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Does Gibrat's law hold amongst dairy farmers in Nothern Ireland?

Abstract

This paper tests whether the Law of Proportionate Effects (Gibrat, 193t states that farms
grow at a rate that is independent of their size, holds for the deing fa Northern Ireland. Previous
studies have tended to concentrate on testing whether the law hold$gonal The methodology
used in this study permits investigation of whether the law hold®foe $arms or all farms according
to their size. The approach used avoids the subjective splitting ofesamwplich tends to bias results.
The finding shows that the Gibrat law does hold except in the case of amal fThis is in
accordance with previous findings that Gibrat’'s law tends to hold whenawghr farms are
considered, but tends to fail when smaller farms are included in thesignétyplications and further
extensions, as well as some alternatives to the proposed methodologywssedisc
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1. Introduction

Farm structural change and the inter-related issue of farmlyammtinue to attract the interest
of agricultural economists, academics and policy makers, becausevatihranging implications for
agricultural output, efficiency and inevitably the economic welfamei@l communities. Given the
sweeping changes that have occurred in the recent round of CAP Refisrmgpibrtant that the
factors affecting structural change in the farm sector are understbigistudy will examine some of
these factors using data from the period 1997 to 2003. During this period, ¢amemreached very
low levels (see Figure 1) and this has certainly put pressure on ttiegrof the farm sector.
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Figure 1. Net farm income of Northern Ireland dairy farms

Two inter-related components of farm structural change are efitrge¢he farm sector and
growth/decline in continuing farms (Weiss, 1999). Historically, thesebean a tendency for
academics to consider these two components separately. Studies thavéstigated the factors
influencing farm exit include Kimhi and Bollman (1999) and Glaugteal. (2003). A large number



of studies have examined the factors affecting farm growth (e.g. Upton amithial987; Shapiret

al., 1987; Clarkeet al, 1992; and, Bremmaeat al, 2002). However, it has been argued that examining
the growth of continuing farms only, whilst ignoring exiting farms in the arsalgens the risk of

biasing results (Weiss, 1999). Consequently, several more recent savdiehsidered both farm
survival (the opposite of exiting) and farm growth (see Weiss, 1998 and 199%eymand Roberts,
2003).

In a seminal paper that describes the Law of Proportionate Effectaf @iB81) provides the
starting point for most previous studies of farm growth. He proposed thagitothéh rate of firms is
independent of their initial size at the beginning of the period examinigdat's law proposes that
growth is a stochastic process resulting from the random operation of mapgnddat factors. This
stochastic process easily generates theoretical farm sizbudistrs (log-normal) that are skewed and
similar in shape to the farm size distributions that are observpdiealy. Furthermore, this
stochastic process also means the variance of the distributiorsexi@zer-time mirroring observed
increases in empirical concentration measures. It is unsurprisingfoitee that Gibrat’s Law, which
is not inconsistent with the assumption of constant returns to scalieuestio provide the basic
foundation for most studies of farm growth.

Gibrat’s law, however, has been subject to some criticism and theopesiifatations for its
rejection can be found in the literature, e.g. returns to scale among Jaratie(Weiss, 1999). A
number of studies have identified a range of systematic factorsfibehire farm growth and these
should be explicitly considered in any model of farm growth, rather than being subsitmedhe
random stochastic process implied by Gibrat's law. In light of thesetremesiderations this paper
examines the determinants of farm growth and survival using farm censtisrcigay farms in
Northern Ireland. The analysis permits examination of Gibrat’s law andleomishe influence of
such factors as profitability, farm type and farmer associatedatieaistics on farm growth and
survival. An outline of the paper is as follows. A review of previoudiss is presented in the next
section. The data set and the methodology used in the analysis are autBeetion 3. Model
results are presented in Section 4. These results are discussedbim and some conclusions are
drawn in Section 6.

