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Economic Efficiency and Factors Explaining Differences 

Between Minnesota Farm Households 

 
Kent Olson and Linh Vu 

 

Economic efficiency, especially inter-firm differences in efficiency, is one of the major 

factors explaining differences in firm survival and growth and changes in industry structure. 

Thus, factors explaining and determining differences in economic efficiency and changes in 

efficiency between firms are of major interest to owners, managers, and other stakeholders as 

they strive to improve earnings and improve the chances of firm survival. This current study 

was undertaken to improve our understanding of the inter-farm differences in and 

opportunities to improve farm household efficiency in utilizing their land, labor, and capital 

resources to achieve household objectives.  

This study extends current research in several ways. First, it uses a true panel dataset 

versus the pseudo panel used by Morrison Paul et al (2004). To our knowledge, this study is 

the first study estimating U.S. agricultural production efficiencies to use bootstrapping 

procedures to correct the bias generated by the deterministic DEA approach. It is the first to 

use a weighted Tobit procedure to correct for that same bias. The study is also the first to 

extend the results of estimating efficiencies and the Tobit identification of explanatory 

factors to identifying educational opportunities for improving efficiencies. 

This study estimated the technical, allocative, and scale efficiencies of farm 

households in southern Minnesota using a nonparametric, output-based data envelopment 

analysis (DEA) of a panel dataset of individual farm and household financial records from 

southern Minnesota from 1993-2005. Technical efficiency (TE) measures the firm’s ability to 
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use the best available practices and technology in the most effective way. Allocative 

efficiency (AE) is dependent on prices and measures the firm’s ability to make optimal 

decisions on product mix and resource allocation. Combining measures of technical and 

allocative efficiency yields a measure of economic efficiency.  Scale efficiency (SE) 

measures the optimality of the firm’s size, so a change in size will not improve output or 

revenue.  

Estimation of efficiency using nonparametric linear programming has its origin with 

Farrel (1957). Seitz (1970) used linear programming techniques to calculate measures of 

Farrel-type efficiencies for the single-output case. However, not until Charnes, Cooper and 

Rhodes (1978) has the generalized linear programming method, known as Data Envelopment 

Analysis (DEA), been applied widely to estimate technical efficiency, at first within the 

operating research and management science and later, within the economics community. In 

US agriculture, Morrison Paul et al. (2004) used survey data collected by the USDA to 

estimate technical and scale efficiency in US agriculture and found family farms to be both 

scale and technically inefficient. Wu et al. (2003) computed technical and scale efficiency for 

Idaho sugar beet farms and concluded that improper scale operation and input over-

utilization were the main sources of inefficiency.  Tauer (1993) calculated technical and 

allocative efficiency indices of 395 dairy farms in New York and found that, dairy farms in 

his sample were more technically efficient but less allocatively efficient in the long run than 

in the short run. 

While most of the studies did not consider nonfarm income and labor in their study, 

the fact that nonfarm activity now accounts for a large percentage of household income and 

resources means that they should be incorporated in the calculating of production frontier. As 
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in Morrison Paul et al. (2004) and Chavas et al. (2005), this study incorporated nonfarm 

income as an output and nonfarm labor as an input in the production technology. 

Not many studies using DEA pay much attention to its statistical properties. In the 

context of the multi-output, multi-input case, the only currently feasible method to establish 

the statistical property for DEA estimators is by bootstrapping (Simar and Wilson 1998, 

2000). Simar and Wilson (1998, 2000) proposed a smoothed bootstrapping method to derive 

the statistical properties of technical efficiency. This bootstrapping method had been applied 

empirically to several studies. In agriculture, Latruffe et al. (2005) used bootstrapping in 

estimating the technical efficiency of crop and livestock farms in Poland. Brümmer (2001) 

applied it to establish confidence intervals for technical efficiency among private farms in 

Slovenia.  The method was also used in Ortner et al. (2006) for dairy farms in Austria. To our 

knowledge, bootstrapping the DEA estimators has not been used in studies of US agriculture.  

The specific objectives of this study were to (1) estimate technical, allocative, and 

scale efficiencies of farms using an output based approach, (2) use bootstrap procedures to 

correct the bias generated by the deterministic DEA method, (3) identify factors that are 

significant in explaining differences in both levels of efficiency and differences in efficiency 

among farms and (4) identify educational opportunities for helping farm households improve 

their efficiencies and, thus, chances for survival.  

 

Methods and Models 

Efficiency can be estimated in two ways:  parametric and nonparametric. The parametric 

approach includes specifying and estimating a parametric production frontier (cost or profit 

function). In contrast, the nonparametric approach, or data envelopment analysis (DEA), has 
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the advantage of no prior parametric restrictions on the technology and thus is less sensitive 

to misspecification. It is also not subject to assumptions on the distribution of the error term.  

Following Chavas et al. (2005), Morrison Paul et al. (2004), and others, we first used 

nonparametric (DEA) methods to estimate output-based technical, allocative, and scale 

efficiencies. Based on the smoothed bootstrap procedure for DEA estimators proposed by 

Simar and Wilson (2000), the study estimated the bias and the confidence interval of the 

DEA estimators for TE, using the package FEAR developed by Wilson (2005) in the R 

platform.1 We then used the estimated efficiencies to identify factors explaining differences 

among farms by standard and weighted Tobit analysis.   

