constant returns to scale, continues to provide the basic 
foundation for most studies of farm growth.  

Gibrat’s law, however, has been subject to some criticism and theoretical justifications for its 
rejection can be found in the literature, e.g. returns to scale among smaller farms (Weiss, 1999).  A 
number of studies have identified a range of systematic factors that influence farm growth and these 
should be explicitly considered in any model of farm growth, rather than being subsumed within the 
random stochastic process implied by Gibrat’s law.  In light of these recent considerations this paper 
examines the determinants of farm growth and survival using farm census data for dairy farms in 
Northern Ireland.  The analysis permits examination of Gibrat’s law and considers the influence of 
such factors as profitability, farm type and farmer associated characteristics on farm growth and 
survival.  An outline of the paper is as follows.  A review of previous studies is presented in the next 
section.  The data set and the methodology used in the analysis are outlined in Section 3.  Model 
results are presented in Section 4.  These results are discussed in Section 5 and some conclusions are 
drawn in Section 6. 

 
2.Literature review   

There is a wide and extensive literature investigating the growth of firms (for a review see Sutton, 
1997; and, Lotti et al., 2003).  In comparison the number of studies focusing on farm growth is more 
limited.  The approach used in most studies of farm growth has been to test Gibrat’s law.  Many of 
these studies appear to have reached different conclusions.  Studies by Weiss (1998, 1999) and 
Shapiro et al. (1987), based on farm census data, rejected Gibrat’s law of proportionate effects for 
farm growth.  These studies found that small farms tend to grow faster than larger farms. However, 
Upton and Haworth (1987) and Bremmer et al. (2002) using FBS data collected in Great Britain and 
FADN data collected in the Netherlands, respectively, found no evidence to reject Gibrat’s law.  The 
data sets used in these two studies exclude very small farms (i.e. farms <8 European Size Units).  This 
may have affected the results obtained because small rapidly growing farms may have been excluded 
from the analysis.  Clark et al. (1992) also find no evidence to reject Gibrat’s law based on analysis 
using aggregated data. 

An important aspect of the study of farm (size) growth is the definition of farm size.  Previous 
studies have used a variety of different measures of farm size (changes in farm size indicate 
growth/decline).  Measures of farm size proposed in the literature include: acreage farmed, livestock 
numbers (cow equivalents), total capital value, net worth, gross sales, total gross margins and net 
income (Allanson, 1992; Clark et al. 1992; and, Shapiro et al. 1987).  Output value measures such as 
gross farm sales and input value measures such as net worth may be unsatisfactory due to the impact 
of inflation and changes in relative prices (Weiss, 1998).  Physical input measures, such as acres under 
cultivation and number of livestock, are also problematic since farms are characterised by a non-linear 
production technology and changes in farm size typically involve changes in factor proportions and 
changes in technology.  Weiss (1998), however, argues that the disadavantages of physical input 
measures are less that those associated with the value of inputs or outputs and as a result the former 
should be preferred.   
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A review of empirical studies indicates that most find evidence to conclude that a range of 
variables other than size influence farm growth (e.g. Weiss, 1999; and, Bremmer et al., 2002).  These 
other explanatory variables that have been identified in the literature can be divided into two sub-
groups, namely, farmer-associated characteristics and farm specific factors.  Weiss (1999) identified 
the following farmer-associated characteristics: off-farm employment, age, gender, level of education, 
family size, age profile of the family, succession information and attitude to risk.  Farm (or firm) 
specific variables that have been suggested as factors influencing growth include: size, solvency, 
profitability, productivity, farm income, structure, financial performance, input costs, output mix, farm 
type, mechanisation and location (Bremmer et al. 2002; Hardwick and Adams, 2002; Weiss, 1999).  