2.Literature review

There is a wide and extensive literature investigating the growtmas {for a review see Sutton,
1997; and, Lottet al, 2003). In comparison the number of studies focusing on farm growth is more
limited. The approach used in most studies of farm growth has been tibrestsGaw. Many of
these studies appear to have reached different conclusions. Studies $Y18@8s 1999) and
Shapiroet al (1987), based on farm census data, rejected Gibrat's law of proportideats fefr
farm growth. These studies found that small farms tend to grow fastdatpanfarms. However,
Upton and Haworth (1987) and Bremnetral (2002) using FBS data collected in Great Britain and
FADN data collected in the Netherlands, respectively, found no evidengje¢coGibrat's law. The
data sets used in these two studies exclude very small farmar{nse.<48 European Size Units). This
may have affected the results obtained because small rapidly griawimg may have been excluded
from the analysis. Clarét al.(1992) also find no evidence to reject Gibrat's law based on analysis
using aggregated data.

An important aspect of the study of farm (size) growth is the defindf farm size. Previous
studies have used a variety of different measures of farm size (shiarfgem size indicate
growth/decline). Measures of farm size proposed in the literatUteléacreage farmed, livestock
numbers (cow equivalents), total capital value, net worth, gross salégréssgmargins and net
income (Allanson, 1992; Clart al. 1992; and, Shapiret al. 1987). Output value measures such as
gross farm sales and input value measures such as net worth may béuotwgtidue to the impact
of inflation and changes in relative prices (Weiss, 1998). Physjsal measures, such as acres under
cultivation and number of livestock, are also problematic since farméaracterised by a non-linear
production technology and changes in farm size typically involve changes ingemportions and
changes in technology. Weiss (1998), however, argues that the disadavahpysscal input
measures are less that those associated with the value of inputpuis and as a result the former
should be preferred.



A review of empirical studies indicates that most find evidence toleda that a range of
variables other than size influence farm growth (e.g. Weiss, 1999; and, Bretrshg2002). These
other explanatory variables that have been identified in thetliteraan be divided into two sub-
groups, namely, farmer-associated characteristics and farm specifics. Weiss (1999) identified
the following farmer-associated characteristics: off-farm empémtnage, gender, level of education,
family size, age profile of the family, succession information anthid#ito risk. Farm (or firm)
specific variables that have been suggested as factors influgmointh include: size, solvency,
profitability, productivity, farm income, structure, financial perfonoe, input costs, output mix, farm
type, mechanisation and location (Bremrmaeal 2002; Hardwick and Adams, 2002; Weiss, 1999).

3. Problem characterisation

As with the vast majority of studies of farm growth, Gibrat’'s law of propoate effect is used
as a starting point for the analysis carried out in this paper. Wdées that firm (or farm) growth
is determined by random factors, independent of size. This may be tested eigoligwing formula:

IN(Sy) = B+ BIn(Se) + U (1)

whereS; denotes the size of the individual holding in tingndu, is a random disturbance term
independent of current or past values of the dependent varialfle= ¥, then growth rate and initial
size are independent and this means that Gibrat's Law is not rejefcfgds 1, small farms tend to
grow faster than larger farms —i.e. the effects of randomness see mffnegative correlation
between growth and size. & > 1, larger farms tend to grow faster than smaller farms. The above is
easily illustrated if one subtradt¥S.;) from both sides of equation (1) above. Then the left hand side
logarithmic difference is an approximation of the growth. The right adedwill them be either a
random walk, wheif, = 1, or a dependent process otherwise.

Equation (1) can be generalised augmenting it by farmer associatectehstias and farm
specific variables, e.g. profitability, denoted by khexplanatory variableX, below as follows:

k+3

I(Si0)= B+ BoIn(Sca)* 3 By X2+, (2)
=3

There are two problems with using linear regression representaticimas equation (2). The
first is the assumed linear effect of the additional explanatmigblesX, . Weiss (1999) for example

applied non-linear functional form for these and detected significant nanrities. Specifying an ad-
hoc non-linear functional form however is not a viable strategy, since/itmpeact on the final results
in an unpredictable way and often there is little or no information on the way tidisereal variables
may impact on farm growth.