Technical Efficiency 

Consider a farm involved in both farm and nonfarm activities with inputs X  and producing 

outputs (Y, N)  where Y are farm outputs and N is nonfarm income. Nonfarm income is 

treated as an output because it generates revenue and uses input from the farm family. For the 

jth farm out of n farms, the output-based technical efficiency index, TE, is defined as 

j
j

j

NYXTE θ
λθ ,

min),,( =               (1) 

subject to  ∑
=

=≥≥≤≤
n

j
jjjjjj XXNNYY

1

1;0;;/;/ λλλλθλθ  where θ is a scalar and λ is a 

vector of constant λj (j=1, …, n).  

TE measures the distance between the observed input-output mix and the production 

frontier. In general, 0 ≤  TE ≤ 1; when TE = 1, the farm is producing on the production 

frontier, and hence, technically efficient. When TE <1, the farm is technically inefficient.   

                                                
1 The time for running a bootstrap procedure with 2000 replications for a  reference group of 250 farms takes 
less than one hour for a Pentium IV, 2.8 Ghz  computer. 
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The DEA model above is a variable returns to scale (VRS) DEA model, implying it 

permits the production frontier to have increasing, constant or decreasing return to scale. In 

the case of constant return to scale, one can find TE easily by deleting the convexity 

constraint (∑
=

=
n

j
j

1

1λ ).  

Allocative Efficiency 

The allocative efficiency index can be estimated by using the revenue maximization problem 

(under VRS): 

)'(max),,,( ,, NYpNYXpR NY
j += λ       (2) 

subject to ∑
=

=≥≥≤≤
n

j
jjjj XXNNYY

1

1;0;;; λλλλλ  where p is a vector of output prices 

and other variables are as defined previously. Equation (2) only assumes a well-functioning 

output market and remains valid despite factor market imperfections. After obtaining 

maximal revenue R j (p, X, Y, N) from this problem, we can derive allocative (AE) and 

economic efficiency (EE) from the equation: 

),,,(/)'(),,,( NYXpRNYpNYXpEE jj +=   

and AE j= EE j/TE j. 

Thus, EE is the ratio of observed output revenue to maximum revenue for the farm. 

AE is the economic efficiency after taking out the effect of technical inefficiency. In other 

words, allocative efficiency is the ratio of the revenue from the hypothetical technical 

efficient farm to maximal revenue obtained by allocating resources in the “right way”.  In 

general, 0 ≤  AE ≤ 1, where AE=1 represents a farm that is allocatively efficient in output. 
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Scale Efficiency 

Scale efficiency (SE) can be estimated by maximizing the revenue equation (2) under both 

variable returns to scale (VRS) and constant return to scale (CRS) (Chavas et al. 2005). 

When assuming CRS, the objective function is similar to (2) but without the 

condition∑
=

=
n

j
j

1

1λ : 

)'(max),,,( ,, NYpNYXpR NY
j

C += λ       (3) 

subject to  0;;; ≥≥≤≤ λλλλ XXNNYY jjj  where variables are as defined previously.  The 

difference between the two measures is due to scale inefficiency. Thus, the scale efficiency 

index (SE) can be expressed as the maximized revenue under VRS divided by the maximized 

revenue under CRS or ),,,(/),,,(),,,( NYXpRNYXpRNYXpSE j
C

jj = . 

In general, 0 ≤  SE ≤ 1, with SE =1 representing efficient economy of scale. SE< 1 

implies that the inputs are not efficient in scale, which can be either increasing returns to 

scale (IRS) or decreasing returns to scale (DRS).  We can decide among farms with scale 

inefficiency, which farms are “too large” (DRS) or “too small” (IRS) by running a DEA 

problem with non-increasing returns to scale (NIRS) imposed. This can be done by replacing 

the constraint ∑
=

=
n

j
j

1

1λ  in equation (2) with the constraint ∑
=

≤
n

j
j

1

1λ : 

)'{max),,,( ,, NYpNYXpR NY
j

NI += λ        (4) 

subject to ∑
=

≤≥≥≤≤
n

j
jjjj XXNNYY

1

1;0;;; λλλλλ . 



 8 

Then we can compare the NIRS and the VRS efficiency scores. For a particular farm, 

if the two scores are unequal and SE<1, the farm is increasing returns to scale. On the other 

hand, if they are equal and SE< 1, the farm exhibits decreasing returns to scale. 

Bootstrapping the DEA estimators 

While DEA methods have been widely applied, most researchers largely ignored the 

statistical properties in the estimators. Any deviation from the frontier is attributed to 

inefficiency. Ignoring the noise in the estimation can lead to biased DEA estimates and 

misleading results. This paper applies Simar and Wilson’s (1998, 2000) smoothed bootstrap 

procedure to correct the bias in DEA estimators of TE and establish their confidence interval.  

Bootstrapping is based on the idea that by resampling the data with replacement, we can 

mimic the data-generating process characterizing the true data generation. Following Dong 

and Featherstone (2004), the procedures are the following steps: 

i. First we calculated the DEA efficiency scores for each farm among n farms as in 

equation (1) without the constraint that the sum of λi is 1, denoted as iθ̂ for the ith 

farm. 

ii. Then a first, simple bootstrap is made using iθ̂  from the first step. Let **
1 ,.... nββ  be a 

simple bootstrap sample from nθθ ˆ,...1̂ . A random sample of size n is generated for the 

random generator:   

           






−−

≤++
=

otherwiseh
hifh

ii

iiii
i       2

1              ~
**

****
*

εβ

εβεβ
θ  

where h is the bandwidth of a normal kernel density, calculated from Simar and Wilson’s 

(2000) method of minimizing an approximation to the mean weighted integrated square 

error, and *
iε is random deviation.  
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iii. To obtain the smoothed bootstrap estimates of *
iθ , we now correct the variance of the 

generated bootstrap sequence since kernel estimators are used by constructing another 

sequence: )~(
ˆ/1

1 **

22

** βθ
σ

βθ
θ

−
+

+= ii
h

 where *β = (1/N)∑
=

N

i
i

1

*β and 

2

1

2 )ˆˆ(
1

1ˆ θθσ θ ∑
=

−
−

=
N

i
iN

. 