 
3. Problem characterisation 

As with the vast majority of studies of farm growth, Gibrat’s law of proportionate effect is used 
as a starting point for the analysis carried out in this paper.  The law states that firm (or farm) growth 
is determined by random factors, independent of size.  This may be tested using the following formula: 

 
ln(Si,t)  =  β1 + β2ln(Si,t-1) + ut;  (1) 
 
where Si,t denotes the size of the individual holding in time t and ut is a random disturbance term 

independent of current or past values of the dependent variable.  If β2 = 1, then growth rate and initial 
size are independent and this means that Gibrat’s Law is not rejected.  If β2 < 1, small farms tend to 
grow faster than larger farms – i.e. the effects of randomness are offset by negative correlation 
between growth and size.  If β2 > 1, larger farms tend to grow faster than smaller farms.  The above is 
easily illustrated if one subtracts ln(Si,t-1) from both sides of equation (1) above. Then the left hand side 
logarithmic difference is an approximation of the growth.  The right hand side will them be either a 
random walk, when β2 = 1, or a dependent process otherwise. 

Equation (1) can be generalised augmenting it by farmer associated characteristics and farm 
specific variables, e.g. profitability, denoted by the k explanatory variables kX  below as follows: 
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There are two problems with using linear regression representations such as equation (2). The 

first is the assumed linear effect of the additional explanatory variables kX . Weiss (1999) for example 
applied non-linear functional form for these and detected significant non-linearities. Specifying an ad-
hoc non-linear functional form however is not a viable strategy, since it may impact on the final results 
in an unpredictable way and often there is little or no information on the way these additional variables 
may impact on farm growth. 

This consideration aside, even in the simple model (1), there is an underlying assumption that the 
Gibrat’s law holds (or is violated) globally. It is difficult to ascertain whether for example small farms 
obey this law as opposed to large farms. It is in principle possible to split the sample into smaller 
subsamples and locally estimate the relationships. This would however involve some subjective 
criteria about how to do the latter partitioning further casting doubt on the final results.  If we want to 
test whether Gibrat’s law holds for some farms and not for others, the linear regression framework is 
too restrictive. Such a test can nevertheless be designed using quantile regression methods, 
implemented in this paper. Alternatives and extensions to the adopted approach are also discussed. 

In order to measure farm growth, farm size must be compared between two specific points in 
time.  However, measures of farm growth are meaningful only for surviving farms.  Farms exiting 
between the points in time over which growth is measured are normally excluded from the sample (as 
non-surviving farms).  However, there is a greater probability that slower growing small farms will be 
non-survivors compared with slower growing larger farms (Weiss. 1999).  Thus, if non-surviving 
(exiting) farms are excluded from the sample, the estimates of β may be biased downward, which may 
result in incorrect rejection of Gibrat’s law, giving the impression that smaller farms tend to grow 
faster than larger farms (Hardwick and Adams, 2002; Lotti et al. 2003; Shapiro et al. 1987; Sutton, 
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1997; and, Weiss, 1999).  Ignoring exiting farms in the analysis is known as the problem of sample 
selection bias.  Various options are available to account for selection bias and these are briefly 
discussed in the methodology section.  

 
4. Data  

The data set used in this study is based on the 1997 and 2003 farm census for Northern Ireland 
and a structural survey of farms in Northern Ireland that was conducted in 1997.  The farm census 
provided information for individual farms on farm type, acreage farmed and stock numbers (total 
standard gross margin for each farm can also be inferred from this data).  The 1997 structural survey 
provided additional information on a range of farmer associated characteristics such as gender, age, 
management status and time spent working on the farm for a subset of the farms included in the farm 
census (31 % of dairy farms).  The individual farm information from the structural survey was 
matched to the information from the 1997 farm census.   

Matching these data sets yielded a total of 1648 dairy farms in 1997.  Of these farms, 112 had 
exited farming by 2003.  Of the remaining 1536 farms, 1290 remained in dairy, while the other 246 
moved to cattle and sheep.  In this study we are specifically interested in farms which remain in 
dairying and thus the latter farms are treated as farms which exited the dairy sector.  Thus, in total 358 
exited the dairy sector between 1997 and 2003 (farms which exited farming altogether plus farms 
which switched from dairy to cattle and sheep). 

The measure of farm size used in this study is the livestock numbers measured in cow equivalents 
per farm. This measure (unlike e.g. land area) is directly proportionate to the final output of dairy 
farm. Using the dairy farm sector allows us to avoid complications associated with farm entry and thus 
simplify the sample selection problem. 

