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Farm Level Impacts of Bt Corn Adoption in a Developing Country: 

Evidence from the Philippines 
 

ABSTRACT 
 
 This article examines the ex post farm-level impacts of Bt corn adoption in the 
Philippines. Using an econometric approach that addresses simultaneity, selection, and censoring 
problems, we show that Bt corn adoption provides modest but statistically significant increases 
in farm-level yields and profits. Furthermore, our results suggest that farm-level yield and profit 
impacts of Bt corn adoption are underestimated when censoring in the pesticide application 
variable is not considered in the estimation procedures. Previous literature have emphasized the 
importance of simultaneity and selection problems but this is the first study that have raised the 
issue of censoring problems in estimating the farm-level effects of Bt corn adoption.  
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Farm Level Impacts of Bt Corn Adoption in a Developing Country: 
Evidence from the Philippines 

 
Introduction 

A decade after its first commercialization, genetically modified (GM) crops are now 

grown in 11 industrial and 11 developing economies (James 2006).1  But even though the 

number of GM crop adopters has increased globally, adoption rates for a number of these crops 

have still been slow and limited for most developing countries. One such GM crop is insect-

resistant corn that contains a gene from the soil bacterium Bacillus Thuringiensis (Bt).2   One 

reason for the slower adoption of this particular GM crop (and most GM crops in general) is the 

institutional constraints and restricted capacity typically faced by a number of developing 

countries (Byerlee and Fischer, 2002; Lele, 2003; Traxler, 2004; Qaim, 2005). The controversy 

regarding environmental risk and consumer safety may have also delayed adoption and 

commercialization of Bt corn in less developed nations (Gaskell, 2000; Gouse et al., 2005).  

The slow adoption of Bt corn worldwide is evidenced by the fact that in 2005 only eight 

nations have approved the commercial production and trade of Bt corn in their respective 

countries (Brookes and Barfoot, 2006). Of the total area planted to Bt corn in the world, only 

20% are in developing countries (e.g. Argentina, Honduras, Philippines, South Africa, Uruguay) 

and the remaining 80% are in industrialized countries (e.g. Canada, Spain, and USA). In light of 

the smaller planted area in developing countries (less than a million hectares except for 

Argentina), there has been limited farm-level survey data available for Bt corn in these countries 

and, consequently, only a handful of studies have examined the ex post farm impact of this crop 

                                                 
1 Specifically, these countries, in order of planted area (in hectares) are: the U.S., Argentina, Brazil, Canada, India, 
China, Paraguay, South Africa, Uruguay, Philippines, Australia, Romania, Mexico, Spain, Colombia, France, Iran, 
Honduras, Czech Republic, Portugal, Germany and Slovakia.  
2 Hereinafter, we refer to this insect-resistant corn as Bt corn. Note that Bt corn was genetically engineered so that it 
is resistant to the corn stem borer. 
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in a developing country context. In fact, the study by Gouse et al. (2005) is the only study we 

found that utilized farm-level survey data to examine the impact of Bt corn in a developing 

country (South Africa in this case). Majority of studies that use survey data to rigorously 

examine farm-level impacts of Bt corn focused mainly on US farmers (See McBride and El-

Osta, 2002; Fernandez-Cornejo and Li, 2005), not developing country farmers. 

The objective of this article is to determine the ex post farm-level impact of Bt corn 

adoption in a developing country environment. In this article, we provide evidence based on 

farm-level survey data from the Philippines. The Philippines is an ideal developing country to 

investigate because it has only recently approved (in 2002) the commercial distribution of Bt 

corn, which in turn allows one to see the ex post impact immediately after initial adoption of the 

technology. In addition, using Philippine data allows us to advance the literature since no study 

(as far as we know) has yet looked at Bt corn impact in the context of a less developed country in 

Asia. 

Rigorous econometric techniques that controls for simultaneity, self-selection, and 

censoring issues is used in this article to more precisely measure the farm level effects of Bt corn 

adoption in the Philippines. Note that only the US studies (e.g. McBride and El-Osta, 2002; 

Fernandez-Cornejo and Li, 2005) utilized similar econometric procedures to analyze Bt corn 

impacts at the farm level. However, the econometric approach used in these US studies only 

accounted for simultaneity and self-selection, not censoring. Censoring may be an important 

issue in evaluating the impact of Bt corn because adoption of this technology makes it possible 

for farmers to not apply any pesticide (due to the insect resistance afforded) and, consequently, 

this affects the range of yields and/or profit they could attain (i.e. the range of possible 
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yields/profits that can be realized may be different if pesticides are not used vs. if they are used, 

even in the presence of Bt technology) (See Wu, 2006).   

Not accounting for the censoring in the data may affect the consistency and efficiency of 

the impact parameter estimates and, consequently, the inferences about the farm-level impacts of 

the Bt corn technology. Hence, this article also contributes to the literature by providing an 

econometric approach that accounts for censoring, as well as simultaneity and self-selection, in 

the analysis of the farm-level impacts of Bt corn adoption. This type of analysis allows us to 

examine the extent of inference error when censoring is not accounted for in the analysis.     