The sequence *
iθ  has better properties than the simple bootstrap sequence since the 

variance of *
iθ  is asymptotically correct. We obtain a smoothed bootstrap estimate of 

DEA efficiency score. 

iv. Using the original estimates of technical efficiency, iθ̂ , and the smoothed bootstrap 

estimate of efficiency, *
iθ , we construct a pseudo data set of ( *

,bix , *
,biy ) where *

,bix = 

ix and *
,biy = ( iθ̂ / *

iθ ) iy with ix , iy the original input and output vectors of the ith 

farm, respectively for i=1, .., n and b refers to the iterations done in step vi. The 

output vector is modified (versus the input vector) since we are estimating efficiency 

using an output-based DEA. 

v. Now we compute the new DEA score *
îθ  for each farm using the pseudo data set of 

( *
,bix , *

,biy ). 

vi. Repeat step (ii) to (v) a sufficiently large number of times, say B, to yield B new 

DEA technical efficiency scores *
îθ  for i=1, …, n.  In our empirical work, we set 

B=2000 to ensure the low variability of the bootstrap confidence intervals. The 

number of bootstrap iterations should be more than 1000 if we are interested in 

confidence interval estimation. A smaller number of iterations would be enough if we 
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only needed estimates for bias and standard deviation (see Efron and Tibshirani 

1993). 

vii. Calculate the bootstrap bias estimate for the original estimator iθ̂  as 

∑
=

− −=
B

b
iiiB Biasb

1

*1 ˆˆ)ˆ( θθθ
)

. 

The bias-corrected estimator of iθ̂  can be computed as  =iθ̂̂ )ˆ(ˆ
iBi iasb θθ

)
−  

The percentile method is involved in constructing confidence interval. The confidence 

interval for the true value of iθ̂ can be established by finding value αα ba ,  such that Prob 

αθθ αα −=−≤−≤− 1)ˆˆ( * ab ii . Since we do not know the distribution of ( ii θθ ˆˆ* − ), we can 

use the bootstrap values to find αα ba ˆ,ˆ such that Prob αθθ αα −=−≤−≤− 1)ˆˆˆˆ( * ab ii .  It 

involves sorting the value of ( ii θθ ˆˆ* − ) for b =1,…,B in increasing order and deleting 

( percent 100)2/( ×α of the elements at either end of this sorted array and setting 

αα ba ˆ and ˆ −− at the two endpoints, with αα ba ˆˆ ≤ .  

Tobit analysis  

Most authors have used Tobit analysis in the second stage after calculating the efficiency 

scores to assess the factors influencing efficiency. The use of the Tobit specification is often 

motivated by the fact that sometimes many values in the efficiency scores are equal to unity. 

On the other hand, the bias-corrected estimator of technical efficiency generally has higher 

mean-square error than the original estimates. Simar and Wilson (2000) suggest that one 

should avoid using the bias-corrected estimates unless  22 ])ˆ[(
3
1ˆ θσ bias〈  in which 2σ̂ is the 

sample variance of the bootstrap values and θ̂  is the uncorrected estimated efficiency score. 
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In our sample, this only holds for about 5% of the sample, which could justify the use of the 

original technical efficiency scores in the second stage. However, the information about the 

standard error and confidence intervals of the DEA estimator in the first step is very 

important in indicating the sensitivity of the DEA estimator. The larger the variance is, the 

more imprecise the calculation of efficiency score might be. Therefore, in the second stage, 

we apply two Tobit specifications for technical efficiency. The first is the conventional Tobit 

regression and the second is the weighted Tobit regression with weight equal to the 

reciprocal of standard error in the first stage. The weighted Tobit regression uses the 

information on the variances of technical efficiency scores to improve the estimation by 

prioritizing the observations with lower standard errors and “punishing” those with higher 

standard errors.   

Since the procedures for estimating the bias in DEA estimators for scale and 

allocative efficiency have not been developed, we use the conventional Tobit analysis for 

these efficiencies. 

Data 

For this analysis, we used data from the Southeastern and Southwestern Minnesota Farm 

Business Associations collected by the Department of Applied Economics at the University 

of Minnesota.  The complete data contains financial and farm characteristic records from 

about 400 farms, which had been members of either Association in at least one year from 

1993 through 2005, and had records of sufficient quality to be included in at least one year. 

The number of records per year averaged 230 and ranged from a high of 263 in 1995 and 

1999 to a minimum of 138 in 2005. Membership in the Associations is not stable; farms have 

differing frequencies of years in the data. There are 47 farms with only one year of data and 
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67 farms with 13 years of data. Eighty percent of the observations were from the 211 farms 

(53% of the total) with 8 to 13 years of data. 

The model includes nine inputs: three labor inputs (family labor on farm, hired labor 

on farm, nonfarm labor), three nonlabor variable inputs categorized into livestock-related, 

crop-related, and operating-related expenditures, and three inputs for land (rented crop land, 

owned crop land, and owned pasture land, Table 1). Data for nonlabor and land inputs come 

directly from the data base.  Labor expenses are not included in these expense categories 

since they are accounted for in other input measures. Income tax expenses are not included in 

these expenses variables. Family labor working on the farm is the total unpaid labor hours. 