 
5. Methodology 

In the least-squares regression framework the conditional mean function, i.e. the function that 
describes how the mean of y changes with the covariates x, is almost all we need to know about the 
relationship between y and x. The crucial aspect about this view is that the error is assumed to have 
exactly the same distribution irrespectively of the values taken by the components of the vector x. This 
can be viewed as a pure ‘location shift’ model since it assumes that x affects only the location of the 
conditional distribution of y, not its scale, or any other aspect of its distributional shape. If this is the 
case, we can be fully satisfied with an estimated model of the conditional mean function. 

The above described location shift model is however rather restrictive. Covariates may influence 
the conditional distribution of the response in many other ways: expanding its dispersion (as in 
traditional models of heteroscedasticity), stretching one tail of the distribution, compressing the other 
tail (as in volatility models), and even inducing multimodality. Explicit investigation of these effects 
can provide a more nuanced view of the stochastic relationship between variables, and therefore a 
more informative empirical analysis. The quantile regression is a method that allows us to do so. 

Given a random variable Y and its distribution function F, we denote by 
 

))(|inf()( ττ ≥= yFyQ  (3) 
 
the  τ th quantile of Y . The sample analogue q of Q(τ ) is called the τ th sample quantile. It may 

be formulated as the solution of the following optimisation problem, given a random sample (yn), 
n=1;…;N : 

 

{ }
( )

{ } 







−−+− ∑∑
<≥ qyn

n
qyn

n

nn

qyqy
||

1min ττ
 (4) 

 
There exist a number of alternative quantile regression estimators. Here we will only describe the 

linear programming type of estimator, since there are asymptotic theory results for it (Koenker and 
Bassett, 1978). Just as we can define the sample mean as the solution to the problem of minimizing a 
sum of squared residuals, we can define the median (which is the 50% quantile, i.e. τ =0.5) as the 
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solution to the problem of minimizing a sum of absolute residuals (which follows directly from (4) 
above).  

For any 0 < τ  < 1, we denote ( ) [ ]( )0<+= uIuu τρτ , where I[.] is the indicator function. 

Following Koenker and Bassett (1978) ( )uτρ  is usually referred to as a check function.  The problem 
may then be formulated as follows: 
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min τρ
 (5) 

 
which yields a natural generalization to the regression context. 
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where ( )βξ ,X  is some parametric function of the covariates. When this is a linear function, the 

above minimisation procedure is actually a linear programming problem. Then it may be estimated 
using some form of simplex algorithm. Koenker and d'Orey’s (1987, 1993) adaptation of the Barrodale 
and Roberts (1974) median regression algorithm to general quantile regression is particularly 
influential. The Barrodale and Roberts approach belongs to the class of exterior point algorithms for 
solving linear programming problems. Alternatively, Portnoy and Koenker (1997) have shown that a 
combination of interior point methods and effective problem preprocessing is very well suited for 
large-scale quantile regression problems. This is the approach used in this paper (it is often referred to 
as Frisch- Newton method), although the former (Barrodale-Roberts) method yields similar results, 
which are available from the authors upon request. 

It would be beneficial at this point to clarify a fundamental difference between the quantile 
regression and the mean regression methods. Could we achieve the same result by simply segmenting 
the response variable into subsets according to its unconditional distribution and then doing least 
squares fitting on these subsets?  Clearly, this form of truncation on the dependent variable would 
yield disastrous results in the present example. In general, such strategies are doomed to failure for all 
the reasons so carefully laid out in Heckman (1979). It is thus worth emphasizing that even for the 
extreme quantiles all the sample observations are actively used in the process of quantile regression 
fitting.  

It is of course possible to construct local quantile regression estimates using some sort of 
segmentation (see Knight et al., 2002). Some preliminary results about the conditions where local 
quantile regression is useful are outlined in Costinot et al. (2000). However we will not pursue this 
option for reasons given further below. 