Econometric Issues and Estimation Strategies 

 The purpose of this article is to accurately estimate the farm-level profit impact of Bt 

corn adoption based on cross-section survey data from the Philippines. More formally, the effect 

of Bt corn adoption on farm profits can initially be modeled as: 

(1)         i i i iIπ α ε= + +x β , 

where iπ  is the profits for farm i,  ix  is a vector of explanatory variables (i.e. farmer 

characteristics, farm size etc.), β  is a conformable parameter vector, iI  is a binary variable that 

is equal to one if one adopts Bt corn ( iI =1) and zero ( iI =0), otherwise, α  is a scalar parameter 

that measures the impact of Bt corn, and iε  is a random error term. However, as McBride and 

El-Osta (2002) indicated, the decision to adopt Bt corn and profits may be jointly determined and 

there may be unobserved factors that affect both iI  and iπ , which if not properly addressed may 

lead to simultaneity bias and incorrect inferences about the impact of Bt corn adoption.  

If the Bt corn adoption decision is modeled as: 

(2)      1
1iI vi i= +z γ , 
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where 1
iz  is a vector of explanatory variables that affects Bt corn adoption, 1γ  is a conformable 

parameter vector, iv  is a random error term; then simultaneity bias may exist if iπ  is part of 1
iz  

(i.e. both variables are jointly determined) and/or unobservable factors are both in iε  and iv  (i.e. 

unobserved pest pressure) that makes the errors correlated (See Burrows, 1983). To control for 

simultaneity bias due to these factors, one approach is to estimate (2) in reduced form using a 

probit model that do not include iπ , then estimate (1) by Ordinary Least Squares (OLS) using 

the predicted adoption probabilities îI  as an instrument for iI  (Burrows, 1983; McBride and El-

Osta, 2002): 

(3a)     1
1 1

ˆ
ii i iIπ α ε= + +x β  

 However, the model in (3a) above does not consider other sources of simultaneity bias. 

For example, profits and yields can be considered as jointly determined and (3a) above can be 

estimated as a system of equations with: 

(3b)    2
2 2

ˆ
ii i iy I α ε= + +x β , 

where iy  is a yield variable. In this case, iterated seemingly unrelated regression (ITSUR) can be 

used to simultaneously estimate the parameters from (3a) and (3b). 

 Equations (3a) and (3b) is a “sparse” model because it still ignores the potential 

simultaneity of profits, yields, and Bt corn adoption with pesticide application. As noted above, 

pesticide decisions can simultaneously change depending on whether or not Bt corn is adopted. 

To further address this other source of simultaneity bias, a system of corn output supply and 

pesticide input demand functions derived from an appropriately specified profit function  can be 

estimated using the ITSUR technique (See Fernandez-Cornejo and Li, 2005; Fernandez-Cornejo, 

Klotz-Ingram and Jans, 2002). In particular, a normalized quadratic restricted profit function (see 



 5

complete specification below) is a properly specified profit function where corn output supply 

and pesticide input demand equations can be derived and estimated together as a system using 

ITSUR (Diewert and Ostensoe, 1988; Fernandez-Cornejo and Li, 2005)3: 

(4a)   2
0 0.5π = + + + + + +∑ ∑ ∑ ∑% y j j k k yy yj j yk k

j k j k

A A P A w C R G P G Pw F PR  

   0.5 0.5ij i j jk j k ik i k
j i k j i

G w w E w R C R R πε+ + + +∑∑ ∑∑ ∑ , 

(4b)  y yy yj j yk k y
j k

y A G P G w F R ε= + + + +∑ ∑% , 

(4c)   1 1 1 1 1 1y j j k k
j k

x A G P G w E R ε= + + + +∑ ∑% . 

In (4a) to (4c) above, π%  is farm profit, y%  is the corn yield, and 1x%  is the amount pesticide input 

application. Further, P and w are the output and input prices, while A, C, E, F, and G are 

parameters. The vector R in equations (4a) to (4c) can contain other explanatory factors affecting 

either π% , y% , or 1x%  (e.g. socio-demographic variables, farm characteristics). If the predicted 

probabilities of Bt corn adoption ( îI ) are included in the vector R, then the simultaneity among 

the Bt corn adoption decision and the dependent variables in (4a) to (4c) is being addressed. 

 Censoring in the pesticide equation (4c) above (and its consequent implication to impact 

estimation) is another issue that has not been addressed in the Bt corn adoption literature. As 

mentioned in the introduction, the adoption of Bt technology makes it possible for farmers not to 

apply pesticides and this censoring mechanism can contaminate and bias the impact parameter 

estimates embedded in the system of equations (4a) to (4c) above. To control for the effect of 

pesticide censoring in the system, we use Shonkwiler and Yen’s (1999) two-step procedure for 

                                                 
3 In equations (4a) to (4c) we follow the notation of Fernandez-Cornejo and Li (2005) for comparability. In this 
system, we consider land to be a fixed input with corn as the only output. As in Fernandez-Cornejo and Li (2005), 
symmetry and homogeneity assumptions are imposed. 
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addressing censoring in a system of equations.4 First, we can estimate a probit model of pesticide 

usage as follows: 

(5)     2
2

B
i ix ω= +z γ% ,  

where Bx% = 1 if pesticide application is greater than zero and Bx% = 0 otherwise. But since we 

know that pesticide adoption and Bt corn adoption are likely to be correlated, a bivariate probit 

model where equations (2) and (5) are estimated simultaneously is used here instead of simply 

using equation-by-equation probit. 