Hired labor working on the farm is the total (paid) hired labor hours.  

 
Table 1. Summary Statistics of Variables for DEA Estimation 

 Variable Mean Std. Dev. 
Output Corn production value a  34.1 (37.8) 
 Soybean production value a  26.2 (27) 
 Beef production value a 4.3 (16) 
 Milk production value a  14.9 (59.8) 
 Hog production value a 23.6 (142.6) 
 Nonfarm Income a 21.8 (29.5) 
Inputs Family labor b 2.8 (1.8) 
 Hired labor b 1.0 (2.9) 
 Nonfarm labor b 1.0 (1.4) 
 Livestock-related expenditures a 29.4 (77.6) 
 Crop-related expenditures a 21.9 (21.1) 
 Operating-related expenditures a 37.5 (42.7) 
 Owned crop land area (acres) 241 287 
 Rented crop land area (acres) 439 (438) 
 Owned pasture land (acres) 12 (54) 
Prices Corn price ($/bu) 2.10 (0.40) 
 Soybean price  ($/bu) 5.64 (0.99) 
 Beef price ($/cwt) 64.09 (7.29) 
 Milk price ($/cwt) 13.88 (1.35) 
 Hog price ($/cwt) 43.51 (7.10) 
a thousand $; b thousand hours 
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Since we did not have direct information on the hours of nonfarm family labor (i.e., 

working hours not on the farm), we estimated these hours from the available data on total 

nonfarm wages and salary. A proxy for nonfarm wages was taken from the average nonfarm 

wages of the counties where the farms reside. The nonfarm wages based on the weighted 

average wages of nonfarm sectors, specifically construction, manufacturing, and service 

wages from 2000 to 2004 (NAICS Industries list) and of mining, construction, 

manufacturing, transportation, finance, services, public administration, and trade wages from 

1993-1999 (SIC Industries list). After calculating the nonfarm wages at the county level, we 

estimated each farm’s nonfarm labor hours as that farm’s total nonfarm wages and salary 

divided by the appropriate county’s nonfarm wage rate. 

The model includes six outputs: two crops (corn and soybean), three livestock 

products (beef, milk, and hog), and nonfarm income. Corn and soybean were the most 

important crop outputs in Minnesota. They were produced in more than 90% of our sample 

and contributed  91% of total crop production value. Among livestock, hog and milk are 

more important than beef in production value (43%, 40% and 11% of total livestock 

production value, respectively). Together, these three outputs account for 94% of total 

livestock production value. Nonfarm income generates about 16% of total output value 

generated by the six outputs in our study. 

Annual output price data were taken from National Agricultural Statistics Service, 

assuming farms in the region faced the same prices for their outputs in a given year.  

Physical crop production for a specific crop on an individual farm in a specific year 

was calculated by dividing that farm’s gross production value by that year’s price of that 
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crop. Physical livestock production for a specific livestock enterprise on an individual farm 

in a specific year was calculated by dividing the total livestock value by the price of 

livestock. 

The variables used in the Tobit analysis to determine factors explaining differences in 

farm efficiencies include financial condition, farm characteristics, labor characteristics, land 

tenure, and the relative importance of different outputs (Table 2). Financial condition and 

farm characteristics were measured by farm income, total asset, debt-asset ratio, depreciation 

ratio, current asset share, farm investment rate, capital-labor ratio, and land-labor ratio. Labor 

characteristics were measured by the number of operators, main operator’s years farming, 

and hired labor ratio. Land tenure was measured by the tenancy ratio. The relative 

importance of different outputs was measured by the nonfarm income ratio and the 

Herfindahl index. The Herfindahl index measures the degree of output concentration and is 

defined as ∑
=

n

i
is

1

2 in which si is the share or ratio of each farm’s output of the ith output to the 

total of that farm’s six outputs in this study.  

 

Results 

Efficiency estimates obtained from the DEA analysis are presented with technical efficiency 

first followed by allocative and then scale efficiency. Significant explanatory factors are then 

identified. 

Efficiencies 

Technical efficiency.  Over all years and farms, the initial estimate of average technical 

efficiency was 0.87, assuming constant returns to scale (TEC), and 0.90, assuming variable 

returns to scale (TEV) (Table 3). Over time, both estimates of average technical efficiency 
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have followed a similar, variable pattern with a slight upward trend: from 0.86 in 1993 to 

0.90 in 2005 for TEC, and 0.89 to 0.92 for TEV. These initial estimates showed a majority of 

farms being technically efficient: 52.8% of farms have an estimated TEC score of 1 and 60.3 

% have an estimated TEV score of 1. These estimates of technical efficiency are similar to 

Morrison Paul et al. (2004) estimates of technical efficiencies for ten corn producing states in 

the Midwest (which includes Minnesota) using data from USDA’s Agricultural Resources 

Management Study (ARMS) from 1996-2001. 