This consideration aside, even in the simple model (1), there is an undesisumgpdion that the
Gibrat’s law holds (or is violated) globally. It is difficult to ase@mtwhether for example small farms
obey this law as opposed to large farms. It is in principle possible torgpiample into smaller
subsamples and locally estimate the relationships. This would howeverssarhe subjective
criteria about how to do the latter partitioning further casting doubt on thedmadts. If we want to
test whether Gibrat’s law holds for some farms and not for othersnéae liegression framework is
too restrictive. Such a test can nevertheless be designed using qegngiésion methods,
implemented in this paper. Alternatives and extensions to the adopted appeoalsio a@iscussed.

In order to measure farm growth, farm size must be compared between twa gmcts in
time. However, measures of farm growth are meaningful only for surviamgst Farms exiting
between the points in time over which growth is measured are normally exéladethe sample (as
non-surviving farms). However, there is a greater probability that slgneing small farms will be
non-survivors compared with slower growing larger farms (Weiss. 1999). it hos;surviving
(exiting) farms are excluded from the sample, the estimai8snaly be biased downward, which may
result in incorrect rejection of Gibrat’s law, giving the imgiea that smaller farms tend to grow
faster than larger farms (Hardwick and Adams, 2002; kbt 2003; Shapiret al 1987; Sutton,



1997; and, Weiss, 1999). Ignoring exiting farms in the analysis is known as therpoftsiample
selection bias. Various options are available to account for slduéis and these are briefly
discussed in the methodology section.

4. Data

The data set used in this study is based on the 1997 and 2003 farm census for Neldhern Ir
and a structural survey of farms in Northern Ireland that was conducted in 1987arih census
provided information for individual farms on farm type, acreage farmed andratambers (total
standard gross margin for each farm can also be inferred from this @a&) 997 structural survey
provided additional information on a range of farmer associated charac$esisth as gender, age,
management status and time spent working on the farm for a subset of then&wded in the farm
census (31 % of dairy farms). The individual farm information from theetsiral survey was
matched to the information from the 1997 farm census.

Matching these data sets yielded a total of 1648 dairy farms in 1997. Ofahese¥12 had
exited farming by 2003. Of the remaining 1536 farms, 1290 remained in dairy, whileeh@4h
moved to cattle and sheep. In this study we are specifically intereségthsywhich remain in
dairying and thus the latter farms are treated as farms which ehateldiry sector. Thus, in total 358
exited the dairy sector between 1997 and 2003 (farms which exited farmirgjtadtoglus farms
which switched from dairy to cattle and sheep).

The measure of farm size used in this study is the livestock numbensretkaiscow equivalents
per farm. This measure (unlike e.g. land area) is directly proportitmtte final output of dairy
farm. Using the dairy farm sector allows us to avoid complicatiomei@ssd with farm entry and thus
simplify the sample selection problem.

5. Methodology

In the least-squares regression framework the conditional mean fun&idaheifunction that
describes how the meanythanges with the covariatesis almost all we need to know about the
relationship betweepandx. The crucial aspect about this view is that the error is assumed to have
exactly the same distribution irrespectively of the values takehebydmponents of the vectarThis
can be viewed as a pure ‘location shift’ model since it assumesadffatts only the location of the
conditional distribution of, not its scale, or any other aspect of its distributional shape. I6ttiig i
case, we can be fully satisfied with an estimated model of the conditieaal function.

The above described location shift model is however rather restrictivari@es may influence
the conditional distribution of the response in many other ways: expanding éssdisp(as in
traditional models of heteroscedasticity), stretching one tail adiftebution, compressing the other
tail (as in volatility models), and even inducing multimodality. Explicit 8tigation of these effects
can provide a more nuanced view of the stochastic relationship betweenesaalol therefore a
more informative empirical analysis. The quantile regression isthaa that allows us to do so.