The potential problem of bias due to sample attrition is known in the literature as a sample 
selection problem. Its initial description is due to Heckman (1979) who devised a two-step procedure 
for controlling it. The Heckman procedure consists of estimating at step one a survival model. This is 
typically a probit (although a logit can be used alternatively) equation on the probability of farm 
survival from the complete sample (including surviving and non-surviving farms). This equation is 
subsequently used to obtain an additional variable, where the values represent the inverse Mill’s Ratio 
for each observation.  In step-two, the additional variable is introduced as a correcting factor into the 
least squares regression that is based upon a sample that excludes non-surviving farms. The probit 
model, used in the first step typically has the same explanatory variables as the main equation, though 
this is not mandatory and variables that are only relevant to the farm survival may be included, as well 
as some of the variables included in the main equation may be dropped. The Heckman procedure 
assumes joint normality of the error terms in the two equations. The latter distributional assumption, 
which can also be employed to construct a more efficient Full Information Maximum Likelihood 
(FIML) estimator that jointly estimates both equations, however can have serious implications on the 
robustness of the final results when it is violated.  Therefore various alternative estimators have been 



 7

suggested to circumvent the problem of inadequate distributional assumptions. These can be broadly 
described as semi-parametric model selection methods. 

Semiparametric estimators of sample selection models include Powell (1987), Newey (1999), 
Choi (1990), Cosslett (1991), Ichimura and Lee (1991), Lee (1994), Ahn and Powell (1993), Donald 
(1995), Wooldridge (1995), Kyriazidou (1997), Andrews and Schafgans (1998), Chen and Lee (1998), 
Das (1998), Vella and Verbeek (1999), and Das, Newey, and Vella (2000).  

Some alternative newer estimators include copula approaches (Prieger, 2002; Smith, 2003, 
Genius and Strazzera, 2004), Generalised Maximum Entropy (Golan et al, 1999, 2001) and semi-
nonparametric densities (van der Klaauw and Koning, 2003). It has to be noted however, that it is 
difficult to provide an overview of the sample selection bias, since it is closely related to other 
problems such as the so called treatment effects, where unobserved variables (treatments) condition 
the available sample. 

Recent treatment related estimators include Imbens and Angrist (1994), Angrist and Imbens 
(1995), Heckman et al. (1998), Hahn (1998), Hirano et al. (2000), Abadie (2001), and Hernan et al. 
(2001). See also Heckman (1990), Manski (1994), and Chamberlain (1986). Surveys include Heckman 
and MaCurdy (1986), Wainer (1986), Powell (1994), and Vella (1998). 

If we abstract from the possibility of endogeneity, the problem of sample selection in mean 
regression model can be broadly defined as problem of the distributional assumptions, which can be 
controlled for. This is basically done by various methods to relax the parametric specifications 
employed in the seminal work of Heckman (1979).  

The sample selection for quantile regression however remains a challenging and still under-
researched problem. Buchinsky (1998, 2001) provided some important contributions to this issue 
Abadie et al. (2002) and Chernozhukov and Hansen (forthcoming) and are some examples of quantile 
treatment effects work. We will not discuss these in detail, because here we ignore the endogenous 
selection problem.  Unfortunately the method Buchinsky (1998,2001) used in the selection step, 
namely the Ishimura’s (1993) semiparametric least squares requires that the selection equation 
includes at least one covariate that is not included in the main equation. This condition is difficult to 
ensure with the available data set. Therefore a different strategy is followed in this paper. On the first 
step we estimate an ordinary probit selection equation similarly to Heckman (1979) and from there 
derive the bias correcting factor (i.e. the inverse Mill’s ratio). In the second step a linear quantile 
regression is performed instead of the mean regression by additionally including the derived correcting 
factor.  The resulting model is tested for model correctness, which also validates the sample selection 
step. The rationale for this procedure is as follows: The linear quantile regression would be in general 
valid if it is characterized by a Gaussian copula (i.e. it is conditionally Gaussian given some marginal 
distributions, which do not need to be Gaussian. If the marginal distributions are themselves Gaussian, 
the resulting multivariate distribution reduces to multivariate normal distribution) (Constinot et al., 
2000). Therefore the validity of the quantile regression implies that the conditional distribution of the 
correcting factor is Gaussian, thus indirectly testing the validity of the selection step. The 
incorporation of the conditional distribution from the probit equation can be justified the equivalence 
between binary choice models and quantile regression. Manski (1985) noted that the binary response 
models (in the framework of the maximum score estimator) could be reformulated as a general 
quantile regression problem. Thus we can view the sample selection problem as a two-step quantile 
regression where the conditional quantile for the first step is given (i.e. this is the sample quantile that 
yields the truncation point) while we may vary the quantiles in the second step.  Therefore as long as 
the linear quantile regression (which can be viewed as an approximation to a more general non-linear 
process) is an adequate representation of the underlying data generation mechanism, the proposed 
sample selection procedure would be valid. Therefore we can indirectly test the latter by simply testing 
the validity of the estimated linear quantile regression model. 