 

Table 2. Summary Statistics of Explanatory Variables for Tobit Analysis 

Description of Variables Variables Mean 
Standard 
deviation 

Gross farm income a Farm income 397.2 (440.9) 
Value of farm and nonfarm asset a Asset 1,159 (948.8) 
Number of operators  Number of operators 1.19 (0.65) 
Years of farming of the main operator Years of farming 24.59 (11.28) 
Ratio of nonfarm income/ Total income Nonfarm ratio 0.09 (0.13) 
Ratio of hired hours/ Total labor hours Hired labor ratio 0.14 (0.24) 
Ratio of rented land/ Total land  Tenancy ratio 0.6 (0.33) 
Debt/Asset Ratio Debt/Asset Ratio 0.51 (0.23) 
Current Asset/ Total assets Current asset share 0.25 (0.16) 
Depreciation expense ratio Depreciation Ratio 0.08 (0.06) 
Herfindahl Index Herfindahl Index 0.48 (0.14) 
Capital/Labor ratio ($thousand/hour) Capital/Labor ratio 4.44 (4.23) 
Land/Labor ratio (acres/hour) Land/Labor ratio 2.46 (1.86) 
Farm investment value/ Gross farm 
income Investment rate 0.16 (0.39) 
Corporate =1 if corporate or partnership 
farms; 0 otherwise  Corporate 0.16 (0.37) 
Region = 1 if Southeast Minnesota; 
    0 for Southwest Minnesota 

Region 
0.23 (0.42) 

a thousand dollars    
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Table 3. Average Efficiency Estimates, 1993-2005 

 

Technical 
Efficiency 
by CRS 

Allocative 
Efficiency 

Scale 
Efficiency 

Technical 
Efficiency 
by VRS 

Bias 
corrected 
TEV 

Lower 
bound 

Higher 
bound 

1993 0.857 0.696 0.845 0.886 0.749 0.675 0.879 
1994 0.827 0.730 0.860 0.869 0.707 0.656 0.859 
1995 0.812 0.708 0.867 0.850 0.684 0.636 0.840 
1996 0.896 0.715 0.871 0.919 0.817 0.716 0.915 
1997 0.891 0.789 0.905 0.916 0.827 0.717 0.914 
1998 0.892 0.815 0.898 0.913 0.806 0.712 0.908 
1999 0.869 0.804 0.891 0.895 0.775 0.695 0.891 
2000 0.872 0.703 0.875 0.901 0.792 0.714 0.896 
2001 0.875 0.821 0.899 0.904 0.773 0.694 0.898 
2002 0.844 0.789 0.862 0.884 0.754 0.684 0.878 
2003 0.886 0.855 0.907 0.916 0.816 0.725 0.911 
2004 0.901 0.834 0.933 0.913 0.794 0.711 0.908 
2005 0.902 0.851 0.911 0.923 0.801 0.703 0.918 
All farms 0.869 0.771 0.884 0.897 0.774 0.694 0.892 
Median 1.000 0.801 0.934 1.000 0.813 0.694 0.892 
Std. Dev. 0.185 0.219 0.139 0.165 0.129 0.114 0.164 
Skewness -1.281 -0.597 -1.692 -1.580 -1.438 -1.090 -1.580 
Kurtosis 3.612 2.279 6.369 4.583 5.095 5.259 4.580 
 

Applying the bootstrap procedure by Simar and Wilson (2000), we found that the bias 

was considerable. While the average initial TEV was 0.90, the bias-corrected point estimate 

was 0.77, or 86.3% of the initial, uncorrected estimate. Over time the bias-corrected TEV 

followed a trend similar to, but more accentuated than, that of the initial TEV estimate. The 

largest group of farms had a bias-corrected TEV between 0.75 and 0.90 compared to the 

largest group that had an initial TEV estimate of 1.0. When farms are ranked by their bias-

corrected TEV (from lowest to highest), the quantitative disparities between the initial and 

corrected TEV estimates were extremely obvious (Figure 1). This graph also showed that the 

initial TEV estimates did not provide the same ranking of individual farms since they did not 

form a smooth line following the corrected TEV. Also visible is the variability in the lower 

and upper bounds of the corrected TEV, even between farms with similar expected values of 
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corrected TEV. This variability was greatest for those farms with initial TEV estimates of 

1.0. 

The initial TEV estimate suggested that with a given input, an “average” farm could 

expand its output by about 11.5 % = (((1/0.90)-1)*100%) if technical efficiency were 

improved to 1.0. The bias-corrected TEV, however, suggested an expected output expansion 

of 29.2% = (((1/0.77)-1)*100%). The lower and upper bounds of the 95% confidence interval 

for the bias-corrected TEV were 0.69 and 0.89, respectively, which suggested that the 

amount an “average” farm could expand its output by increased technical efficiency ranged 

from 12.1% to 44.1%. 

 

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90
Percent of observartions

Initial TE estimates

Corrected TE estimates

Lower bound

Higher bound

 

Figure 1. Distribution of technical efficiency with confidence intervals 
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Allocative efficiency.  In terms of allocative efficiency (AE), a majority of the farms 

in this study are not efficient, that is, these farms did not make the correct allocation of inputs 

to produce the correct set of outputs to maximize revenue based on the prices received. Over 

all years, average AE was 0.77 with 30.8% of the farms having a score of 1. Thus, the 

average farm was estimated to potentially have the ability to increase revenue by 29.7% if 

price signals had been responded to perfectly. Except for one year (i.e., 2000), average AE 

followed a fairly stable upward trend over time. 

Scale Efficiency.  Average scale efficiency (SE) was 0.88 with only 19.9% of the 

farms having an SE score of 1. However, many farms were near SE:  58.1% of farms had an 

SE score higher than 0.90 and 45.1% of farms had an SE score higher than 0.95. These 

estimates of scale efficiency were smaller than those estimated by Morrison Paul et al.’s 

(2004) estimates of scale efficiencies using USDA ARMS data. Similar to TE and AE, 

average SE trended upward with some variability over time. Among the farms being scale 

inefficient (i.e., SE<1), the distribution between farms that are “too large” (having decreasing 

returns to scale (DRS)) and farms that are “too small” (increasing returns to scale (IRS)) are 

sharply different. Using the procedures described earlier, 61.8 % of farms were found to be 

“too large” compared with 18.3 % being “too small” and 19.9% at an optimal scale of 

operation.  