Given a random variabMand its distribution functiof, we denote by

Q(7) =inf(y[F(y) 21) 3)

the 1 th quantile ofY . The sample analogugof Q(7 ) is called ther th sample quantile. It may
be formulated as the solution of the following optimisation problem, givandom sampleyy),
n=1;...;N:

U U
ming § 7y, -d+ 5 Q-7)y, -d0
Onivezq {nlyn=g 0 (4)
There exist a number of alternative quantile regression estimatmeswé will only describe the
linear programming type of estimator, since there are asymptotic tre=atys for it (Koenker and
Bassett, 1978). Just as we can define the sample mean as the soltggorédlem of minimizing a
sum of squared residuals, we can define the median (which is the 50% quantileQi5) as the



solution to the problem of minimizing a sum of absolute residuals (whidw®ldirectly from (4)
above).
ForanyO< 7 <1, we denotepr(u)z u(z + I[u<0]), wherell[.] is the indicator function.

Following Koenker and Bassett (1978) (u) is usually referred to asceckfunction. The problem
may then be formulated as follows:

min'S’ o, (v, - q)
nZ (5)

which yields a natural generalization to the regression context.

minnZ,O, (v, —€(x.B)) (6)

whereé(X,,ﬁ) is some parametric function of the covariates. When this is a linediofuribe

above minimisation procedure is actually a linear programming problem.ifTimay be estimated
using some form of simplex algorithm. Koenker and d'Orey’s (1987, 1993) adaptatiorBaftbdale
and Roberts (1974) median regression algorithm to general quantile i@giegarticularly
influential. The Barrodale and Roberts approach belongs to the classrafregpaént algorithms for
solving linear programming problems. Alternatively, Portnoy and Koenker (12%@)shown that a
combination of interior point methods and effective problem preprocessingy isek suited for
large-scale quantile regression problems. This is the approach usescoaptsr (it is often referred to
as Frisch- Newton method), although the former (Barrodale-Roberts) meghdsl gimilar results,
which are available from the authors upon request.

It would be beneficial at this point to clarify a fundamental differenteden the quantile
regression and the mean regression methods. Could we achieve the s#rbg sanply segmenting
the response variable into subsets according to its unconditional distribad then doing least
squares fitting on these subsets? Clearly, this form of truncation onpiedeat variable would
yield disastrous results in the present example. In general, suchisegae doomed to failure for all
the reasons so carefully laid out in Heckman (1979). It is thus worth emplgasiat even for the
extreme quantiles all the sample observations are actively used imtlesgpof quantile regression
fitting.

It is of course possible to construct local quantile regression estimsing some sort of
segmentation (see Knight et al., 2002). Some preliminary results abaoatitigons where local
quantile regression is useful are outlined in Costinot et al. (2000). Howewsill not pursue this
option for reasons given further below.

The potential problem of bias due to sample attrition is known in the litesaesample
selection problem. Its initial description is due to Heckman (1979) wheetbai two-step procedure
for controlling it. The Heckman procedure consists of estimating at seep survival model. This is
typically a probit (although a logit can be used alternatively) equation garabability of farm
survival from the complete sample (including surviving and non-survivingsharfhis equation is
subsequently used to obtain an additional variable, where the valuegnefinesnverse Mill's Ratio
for each observation. In step-two, the additional variable is introduced aetiogrfactor into the
least squares regression that is based upon a sample that excludesinimy$arms. The probit
model, used in the first step typically has the same explanatoryleargbthe main equation, though
this is not mandatory and variables that are only relevant to the farmadumay be included, as well
as some of the variables included in the main equation may be dropped. Thehlecgoedure
assumes joint normality of the error terms in the two equations. faedsstributional assumption,
which can also be employed to construct a more efficient Full Information Maxinkelihood
(FIML) estimator that jointly estimates both equations, however aa@a $erious implications on the
robustness of the final results when it is violated. Therefore varitaigative estimators have been



suggested to circumvent the problem of inadequate distributional assugnfti@se can be broadly
described as semi-parametric model selection methods.