The last piece of the jigsaw is therefore to identify appropriate model validity test, applicable to 
the quantile regression. What is needed is a test on validity of the functional form. Up to our 
knowledge there are only two appropriate candidates for this. The first is the Zheng’ (1998) approach 
based on weighted kernel regression estimation and the other one is an extension to the Bierens and 
Ploberger’s (1997) Integrated Conditional Moment (ICM) test for the quantile regression case due to 
Bierens and Ginther (2001). They discuss explicitly only the median case, but the necessary 
modifications for the general quantile regression case are provided in an appendix. We have chosen 
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the latter due to some desirable properties, such as boundness of the test statistic, good local power 
and relative conservatism of the test statistic 

 
6. Results. 

The discussion in the methodology section concentrated on estimation and testing of a quantile 
regression model at a given quantile. It is clear that the adopted framework for testing the Gibrat’s law 
involves estimating multiple quantile regression models. It is in principle possible to estimate the 
whole quantile process (i.e. estimating a quantile regression for every observation, in this case 1290 
models). To simplify the process however only a subset of quantile regression models is estimated. 
This subset consist of all percentiles excluding the lower and the upper 9%. In other words the 81 
regression models for the 0.10, 0.07,   ,0.94, and  the 0.90 quantiles were estimated. The reason we 
exclude the extreme quantiles is that the conventional quantile regression estimates for these are 
unreliable. Asymptotic theory and estimation methods for extreme quantiles are developed in 
Chernozhukov (2000a,b) and Chernozhukov and Umantsev (2001). The main interest of the current 
paper lies in the overall distribution of the estimated on the logged size in the initial period (1997) and 
thus we will ignore the extreme quantiles.  
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Figure 2. Quantile regression estimates on the lagged size coefficient  
 
Plotting the corresponding estimates for the same parameter across the quantile range provides a 

useful graphical device to informally ascertain the scale invariance hypothesis. Strict formal tests on 
this are available and results from such tests can be provided by the authors upon request. The 
conventional approach to such tests (Koenker and Xiao, 2000) uses the Khmaladze (1981) 
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transformation and introduces additional computational burden. Although we omit it here for brevity 
and simplicity, rigorous modelling practices would require one to implement such tests. The main 
point of interest here is the way the estimate of the logged lagged size varies over the quantile range.  

The estimates for the coefficient of the initial farm size from the estimated set of quantile 
regressions are presented on Figure 2, together with the associated 95% quantiles of their distribution. 
Where the horizontal line drawn at the value of 1 falls within the range defined by these standard error 
bands we may say with 95% confidence level, that the Gibrat law holds. These results suggest the 
following. The Gibrat’s law speaking holds except for the small (up to the 0.16 quantile) dairy farms. 
These smaller farms grow slower than the rest of the sector.  

The smaller growth in the segment of smaller dairy farms is in concordance with farm growth 
results from Census and farm business surveys data, since, the latter are generally based on larger 
farms, and thus will tend to support the Gibrat’s law as opposed to the latter where the peculiarity of 
the smaller farms would lead to its rejection. The use of dairy sector data is advantageous in that it 
reduces the possibility for heterogeneity problems due to different production technologies and farm 
types being pooled together. McErlean et al. (2004) argue that this heterogeneity needs to be dealt with 
by explicitly modelling the different farm types instead of using dummies for them. Note that the 
possible effects of such heterogeneity will manifest themselves in terms of heteroscedasticity 
problems. The distribution of the ICM test we use to test the model validity however is not affected by 
neglected heteroscedasticity (Bierens and Ploberger, 1997). 

Due to the considerable computational burden of estimating the ICM test statistic (details on the 
exact procedure available upon request) we only estimate it for the quantiles from 0.1 through to 0.9 
with 0.1 steps). The ICM test results are presented in Table 1 below. 