In summary, farms tended to be more technically efficient (using the initial estimates 

of TEV), followed by scale efficiency, and then by allocative efficiency. However, when 

using bias-corrected TEV, farms were more scale efficient followed by technical and 

allocative efficiency. The overall average for scale efficiency is higher than the average 

allocative efficiency, but the percentage of farms with a score of 1 is higher for allocative 
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efficiency compared to scale efficiency. This apparent difference in signal can be explained 

in the different distributions shown in the skewness and kurtosis statistics.  

Factors explaining differences in efficiencies  

Tobit analysis was used to identify significant factors explaining differences in technical, 

allocative, and scale efficiencies between farms. The estimated efficiency scores of farms 

during the period 1993-2005 (presented above) were regressed on the explanatory variables.  

Technical Efficiency. The Tobit results for explaining technical efficiency (assuming 

variable returns to scale) are reported in Table 4. A few explanatory variables changed 

significance levels but no signs of coefficients changed with the weighted Tobit compared to 

the standard Tobit. When all years and observations are analyzed together, explanatory 

variables for technical efficiency that had a significant,2 positive impact in both models were 

region, current asset share, nonfarm ratio, capital/labor ratio, land/labor ratio, Herfindahl 

index, and number of operators. Explanatory variables that had a significant, negative impact 

in both models were tenancy ratio, years of farming, and the farm’s debt/asset ratio. The 

hired labor ratio did not have a significant effect in the standard model but it had a 

significant, positive impact in the weighted model. Year had a significant, negative 

coefficient in the weighted Tobit, but it was not significant in the standard Tobit. Significant, 

positive impacts of the business organization (i.e., Corporate) and the depreciation ratio were 

found in the standard Tobit but were not significant in the weighted Tobit. Farm income, 

asset, and investment rate did not have a significant impact in either model. 

 

 

                                                
2 Tables indicate 95% and 99% significance. When used in the text, “significant” refers to a coefficient with 
significance greater than 95% (i.e., p<0.05). To improve readability, this reference is not included at all points. 
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Table 4. Tobit Analysis of Technical Efficiency. 
 Standard Tobit Weighted Tobit 
year 0.00 (-1.63) -0.008 (-3.21)** 
Region 0.10 (3.8)** 0.078 (2.64)** 
Current asset share 0.76 (10.29)** 0.854 (9.48)** 
Tenancy ratio -0.10 (-3.11)** -0.101 (-2.48)* 
Farm income 0.03 (0.8) 0.056 (1.15) 
Asset 0.03 (1.46) 0.048 (1.9) 
Years of farming 0.00 (-4.61)** -0.005 (-5.15)** 
Nonfarm ratio 0.64 (7.85)** 0.909 (8.53)** 
Capital/Labor ratio 0.02 (3.69)** 0.017 (3.07)** 
Land/Labor ratio 0.02 (2.41)* 0.021 (2.59)** 
Debt/Asset Ratio -0.19 (-4.75)** -0.271 (-6.03)** 
Hired labor ratio 0.07 (1.59) 0.117 (2.31)* 
Herfindahl Index 0.68 (10.74)** 0.813 (10.78)** 
Investment rate -0.01 (-0.3) 0.000 (0) 
Corporate 0.09 (2.14)* 0.060 (1.09) 
Depreciation Ratio 0.29 (2.39)* 0.149 (1.08) 
Number of operators 0.09 (2.59)** 0.104 (2.05)* 
Constant 7.64 (1.73) 16.724 (3.26)** 
Number of obs 2503  2436  
LR chi2(17) 554.05  498.24  

Log likelihood = -968.22  -1105.5  
Note: t- statistics are in parentheses. *, **: significant at 95% and 99% confidence 

level respectively. 
 

In the weighted Tobit regression, which better accounts for measurement errors as 

argued above, a higher current asset share and a lower debt-to-asset ratio contributed to 

higher technical efficiency. Both capital-to-labor and land-to-labor ratios had positive 

coefficients, indicating that increasing capital and land relative to labor can raise technical 

efficiency. A higher hired labor ratio (that is, a higher level of hired labor relative to operator 

labor) had a positive effect, indicating the importance of expanding the total amount of 

available labor by adding hired labor to the supply of operator labor. Similarly, farms with 

more operators (i.e., a higher supply of labor and management) had higher technical 
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efficiency. On the other hand, the land tenancy ratio which measures the amount of rented 

land relative to the farm’s total land had a negative effect, similar to the pattern of farms in 

Central Europe found by Balcombe et al. (2005). Farms which were more specialized, that is, 

concentrated on a smaller set of outputs, as represented by the Herfindahl index, were found 

to have a higher technical efficiency than less specialized farms. Having a higher level of 

nonfarm income relative to total household income was also associated with higher technical 

efficiency. Years of farming, an indication of both age and experience, had a dampening 

effect on technical efficiency. Farm size (as represented by farm income, asset level, and the 

farm investment ratio) had no significant relationship with farm technical efficiency. A slight 

negative trend was shown by the significant negative coefficient on year; so the slight 

positive trend seen in Table 3 must be explained by trends in other variables, not as a general 

trend in TE itself. The region variable indicated farms in Southeast Minnesota were more 

technically efficient than Southwest farms. Business organization, as indicated by the dummy 

variable for partnership/corporate farms, was not significant in the weighted Tobit analysis. 