Semiparametric estimators of sample selection models include Ra@&H), Newey (1999),
Choi (1990), Cosslett (1991), Ichimura and Lee (1991), Lee (1994), Ahn and Powe}l (2888ld
(1995), Wooldridge (1995), Kyriazidou (1997), Andrews and Schafgans (1998), Cheneafi®28),
Das (1998), Vella and Verbeek (1999), and Das, Newey, and Vella (2000).

Some alternative newer estimators include copula approaches (P2i@@rSmith, 2003,
Genius and Strazzera, 2004), Generalised Maximum Entropy (Golan et al, 1999, 20@hyiand s
nonparametric densities (van der Klaauw and Koning, 2003). It has to be noted homagvers
difficult to provide an overview of the sample selection bias, sincelibsely related to other
problems such as the so called treatment effects, where unobserved ¥éieatments) condition
the available sample.

Recent treatment related estimators include Imbens and Angrist (1994ist/Aamgl Imbens
(1995), Heckman et al. (1998), Hahn (1998), Hirano et al. (2000), Abadie (2001), and eteatha
(2001). See also Heckman (1990), Manski (1994), and Chamberlain (1986). Surveyss litextichan
and MaCurdy (1986), Wainer (1986), Powell (1994), and Vella (1998).

If we abstract from the possibility of endogeneity, the problem of sampletisal in mean
regression model can be broadly defined as problem of the distributional desgmphich can be
controlled for. This is basically done by various methods to relax the garaspecifications
employed in the seminal work of Heckman (1979).

The sample selection for quantile regression however remains engfiad] and still under-
researched problem. Buchinsky (1998, 2001) provided some important contributiossgsuéi
Abadie et al. (2002) and Chernozhukov and Hansen (forthcoming) and are someesxargphntile
treatment effects work. We will not discuss these in detail, bedsare we ignore the endogenous
selection problem. Unfortunately the method Buchinsky (1998,2001) used in thisosedtagi,
namely the Ishimura’s (1993) semiparametric least squares retiistelse selection equation
includes at least one covariate that is not included in the main eqUdtisrcondition is difficult to
ensure with the available data set. Therefore a differenegyré followed in this paper. On the first
step we estimate an ordinary probit selection equation similarlydknikn (1979) and from there
derive the bias correcting factor (i.e. the inverse Mill's ratio}he second step a linear quantile
regression is performed instead of the mean regression by additiochllying the derived correcting
factor. The resulting model is tested for model correctness, wWisclvaidates the sample selection
step. The rationale for this procedure is as follows: The linearitpiedression would be in general
valid if it is characterized by a Gaussian copula (i.e. it is camditly Gaussian given some marginal
distributions, which do not need to be Gaussian. If the marginal distributiotiearselves Gaussian,
the resulting multivariate distribution reduces to multivariate abdistribution) (Constinot et al.,
2000). Therefore the validity of the quantile regression implies teatdhditional distribution of the
correcting factor is Gaussian, thus indirectly testing the validitgeo&election step. The
incorporation of the conditional distribution from the probit equation candtéed the equivalence
between binary choice models and quantile regression. Manski (1985) notie thiatary response
models (in the framework of the maximum score estimator) could be d&ied as a general
guantile regression problem. Thus we can view the sample selection preldema@step quantile
regression where the conditional quantile for the first step is giverihis is the sample quantile that
yields the truncation point) while we may vary the quantiles in tbengestep. Therefore as long as
the linear quantile regression (which can be viewed as an appraxirt@t more general non-linear
process) is an adequate representation of the underlying data genethanism, the proposed
sample selection procedure would be valid. Therefore we can ingitestithe latter by simply testing
the validity of the estimated linear quantile regression model.