Second, we calculate 2
2( )iφ z γ  and 2

2( )iΦ z γ , in order to re-specify the system of 

equations in (4a) to (4c) such that it will account for pesticide censoring (a’la Shonkwiler and 

Yen (1999)): 

(6a)  2 2
2 0( ) 0.5i y j j k k yy yj j yk k

j k j k
A A P A w C R G P G Pw F PRπ
⎡

= Φ + + + + + +⎢
⎣

∑ ∑ ∑ ∑z γ%  

   2
20.5 0.5 ( )ij i j jk j k ik i k i

j i k j i
G w w E w R C R R πδφ ε

⎤
+ + + + +⎥

⎦
∑∑ ∑∑ ∑ z γ , 

(6b)  2 2
2 2( ) ( )i y yy yj j yk k i y

j k
y A G P G w F R δφ ε

⎡ ⎤
= Φ + + + + +⎢ ⎥

⎣ ⎦
∑ ∑z γ z γ% , 

(6c)   2 2
1 2 1 1 1 1 2 1( ) ( )i y j j k k i

j k
x A G P G w E R δφ ε

⎡ ⎤
= Φ + + + + +⎢ ⎥

⎣ ⎦
∑ ∑z γ z γ% . 

Again, the predicted probabilities of Bt corn adoption ( îI ) are included in the vector R to control 

for simultaneity problems between Bt corn adoption and the dependent variables. The system in 

(6a) to (6c) can then be estimated using the ITSUR procedure. Note that the Shonkwiler and Yen 

                                                 
4 Note that Shonkwiler and Yen (1999) showed that their procedure produces consistent estimates as compared to 
just using the simpler Heckman-type procedures to control for censoring and self-selection in systems of censored 
equations. There are still several studies that question the efficiency of the Shonkwiler and Yen (1999) procedure, 
but this approach has still been applied in many applied economic studies and there is yet to be any consensus in the 
literature as to which approach is best for estimating censored systems of equations. 
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(1999) procedure can also be applied to the “sparse” model in (3a) and (3b) to account for the 

effect of pesticide censoring: 

(7a)     2 2 1 1 1 2 2 1( ) ( )ˆ
i i ii i iI δ φπ α ε⎡ ⎤Φ + +⎣ ⎦= +z γ z γx β , 

(7b)    22 2 2 2 2 2 2( ) ( )ˆ
i ii i i iy I δ φα ε⎡ ⎤Φ + +⎣ ⎦= +z γ z γx β . 

 Another econometric problem that has been mentioned in previous literature is the 

selection problem due to the non-random assignment of Bt corn adoption. The systematic 

difference between the adopters vs. non-adopters can manifest themselves in the profits realized, 

which in turn biases our impact estimates. One approach that has been used in the past to address 

this problem (See McBride and El-Osta, 2002) is to use an approach similar to Heckman’s 

(1979) two-step procedure using the full sample (rather than just the selected sample, as in the 

classical Heckman two-step approach). This is done by appending the inverse mills ratio ( îλ ) to 

equation (3a) and (3b) (and consequently in (7a) and (7b)) for the sparse model or in the vector R 

for the profit function impact model in (6a) to (6c). The inverse mills ratio ( îλ ) is calculated 

from (2) as follows: 

(8)  
1

1
1

1

ˆ( )ˆ
ˆ( )

i
i

i

φλ =
Φ

z γ
z γ

  if iI = 1, and 
1

1
1

1

ˆ( )ˆ
ˆ1 ( )

i
i

i

φλ =
−Φ

z γ
z γ

 if iI = 0; 

where ( )φ ⋅  and ( )Φ ⋅ are standard normal probability density function (pdf) and cumulative 

density function (cdf), respectively.  

 However, this approach was shown by Shonkwiler and Yen (1999) to produce 

inconsistent impact estimates when both censoring and self-selection is present in the system of 

censored equations to be estimated. Another practical estimation concern that arises when using 

the inverse mills ratio is the multicollinearity problem caused by the high correlation between îI  
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and îλ . This correlation occurs because both terms are calculated based on the probit equation in 

(2) and, therefore, both are functions of the vector 1
iz . In addition, Fernandez-Cornejo and Li 

(2005) and Fernandez-Cornejo, Klotz-Ingram, and Jans (2002) indicated that the approach of 

simply using the predicted probabilities ( îI ) in the impact equation(s) may be sufficient to 

control for self-selection due to the non-random assignment of Bt corn adopters and non-

adopters. In light of these three issues, we opted not to include îλ  in our final model 

specifications. But we contend that the two models represented by (6a) to (6c) and by (7a) to (7b) 

sufficiently accounts for problems caused by censoring, simultaneity, and self-selection.  