 
Table 1. ICM test results 
Quantile  c=1 c=3 c=5 c=10 c=15 c=20 

0.1 0.050 0.247 0.363 0.674 0.698 0.665 
0.2 0.110 0.531 0.628 0.746 0.791 0.817 
0.3 0.119 0.500 0.521 0.718 0.827 0.810 
0.4 0.364 1.683 1.580 1.485 1.336 1.150 
0.5 0.338 1.466 1.409 1.655 1.348 1.148 
0.6 0.398 1.571 1.231 1.229 1.115 1.025 
0.7 0.389 1.076 0.882 0.712 0.755 0.834 
0.8 0.179 0.758 0.639 0.797 0.815 0.959 

0.9 0.068 0.264 0.399 0.674 0.734 0.733 
 
Critical values (Bierens and Ploberger, 1997): 
10% 3.23 
5% 4.26 
 
The reason for using several values for c is as follows. The ICM statistic is a ratio of two 

probability measures estimated over a hypercube whose dimensions are 2c. (i.e. in the intervals [-c, 
c]). In principle asymptotically any choice for c is equivalent. In principle however, this choice may 
have dramatic effects on the small sample properties of the test. In general too small or too large 
values will reduce the power of the test. (see Bierens and Ginther, 2001 for a more detailed discussion 
on this in the quantile regression case). Therefore a range of such values was used to estimate the ICM 
test. All test statistics estimated fail to reject the null of validity of the estimated quantile regression. 
The results for c=0.1 similarly to Bierens and Ginther (2001) are probably spuriously low. 
Nevertheless the range of values for the hypercube dimension is rather extensive (as a comparison 
Bierens and Ginther (2001) only use values of 1, 5 and 10) and everywhere the ICM test statistic 
is well below the critical values. This provides conclusive evidence in support of the estimated 
quantile regression model and its conclusions. 

 
7. Conclusions and further research agenda 
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Previous studies show that Gibrat’s law tends to hold when only larger farms are considered, but 
tends to fail when smaller farms are included in the analysis.  This study is based on a data set that 
covers the full range of dairy farm sizes in Northern Ireland. The analysis takes account of possible 
bias due to exiting farms. The use of rather homogeneous data set consisting of only dairy farms have 
prevented some complications such as possible heterogeneity, but the general approach outlined in the 
paper is readily applicable to more complex data sets. In such cases the simple probit sample selection 
step may not be appropriate and alternative semi-parametric formulations may be used instead. 
Another avenue for extending this approach is to account for possible endogeneity in the model. 

The linear quantile regression proved to be sufficient to describe the growth process in the NI 
dairy sector. In some other cases however the linear assumption may be inadequate. Then nonlinear 
and non-parametric versions of the quantile regression could be employed instead. There is however a 
conceptual difficulty with the quantile regression that may appear restrictive. It consists of the 
following. The coefficient of the independent variables in a quantile regression varies with the quantile 
of the dependent variable. To put this in perspective in term of the present problem, this says that the 
coefficient of the initial farm size varies with the quantile of the final farm size.  This sounds somehow 
paradoxical formulation because big farms in this framework are the farms that are big now, not at the 
start of the period.  For this to be a valid assumption in this case a rank invariance assumption is 
necessary, namely that farms roughly speaking preserve their rank in term of size between the two 
periods.  If the time period in consideration, as in our case is relatively small, such an assumption may 
seem reasonable. For longer time periods and particularly for rapidly changing sectors however it may 
be violated. In such cases alternative representations may be required. The quantile regression 
framework can still be used to investigate such a model by simply redefine the model by switching 
over the size in the start and in the end of the period so that the starting size becomes the dependent 
variable. Such a re-specification has some other implications on the way the resulting coefficients are 
to be interpreted, which for brevity are omitted. This notwithstanding one may wish to consider a 
more flexible model specification where for example there are different conditioning variables for the 
coefficients of different variables (in the quantile regression only one such variable, namely the 
quantile of the dependent variable is used for all coefficients).  It is relatively straightforward to 
construct a model in which the coefficient(s) of the independent variable(s) vary with any given 
variables. To use the analogy to the quantile regression case, let us make the coefficients of the initial 
farm size vary relatively smoothly with the quantile of the same. Relatively smoothly’ is an ambiguous 
term involving a prior concept of how smooth we want this variation to be. We will omit these 
technical details here. 
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