The last piece of the jigsaw is therefore to identify apprapriaadel validity test, applicable to
the quantile regression. What is needed is a test on validity of thehaidorm. Up to our
knowledge there are only two appropriate candidates for this. Thesfirg Zheng’' (1998) approach
based on weighted kernel regression estimation and the other one is amextetist Bierens and
Ploberger’s (1997) Integrated Conditional Moment (ICM) test for the d@aegression case due to
Bierens and Ginther (2001). They discuss explicitly only the median case, bettwsary
modifications for the general quantile regression case are providedppandix. We have chosen



the latter due to some desirable properties, such as boundness of tlatigést gbod local power
and relative conservatism of the test statistic

6. Results.

The discussion in the methodology section concentrated on estimation andaeatmgantile
regression model at a given quantile. It is clear that the adopted frakfewteasting the Gibrat's law
involves estimating multiple quantile regression models. It is in pim@ossible to estimate the
whole quantile process (i.e. estimating a quantile regression fgr @vservation, in this case 1290
models). To simplify the process however only a subset of quantile riegressdels is estimated.
This subset consist of all percentiles excluding the lower and the uppém 8fler words the 81
regression models for the 0.10, 0.07, ,0.94, and the 0.90 quantiles were estimateasdhee
exclude the extreme quantiles is that the conventional quantile regressimates for these are
unreliable. Asymptotic theory and estimation methods for extreme quamélds\aeloped in
Chernozhukov (2000a,b) and Chernozhukov and Umantsev (2001). The main interest of the curre
paper lies in the overall distribution of the estimated on the loggethdize initial period (1997) and
thus we will ignore the extreme quantiles.
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Figure 2. Quantile regression estimates on the lagged size affici

Plotting the corresponding estimates for the same parameter theraggntile range provides a
useful graphical device to informally ascertain the scale invariaypathesis. Strict formal tests on
this are available and results from such tests can be provided by the aygtworequest. The
conventional approach to such tests (Koenker and Xiao, 2000) uses the Khmalatlye (198



transformation and introduces additional computational burden. Although wé beri¢ for brevity
and simplicity, rigorous modelling practices would require one to implemehtiests. The main
point of interest here is the way the estimate of the logged laggedssies over the quantile range.

The estimates for the coefficient of the initial farm size ftbmestimated set of quantile
regressions are presented on Figure 2, together with the associated 95Bsmqfaheir distribution.
Where the horizontal line drawn at the value of 1 falls within the rdafieed by these standard error
bands we may say with 95% confidence level, that the Gibrat law holds. fElsefis suggest the
following. The Gibrat’s law speaking holds except for the small (up to the 0.b&ilgudairy farms.
These smaller farms grow slower than the rest of the sector.

The smaller growth in the segment of smaller dairy farms is in concordé@hckamn growth
results from Census and farm business surveys data, since, the latesresiedlygbased on larger
farms, and thus will tend to support the Gibrat’s law as opposed to the lagter the peculiarity of
the smaller farms would lead to its rejection. The use of dairy statais advantageous in that it
reduces the possibility for heterogeneity problems due to different proddethnologies and farm
types being pooled together. McErlean et al. (2004) argue that this heté@yogegads to be dealt with
by explicitly modelling the different farm types instead of using dummiethémn. Note that the
possible effects of such heterogeneity will manifest themselvesnts tof heteroscedasticity
problems. The distribution of the ICM test we use to test the model validitywkoigenot affected by
neglected heteroscedasticity (Bierens and Ploberger, 1997).

Due to the considerable computational burden of estimating the ICMagstic (details on the
exact procedure available upon request) we only estimate it for thelegi&nam 0.1 through to 0.9
with 0.1 steps). The ICM test results are presented in Table 1 below.