As mentioned in the introduction, censoring has not been addressed in previous studies 

that examined the impact of Bt corn adoption. Hence, in this paper, we estimate the models that 

control for censoring vs. the models that do not account for this issue (i.e., we compare the 

parameter estimates from equations (6a) to (6c) vs. (4a) to (4c) for the profit function impact 

model; and equations (7a) and (7b) vs. equations (3a) and (3b) for the sparse impact model).   

Data Description and Model Specification 

Data 

The data used in this study is from the International Service for the Acquisition of Agri-

Biotech Applications (ISAAA) Corn Survey. It is a farm-level survey of 107 Bt and 363 non-Bt 

corn farmers undertaken during the wet and dry seasons of crop year 2003-2004 in four major 

corn growing provinces in the Philippines, namely: Isabela, Camarines Sur, Bukidnon, and South 

Cotabato.  In each province, at least three towns and three barangays (the smallest political unit 

in the Philippines) per town were chosen based on the density of Bt corn adopters. Complete 

enumeration was used in Camarines Sur and Bukidnon due to the small number of Bt corn users 

while simple random sampling was used in other barangays.  
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Non-Bt adopters in the proximity of the chosen Bt farms were randomly selected to 

minimize the agro-climatic difference between the sub-samples. In addition, to facilitate 

comparability, physical and socio-economic factors were compared in order to assure that the Bt 

adopters and non-adopters were “similar”. The factors compared include yield, area, farming 

environment, input use, pesticide use, costs and returns, reasons for adoption, knowledge about 

Bt corn, information sources, and perceptions in planting Bt corn. Note that the survey team used 

pre-tested questionnaires before actual data collection was implemented. Information on farming 

systems and environment, input-output relations, costs and benefits, and socioeconomic factors 

affecting Bt corn adoption were collected in the actual survey.  

Model Specification 

 To implement the empirical approach in the previous section, we first need to identify the 

key explanatory variables in the Bt corn adoption (i.e. 1
iz ) and pesticide adoption (i.e. 2

iz ) models, 

which is estimated simultaneously using a bivariate probit. Following the work of McBride And 

El-Osta (2002), Fernandez-Cornejo and Li (2005), and Yorobe and Sumayao (2006), the 

explanatory variables used in the Bt corn adoption model are: education, age, farm size, corn 

output price, a risk perception dummy, a season dummy, and a couple of location dummies that 

represent the sample from southern regions of the Philippines (See Table 1). On the other hand, 

the explanatory variables in the pesticide adoption model are: education, age, farm size, a risk 

perception dummy, fuel cost, non-agricultural income, and a Bt adoption dummy. Note that the 

inclusion of the Bt adoption dummy in the pesticide equation implies that the bivariate probit 

model is essentially a recursive, simultaneous equations model (Greene, 2003, p. 715). As argued 

by Maddala (1983, p. 123) and Greene (2003, p. 715-716), the endogeneity of the Bt dummy in 

the pesticide equation can be ignored due to the nature of the log-likelihood and the fact that the 
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maximum likelihood estimation is used to estimate the model (rather than least squares 

regression).  

The variables in both the sparse impact model (equations (7a)-(7b) and (3a)-(3b)) and the 

profit function impact model (equations (4a) to (4c) and equations (6a) to (6c)) need to be 

specified as well. For the sparse model, the dependent variables are the profit or net income from 

corn production and the natural logarithm of corn yield. The explanatory variables for the sparse 

model are the natural logarithms of output price, seed price, fertilizer price, pesticide price, labor 

price. As explained above, the predicted probabilities of Bt corn adoption is included in the 

sparse model as well. For the profit function impact model based on the normalized quadratic 

restricted profit function (equations (6a)-(6c) and (4a)-(4c)), we use the variables specified in 

(6a) to (6c) and use the predicted probability of Bt corn adoption as the element included in 

vector R.   

A detailed description of all the variables described above is shown in Table 1. Summary 

statistics for the pertinent variables are also presented in Tables 2a to 2c (for the whole sample, 

the Bt corn adopters, and non-Bt corn adopters). Notice that only 55% of the Bt corn adopters 

did not use pesticides and this validates our concern regarding the potential implications of 

censoring in this data. 

Results and Discussion 

Bivariate Probit Model Results  

 Table 3 presents parameter estimates of the bivariate probit model. Our results indicate 

that Bt corn adoption and pesticide use decisions are endogenous based on the statistically 

significant ρ . This suggests that there may be unobserved factors that affect both the Bt corn 

adoption decision and the pesticide use equation (e.g., unobserved pest pressure). Hence, our use 
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of a bivariate probit model to estimate the two equations is warranted in this case.   