Nor was the degree of mechanization, as indicated by the depreciation ratio. 

Allocative efficiency. The Tobit results for explaining allocative efficiency (assuming 

variable returns to scale) are reported in Table 5.  Those explanatory variables with 

significant positive impacts on allocative efficiencies were year, current asset share, tenancy 

ratio, asset, nonfarm ratio, capital/labor ratio, land/labor ratio, hired labor ratio, the 

Herfindahl index, corporate, depreciation ratio, and the number of operators. Those 

explanatory variables which have significant, negative impacts on allocative efficiency were 

farm income, years of farming, and debt/asset ratio. As with technical efficiency, a higher 

current asset share and a lower debt-to-asset ratio were associated with better allocative 
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efficiency.  Nonfarm income opportunities were again found to play a positive role in helping 

farmers allocate their resources better. Increasing the amount of capital and land relative to 

labor, as well as the amount of hired labor to total labor, also helped improve allocative 

efficiency. Higher levels of specialization as measured by the Herfindahl index also were 

associated with higher allocative efficiency. 

Table 5: Tobit Analysis of Allocative Efficiency and Scale Efficiency 
 Allocative Efficiency Scale Efficiency 

 All Farms All Farms 
Farms with 
IRS & CRS 

Farms with 
DRS 

year 0.005 (3.35)** 0.002 (2.19)* -0.007 (-2.27)* 0.005 (5.65)** 
Region 0.026 (1.49) 0.006 -0.61 -0.01 (-0.35) 0.016 -1.57 
Current asset 
share 0.171 (3.77)** 0.113 (4.12)** 0.318 (4.33)** 0.002 (0.06) 
Tenancy ratio 0.097 (4.35)** 0.083 (6.09)** 0.093 (2.72)** 0.063 (4.65)** 
Farm income -0.106 (-4.95)** 0.004 (0.3) -0.084 (-1.75) 0.03 (2.74)** 
Asset 0.027 (2.46)* -0.032 (-4.99)** 0.161 (5.7)** -0.057 (-9.66)** 
Years of farming -0.002 (-3.48)** 0 (0.21) 0 (-0.15) 0 (-0.09) 
Nonfarm ratio 0.897 (15.7)** 0.305 (9.25)** 0.795 (9.51)** -0.038 (-1.01) 
Capital/Labor 
ratio 0.01 (3.66)** 0.012 (7.24)** 0.004 (0.98) 0.007 (3.32)** 
Land/Labor ratio 0.032 (7.14)** 0.005 (2.08)** 0.019 (2.95)** 0 (0.11) 
Debt/Asset Ratio -0.099 (-3.6)** -0.073 (-4.39)** 0.018 (0.38) -0.088 (-5.65)** 
Hired labor ratio 0.138 (4.92)** 0.112 (6.62)** 0.035 (0.77) 0.092 (5.52)** 
Herfindahl Index 0.796 (18.7)** 0.206 (8.13)** 0.473 (6.72)** 0.066 (2.66)** 
Investment rate 0.016 (1.3) -0.006 (-0.75) 0.003 (0.22) -0.02 (-1.93)* 
Corporate 0.064 (2.44)* -0.041 (-2.6)** -0.097 (-2.41)* -0.022 (-1.43) 
Depreciation 
Ratio 0.519 (6.15)** 0.105 (2.06)* 0.066 (0.5) 0.051 (1.03) 
Number of 
operators 0.071 (3.33)** 0.013 (1.05) 0.043 (1.33) -0.012 (-0.93) 
Constant -10.31 (-3.33)** -3.497 (-1.84) 13.364 (2.33)* -9.001 (-5.16)** 
Number of obs 2503  2503  904  1599  
LR chi2(17) 1114.6  525.56  287.6  285.3  
Log likelihood = -442   711.8  -168.9  1318.2  

Note: t- statistics are in parentheses.; *, **: significant at 95% and 99% confidence level 
respectively 

 

Notable differences in significance between factors explaining allocative efficiency 

compared to those explaining technical efficiency include the positive effects of land tenancy 

ratio (compared to a negative effect) and total asset value (compared to no effect). Thus, 
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while a higher rented land ratio was associated with lower technical efficiency, it was 

associated with higher allocative efficiency, perhaps because land rental expanded the 

available resources for farm production and allowed for a better mix of enterprises. The level 

of farm income had a significant, negative impact on allocative efficiency compared to no 

effect on technical efficiency. 

Scale efficiency. The Tobit results for explaining scale efficiency are reported in 

Table 5. When all farmers are grouped together, the explanatory variables that had a 

significant positive impact were year, current asset share, tenancy ratio, nonfarm ratio, 

capital/labor ratio, land/labor ratio, hired labor ratio, the Herfindahl index, and the 

depreciation ratio. As with technical and allocative efficiency, a higher current asset share; a 

lower debt-to-asset ratio; higher levels of capital, land, and hired labor relative to total labor; 

and increased specialization (as measured by the Herfindahl index) were associated with 

better scale efficiency. Variables that had a significant negative impact were asset, debt/asset 

ratio, and business organization (i.e., corporate). Variables which did not have any significant 

impact were region, farm income, years of farming, investment rate, and the number of 

operators.  