Table 1. ICM test results

Quantile c=1 c=3 c=5 c=10 c=15 c=20
0.1 0.050 0.247 0.363 0.674 0.698 0.665
0.2 0.110 0.531 0.628 0.746 0.791 0.817
0.3 0.119 0.500 0.521 0.718 0.827 0.810
0.4 0.364  1.683 1.580 1.485 1.336 1.150
0.5 0.338  1.466 1.409 1.655 1.348 1.148
0.6 0.398 1.571 1.231 1.229 1.115 1.025
0.7 0.389 1.076 0.882 0.712 0.755 0.834
0.8 0.179  0.758 0.639 0.797 0.815 0.959
0.9 0.068 0.264 0.399 0.674 0.734 0.733
Critical values (Bierens and Ploberger, 1997):

10% 3.23

5% 4.26

The reason for using several valuesd@s as follows. The ICM statistic is a ratio of two
probability measures estimated over a hypercube whose dimensiogs(aee i the intervals §;
c]). In principle asymptotically any choice foiis equivalent. In principle however, this choice may
have dramatic effects on the small sample properties of thentggnéral too small or too large
values will reduce the power of the test. (see Bierens and Gig0&t for a more detailed discussion
on this in the quantile regression case). Therefore a range of sueh walsi used to estimate the ICM
test. All test statistics estimated fail to reject the nulladidity of the estimated quantile regression.
The results foc=0.1 similarly to Bierens and Ginther (2001) are probably spuriously low.
Nevertheless the range of values for the hypercube dimension is radreiexia a comparison
Bierens and Ginther (2001) only use values of 1, 5 andritDg¢verywhere the ICM test statistic
is well below the critical values. This provides conclusive evid@nsapport of the estimated
guantile regression model and its conclusions.

7. Conclusions and further research agenda



Previous studies show that Gibrat’s law tends to hold when only larges fae considered, but
tends to fail when smaller farms are included in the analysis. sfidy is based on a data set that
covers the full range of dairy farm sizes in Northern Ireland. The an#dksis account of possible
bias due to exiting farms. The use of rather homogeneous data set consistitygdairy farms have
prevented some complications such as possible heterogeneity, but thé¢ aygprexach outlined in the
paper is readily applicable to more complex data sets. In such cases tleepsobjilsample selection
step may not be appropriate and alternative semi-parametric formulaéyrise used instead.
Another avenue for extending this approach is to account for possible endpgetietmodel.

The linear quantile regression proved to be sufficient to describe the grasdspin the NI
dairy sector. In some other cases however the linear assumption may logat@d€hen nonlinear
and non-parametric versions of the quantile regression could be emploged ifidtere is however a
conceptual difficulty with the quantile regression that may apjesarictive. It consists of the
following. The coefficient of the independent variables in a quantilessgpn varies with the quantile
of the dependent variable. To put this in perspective in term of the presblanpyrthis says that the
coefficient of the initial farm size varies with the quantileraf final farm size. This sounds somehow
paradoxical formulation because big farms in this framework aretims that are big now, not at the
start of the period. For this to be a valid assumption in this case a ranlinoceaassumption is
necessary, namely that farms roughly speaking preserve their rank in tEm@ bétween the two
periods. If the time period in consideration, as in our case is rejasivelll, such an assumption may
seem reasonable. For longer time periods and particularly foryabidhging sectors however it may
be violated. In such cases alternative representations may be requirgdaitik regression
framework can still be used to investigate such a model by simply retiedimeodel by switching
over the size in the start and in the end of the period so that the startihgcirges the dependent
variable. Such a re-specification has some other implications on the wagtlteng coefficients are
to be interpreted, which for brevity are omitt&this notwithstanding one may wish to consider a
more flexible model specification where for example there are éiff@onditioning variables for the
coefficients of different variables (in the quantile reg@ssinly one such variable, namely the
guantile of the dependent variable is used for all coefficients). dtagvely straightforward to
construct a model in which the coefficientg)he independent variable(s) vary with any given
variables. To use the analogy to the quantile regression caserrlakeshe coefficients of the initial
farm size vary relatively smoothly with the quantile of the same tiRellasmoothly’ is an ambiguous
term involving a prior concept of how smooth we want this variation to be. We wiltloese
technical details here.
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