 The statistically significant variables that affect Bt corn adoption are education, farm size, 

corn output price, farmer’s risk perception, and location dummy 1. The positive farm size and 

education variables corroborate previous findings that larger farm operations and highly-

educated producers are the ones more likely to adopt technological innovations (Just and 

Zilberman, 1983; Feder and O’Mara, 1981; Feder, Just, and Zilberman, 1985).5 Higher corn 

output price tend to increase the likelihood of Bt corn adoption. This follows the adoption 

literature (Feder, Just, and Zilberman, 1985) where more profitable operations (due to the higher 

prices) are more likely to adopt agricultural innovations (Fernandez-Cornejo, Klotz-Ingram, and 

Jans, 2002). The parameter associated with the risk perception dummy suggests that farmers that 

do not perceive Bt corn as risky (i.e. risk perception dummy = 1) are more likely to adopt Bt 

corn. The negative sign for the first location dummy indicates that households in Bukidnon are less 

likely to adopt Bt corn. 

 Among the statistically significant variables that affect the likelihood of pesticide use, the 

negative statistically significant sign associated with the Bt corn adoption dummy is important 

because it provides evidence that Bt corn adoption significantly reduces pesticide use. This 

follows our expectation that the pest resistance afforded by Bt technology leads to a reduction in 

the likelihood of farmers using pesticide and this is consistent with previous studies (See Rice 

and Pilcher, 1998; Marra, Pardey and Alston, 2002; Pilcher et al., 2002; Fernandez-Cornejo and 

Li, 2005). Other statistically significant variables that affect pesticide use are age, the risk 

perception dummy, and non-agricultural income of the household. 

 

                                                 
5 However, there are other studies that suggest that benefits derived from the adoption of transgenic crop varieties 
are unbiased against smaller farm operations and are scale neutral (Pray, Huang, and Qiao, 2001; Qaim and Traxler, 
2005). But there is no strong and consistent result in the literature so far. 
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Impact Model Results 

 The parameter estimates for the sparse impact model and the profit function impact 

model are seen in Tables 4 and 5, respectively. Note that parameter estimates for both the 

censored and non-censored versions of these two impact models are presented in these tables. To 

facilitate interpretation, we calculated the elasticity of different impact variables with respect to 

the probability of Bt corn adoption (Table 6). For example, in the non-censored profit function 

impact model, we calculate the elasticity of yield with respect to the probability of Bt corn 

adoption by taking the first derivative of equation (4b) with respect to the probability of Bt corn 

adoption(
1 1

y
R yF∂
∂ =% ) and multiplying it with the ratio of the means of Bt corn adoption 

probability and corn yield  ( 1R
y% ). Similar calculations are used for the other impact variables of 

interest. Note that yield and profit elasticities (with respect to output and input prices) could also 

be calculated and these figures are presented in Appendix Tables 1 and 2. 

 For both the sparse and the profit function impact model in Table 6, notice that Bt corn 

adoption do not significantly affect profits when censoring is not addressed in the estimation. But 

when censoring is accounted for, both the sparse and the profit function impact model indicate 

positive statistically significant effects of Bt corn adoption on profits. Note that the effect of Bt 

corn adoption on yields are statistically significant whether or not censoring is accounted for. In 

addition, the magnitudes of the impact of Bt corn adoption on both yields and profits are 

underestimated when censoring in the pesticide application variable is not accounted for. Hence, 

this result is indicative of the importance of censoring when estimating the yield and profit 

impact of Bt corn adoption.  

 Note that the strong positive impact of Bt corn adoption on yields is consistent with the 

literature where majority of studies found that Bt corn positively affects yields (See Rice and 
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Pilcher, 1998; Marra, Pardey and Alston, 2002; Duffy, 2001; Pilcher et al., 2002; Baute, Sears, 

and Schaafsma, 2002; Dillehay et al., 2004; Fernandez-Cornejo and Li, 2005). The elasticity 

estimate from the censored profit function model indicates that a 10% increase in the probability 

of Bt corn adoption increases yields by 4.1%. This is slightly higher than the estimate of 

Fernandez-Cornejo and Li (2005) for the US (which is 0.039), but this is expected since their 

estimation procedure did not account for censoring. But notice that our non-censored result is 

very similar in magnitude to theirs. 

 In contrast to the consistent positive Bt corn impact on yields, the literature does not have 

a consistent result relative to the effect of Bt corn on profits. Marra, Pardey and Alston (2002) 

for example found that Bt corn increases profits, but studies by McBride and El-Osta (2002) 

indicate that Bt corn negatively affects profits. Fernandez-Cornejo and Li (2005), on the other 

hand, did not find any statistically significant Bt corn effect on profits. Nevertheless, our 

elasticity estimate based on the censored profit function model suggests that Bt corn adoption 

provides a positive statistically significant impact on farm level profits. A 10% increase in the 

probability of Bt corn adoption increases profits by 0.8%.  