Farms with scale inefficiency (i.e., SE < 1) were separated into farms with DRS and 

farms with either CRS or IRS using the NIRS procedure described earlier. Weighted Tobit 

analysis was then done for the two sub-samples.3 For both types of farms, higher tenancy 

ratios and higher specialization (i.e., Herfindahl index) improved scale efficiency. The 

current asset share and the land/labor ratio had significant positive impact for “too small” 

farms, but, deviating from the aggregate analysis, they did not have a significant impact on 

                                                
3 We group farms with CRS and with IRS to increase the number of observations. The results are not 
significantly different when we run regression on farms with IRS only. 
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“too large” farms. Business organization (i.e., corporate) had a negative impact on “too 

small” farms. For “too large” farms, farm income, capital/labor ratio, hired labor ratio, and 

the investment rate had significant positive impacts, but they did not have a significant 

impact on “too small” farms. The debt-to-asset ratio had a significant negative impact on 

“too large” farms. As should be expected, since we are analyzing scale, the size of farm as 

measured by asset level had different effects: positive for “too small” farms and negative for 

“too large” farms. “Too small” farms had a significant negative trend in scale efficiency over 

time indicating some concern for the future; while “too large” farms had a significant 

positive trend in scale efficiency. Years of farming, depreciation rate, and the number of 

operators did not have a significant impact on either group of farms. 

 

Conclusions 

The results of the analysis of technical, scale and allocative efficiency show the degree of 

inefficiency in Minnesota farms to be considerable. The farms tend to be more technically 

efficient, followed by scale efficiency, and then by allocative efficiency. On average, initial 

technical efficiency, scale and allocative efficiency are 0.90, 0.88 and 0.77 during the period 

1993-2005. In general, farm efficiency improved over the period. The study employed 

bootstrapping to determine the variability of DEA technical efficiency estimates and to 

correct for the bias inherent in the deterministic measurement. The bias-corrected point 

estimate of technical efficiency was 0.77. With bootstrapping, the width of the confidence 

intervals was estimated to be about 0.2 on average. 

These estimates were employed in the second step to evaluate factors influencing 

efficiency. This Tobit analysis suggested that more specialized farms (as measured by the 
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Herfindahl index) have higher levels of efficiency by all three measures (Table 6). A higher 

proportion of rented land (as indicated by the tenancy ratio) is associated with higher 

allocative and scale efficiency but lower technical efficiency. A higher current asset share 

and a lower debt-to-asset ratio are positively associated with all three measures of farm 

efficiency, except the current asset share had no effect on scale efficiency for “too big” farms 

and the debt-to-asset ratio had no effect on scale efficiency for “too small” farms. A higher 

proportion of household income coming from nonfarm sources and higher hired labor, 

capital-to-labor, and land-to-labor ratios had positive effects on all three efficiency measures, 

except the nonfarm and land-to-labor ratios had no effect on scale efficiency for “too big” 

farms and the capital-to-labor and hired labor ratios had no effect on scale efficiency for “too 

small” farms.  

Table 6. Summary of Significant Explanatory Variables in Tobit Analysis and their 
Impact on Each Efficiency Measure*  

Explanatory variable TEV AE 
SE (with 
all farms) 

SE (for farms with 
IRS & CRS) 

SE (for farms 
with DRS) 

year – + + – + 
Region +     
Current asset share + + + +  
Tenancy ratio – + + + + 
Farm income  –   + 
Asset  + – + – 
Years of farming – –    
Nonfarm ratio + + + +  
Capital/Labor ratio + + +  + 
Land/Labor ratio + + + +  
Debt/Asset Ratio – – –  – 
Hired labor ratio + + +  + 
Herfindahl Index + + + + + 
Investment rate     – 
Corporate  + – –  
Depreciation Ratio  + +   
Number of operators + +    
*+ and – indicate the sign of those coefficients that have a significance of at least 95%. 
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Several conclusions and suggestions for improving farm efficiencies can be drawn 

from these results. First, while these results do not show a direct causal relationship, a higher 

current asset share and a lower debt-to-asset ratio are associated with higher efficiency levels. 

Management skills that improve these financial measures likely improve efficiency, so 

improvement of management skills in general, through education of current and future 

farmers, appears to be needed. Increasing the amount of rented land relative to owned land 

has a positive impact on allocative and scale efficiency so improved land markets and the 

ability to obtain and hold additional land is critical. So improvement in land market 

negotiation skills and intra-personal skills dealing with absentee landowners can lead to 

efficiency improvements. However, since a higher tenancy ratio was associated with lower 

technical efficiency, improvements in managing larger operations and rented properties 

appears to be needed. The positive impact of nonfarm income shows the need for farm 

households to take advantage of nonfarm opportunities as well as the need for rural 

communities to expand and develop those opportunities. Better access to both debt and 

nonfarm equity capital can improve efficiencies. This includes the identification and use of 

nonfarm capital (such as partnerships and investments by nonfarmers) and the identification 

and use of lower cost-debt capital for expansion and improvements as well as the increased 

management ability to manage higher debt loads. The positive impact of higher capital-to-

labor and land-to-labor ratios indicates the need for more intensive use of available labor 

through increased mechanization and expansion of the land base. These steps can be seen as 

needing to accompany the ability to access more debt and equity capital. The positive hired 

labor ratio illustrates the impact of hiring labor and thus, presumably, freeing the farm 

household to spend more time on management—following the highest and best use argument 
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for the owner’s time allocation. The need to increase the relative amount of hired labor points 

to the need to increase personnel management ability in farmers and thus personnel 

management educational opportunities for current and future farmers. The positive impact of 

the Herfindahl index shows the need to increase management skills, and risk management 

skills especially, to handle more specialized operations that will rely on off-farm tools for 

protection from uncertainty versus relying on on-farm diversification as a risk decreasing 

tool. 
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