 As mentioned above, one advantage of the richer profit function model is that it gives us 

the ability to calculate the effect of Bt corn adoption on pesticide demand, as well as the demand 

for other inputs (i.e. labor, fertilizer, and seed). Our results indicate that Bt corn adoption does 

not significantly affect pesticide demand, although the negative sign indicates that Bt corn 

adoption leads to decreases in pesticide use (which is consistent with previous studies: See Rice 

and Pilcher, 1998; Marra, Pardey and Alston, 1998; Pilcher et al., 2002; Fernandez-Cornejo and 

Li, 2005). In this particular case, the non-significant pesticide demand elasticity suggests that Bt 

corn in the Philippines may be a yield-enhancing technology but not an input-saving technology. 
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Other interesting results from Table 6 are the statistically significant labor-increasing and 

fertilizing decreasing effects of Bt corn adoption (when censoring is accounted for). The labor 

increasing effect can be attributed to the farmers being wary about the new technology and its 

true effectiveness in controlling corn borer. The farmers we interviewed indicated that they 

utilized more labor in terms of scouting these pests to make sure their populations are down 

within the season; and also in harvesting/handling costs so that they can examine the yield 

effects of the technology more accurately. The potential yield-enhancing effects of Bt corn 

adoption may have contributed to the decreased fertilizer demand. Farmers we interviewed 

expected more vigorous plant growth, which then may have led some to reduce fertilizer use. 

Although not statistically significant, the negative sign of the seed demand is consistent with the 

higher prices associated with Bt corn seeds relative to non-Bt corn seeds. 

Concluding Comments 

 This article estimates the farm-level impacts of Bt corn adoption in a developing country 

context using econometric procedures that controls for simultaneity, selection, and censoring 

problems. A cross-sectional survey data from corn producers in the Philippines is used to achieve 

this objective. Results of our analysis suggest that Bt corn adoption provides a modest but 

statistically significant increase in farm yields and profits. In addition, although Bt corn adoption 

significantly affects whether or not pesticide is used (based on the probit models), our elasticity 

estimates indicates that pesticide demand is not significantly affected by Bt corn adoption per se. 

However, Bt corn adoption seem to significantly increase labor demand and decrease fertilizer 

demand.  

The results of our analysis also point to the importance of addressing censoring in the 

pesticide application variable when one is interested in estimating the impacts of Bt corn 
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adoption. Previous literature has pointed to the importance of controlling for simultaneity issues 

and selection problems when estimating impact of Bt technology, but not censoring. Our results 

show that censoring may also be a potential source of inference error when not properly 

accounted for in the estimation. Utilizing the general approach of Shonkwiler and Yen (1999) to 

control for censoring, our analysis suggests that yield and profit elasticity estimates tend to be 

underestimated when censoring of the pesticide application variable is ignored in the estimation 

procedures. 

 One limitation of the study that should always be kept in mind is the use of a single-cross 

sectional data collected immediately after approval of Bt production in the Philippines. Hence, 

the results here reflect the “initial” impact of Bt corn adoption during the first year of its 

availability where adoption in the country is still low overall. Hence, it would be interesting to 

see whether or not the positive yield and profit impacts can be sustained in the medium- to 

longer-term. Collection of panel data would enable modeling of the dynamics of adoption and 

provide further insights as to the sustainability of impacts (Besley and Case, 1993; Doss, 2006). 

Furthermore, availability of panel data in the future may allow explicit consideration of risk and 

uncertainty in the modeling process. Notwithstanding these limitations, the positive yield and 

profit impacts is a good indication that Bt corn adoption in the Philippines may expand in the 

future. 
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Table 1. Variable Definitions 

Variable Name Definition 
  

Profits Profits (income less costs) in PhP/ha 
Yield Corn Yield in kg/ha 
Pestapp Pesticide application (in kg/ha) 
Educ Years of education for household head 
Age Age of household head 
Farm Size Total land of the household 
Corn price  Corn price for Bt/non –Bt (PhP/kg.) 
Fuel Cost Total cost of gas/diesel/oil (in PhP) 
Non-Ag. Income Total income earned outside of agricultural activities (in 1000 PhP) 
Seed price Price of seed (in Php/kg) 
Fertilizer price Price of fertilizer (in Php/kg) 
Pesticide Price Price of pesticide (in Php/kg) 
Labor price Price of hired labor (in PhP/man-day) 
Season dummy Season dummy = 1 if wet season (first cropping); = 0 otherwise 
Location dummy 1 Location dummy 1=1 if household is in Bukidnon; =0 otherwise 

 
Location dummy 2 Location dummy 2=1 if the household is in South Cotabato; =0 

otherwise 
 

Risk Perception  dummy Risk perception dummy = 0 if perceive Bt as risky; = 1 
otherwise 

Bt dummy Bt corn adoption dummy = 1 if adopt Bt corn; = 0 otherwise 
Pesticide  dummy Pesticide dummy = 1 if use pesticide (>0); = 0 otherwise 
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Table 2a. Summary Statistics: Full Sample (n = 407) 
Variable Mean St. Dev. Min. Max 
     
Profits 13993.87 13043.74 -24346.88 65509.83 
Yield 3917.83 1537.64 525.00 10533.00 
Pestapp 483.89 1078.16 0.00 15000.00 
Educ 8.36 3.39 0 17 
Age 46.10 12.13 19 79 
Farm Size 2.83 4.85 0 70 
Corn output price 8.02 1.07 5.67 10.50 
Fuel Cost 181.39 1891.45 0 34920 
Non-Ag. Income 3.23 10.26 0 166.67 
Seed price 140.48 184.35 3.37 1911.11 
Fertilizer price 3.16 17.02 0 313.85 
Pesticide Price 1530.98 20232.32 0 405405.41 
Labor price 77.09 51.18 0.66 319.44 
Season dummy 0.30 0.46 0 1 
Location dummy 1 0.29 0.46 0 1 
Location dummy 2 0.32 0.47 0 1 
Risk perception. dummy 0.46 0.50 0 1 
Bt dummy 0.25 0.43 0 1 
Pesticide use dummy 0.50 0.50 0 1 
     
 

Table 2b. Summary Statistics: Bt Corn adopters (n = 101) 
Variable Mean St. Dev. Min. Max 
     
Profits 21650.59 14763.64 -9098.71 65509.83 
Yield 4849.50 1607.04 650 10533.33 
Pestapp 384.97 703.71 0.08 5000 
Educ 9.53 3.73 0 17 
Age 45 11.54 25 79 
Farm Size 3.76 5.36 0.75 32 
Corn output price 8.85 0.90 6.50 10.50 
Fuel Cost 511.32 3550.52 0 960 
Non-Ag. Income 5.14 17.67 0 166.67 
Seed price 258.02 315.03 4.88 1911.11 
Fertilizer price 7.64 4.51 0 22.80 
Pesticide Price 1.11 3.14 0 30 
Labor price 89.74 53.26 11.51 289.24 
Season dummy 0.07 0.26 0 1 
Location dummy 1 0.05 0.22 0 1 
Location dummy 2 0.38 0.49 0 1 
Risk perception. dummy 0.92 0.27 0 1 
Bt dummy 1.00 0 1 1 
Pesticide use dummy 0.45 0.50 0 1 
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Table 2c. Summary Statistics: Non-Bt Corn Adopters (n = 306) 
Variable Mean St. Dev. Min. Max 
     
Profits 11466.65 11366.39 -24346.88 50505.20 
Yield 3610.31 1385.00 525 8400 
Pestapp 516.54 1175.02 0.02 15000 
Educ 7.97 3.18 0 16 
Age 46.45 12.32 19 77 
Farm Size 2.53 4.64 0 70 
Corn output price  7.75 0.98 5.67 10.05 
Fuel Cost 72.50 762.36 0 12750 
Non-Ag. Income 2.61 6.01 0 62 
Seed price 101.68 81.34 3.36 622.22 
Fertilizer price 1.69 19.24 0 313.85 
Pesticide Price 2035.94 23321.02 0 405405.41 
Labor price 72.92 49.86 0.66 319.44 
Season dummy 0.37 0.48 0 1 
Location dummy 1 0.37 0.48 0 1 
Location dummy 2 0.30 0.46 0 1 
Risk perception. dummy 0.31 0.46 0 1 
Bt dummy 0 0 0 0 
Pesticide use dummy 0.52 0.50 0 1 
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Table 3. Results of the Bivariate Probit Model: Bt Corn Adoption and Pesticide Use 
Variable 

 
Bt Corn Adoption 

Dummy  
Pesticide Use Dummy 

  
Parameter 

Estimate
St. 

Error
Parameter 

Estimate 
St. 

Error
       
       
Intercept  -5.54* 1.27  -0.29 0.26
    
Educ  0.06* 0.03  -0.026 0.02
    
Age  -0.005 0.008  0.01* 0.005
    
Farm size 0.032* 0.015  -0.017 0.016
    
Corn output price 0.43* 0.13   
    
Risk perception dummy 1.88* 0.21  -0.68* 0.18
    
Season dummy 0.22 0.33   
    
Location dummy 1 -1.32* 0.29   
    
Location dummy 2 -0.02 0.21   
    
Fuel Cost   0.31* 0.17
    
Non-Ag. Income  -0.013* 0.008
    
Bt dummy    -0.71* 0.29
    
    
ρ    -0.51* 0.19
    
Log-Likelihood Value  -387.82    
     

Notes: (1) * Significant at 10% level. 
           (2) The parameter ρ  represents the correlation between the errors of the Bt corn adoption  
                 equation and the pesticide use equation. 
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Table 4. ITSUR Estimates of Non-Censored and Censored Sparse Impact Model 

 
Non-Censored Sparse 

Impact Model  
Censored Sparse Impact Model 

 Ln(Yield) Profits  ln(Yield) Profits
  
Intercept 6.88* -14.63*  2.72* -25.93*
  (0.32) (1.77)  (1.56) (3.83)
  
ln(Corn output price) 0.57* 8.41*  -0.22 13.35*
 (0.15) (0.87)  (0.73) (1.80)
  
ln(Seed price) -0.20* -1.05*  -0.31* -1.56*
 (0.03) (0.15)  (0.12) (0.30)
  
ln(Fertilizer price) -0.10* -0.97*  -0.10 -1.84*
 (0.02) (0.12)  (0.11) (0.27)
  
ln(Pesticide price) -0.001 -0.03  -0.05* -0.011
 (0.007) (0.04)  (0.03) (0.08)
ln(Labor price) -0.12* -0.97*  -0.45* -2.65*
 (0.02) (0.12)  (0.13) (0.31)
  
Prob. of Bt Corn 
Adoption ( îI ) 

0.35*
(0.15)

0.86
(0.86)

3.60*
(0.76)

3.77*
(1.86)

    
PDF of Pesticide 
Adoption ( 2( )iφ z γ ) 

17.25*
(0.41)

4.61*
(1.01)

    
Note:  (1) Standard Errors in Parenthesis 
 (2) * Significant at the 10% level. 
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Table 5. ITSUR Estimates of Non-Censored and Censored Profit Function Impact Model 
 Non-Censored Profit Function Impact 

Model 
 

 Censored Profit Function Impact 
Model 

 Parameter Estimate Standard Error Parameter Estimate Standard Error
      
A0 -10.27* 1.58  -3.94* 1.89 
Ay 7.42* 0.28  5.20* 1.34 
A1 2.42* 0.36  0.62 0.41 
A2 8.67* 0.60  -2.96* 0.71 
A3 -0.09 0.39  0.99* 0.53 
A4 1.60* 0.39  -1.13* 0.42 
C1 -2.23 5.95  -3.35 3.87 
Gyy 0.38* 0.13  1.59* 0.63 
Gy1 -0.14* 0.02  -0.23* 0.11 
Gy2 -0.01 0.02  -0.37* 0.10 
Gy3 0.01 0.01  -0.05 0.03 
Gy4 -0.02 0.02  -0.39* 0.11 
G11 0.14* 0.08  0.05 0.08 
G12 -0.20* 0.09  -0.24* 0.10 
G13 0.06 0.04  0.01 0.03 
G14 -0.20* 0.07  -0.03 0.09 
G22 0.93* 0.09  -1.34* 0.09 
G23 0.01 0.07  -0.12* 0.07 
G24 -0.39* 0.10  -0.37* 0.11 
G33 -0.13* 0.06  0.16* 0.10 
G34 -0.03 0.04  -0.04 0.04 
G44 -0.06 0.08  -0.35* 0.08 
Fy1 0.54* 0.15  4.90* 0.71 
E11 0.15 0.74  1.78* 0.65 
E22 -8.65* 1.25  -14.77* 1.34 
E33 -0.83 0.68  -0.29 0.44 
E44 -0.82 0.82  -0.82 0.71 
PDFP -- --  5.02* 0.82 
PDFY -- --  17.61* 0.37 
PDFI1 -- --  8.23* 0.32 
PDFI2 -- --  35.31* 0.53 
PDFI3 -- --  8.47* 0.56 
PDFI4 -- --  12.54* 0.34 
      
* PDFP, PDFY, PDFI1, PDFI2, PDFI3, and PDFI4 are the pdfs of pesticide adoption in the 
profit, yield, and input equations (seed, fertilizer, pesticide, and labor demand), respectively. 
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Table 6. Elasticity of Selected Impact Variables with Respect to Probability of Bt Adoption 
Impact Variables Non-Censored 

Sparse Impact 
Model 

 

Censored 
Sparse Impact 

Model 

Non-Censored 
Profit Function 
Impact Model 

Censored Profit 
Function 

Impact Model 

     

Yield 0.06* 0.30* 0.09* 0.41* 

Profits 0.05 0.11* 0.04 0.08* 

Labor demand   0.02 0.15* 

Fertilizer demand   -1.40* -1.24* 

Seed demand   -0.14 -0.02 

Pesticide demand   -0.13 -0.07 

* Significant at the 10% level 
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Appendix Table 1. Output and Input Price Elasticities of Yield 
Elasticity of 
Yields with 
Respect to: 

Non-Censored 
Sparse Impact 

Model 
 

Censored 
Sparse Impact 

Model 

Non-Censored 
Profit Function 
Impact Model 

Censored Profit 
Function 

Impact Model 

Output price 
0.57* -0.11 0.38* 0.80*

Labor price 
-0.12* -0.23* -0.14* -0.02*

Fertilizer price 
-0.10* -0.05 -0.01 -0.12*

Seed price 
-0.20 -0.15* 0.01 0.005

Pesticide price 
-0.0007 -0.03* -0.02 -0.02*

* Significant at the 10% level 
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Appendix Table 2. Output and Input Price Elasticities of Profit 
Elasticity of 
Profits with 
Respect to: 

Non-Censored 
Sparse Impact 

Model 
 

Censored 
Sparse Impact 

Model 

Non-Censored 
Profit Function 
Impact Model 

Censored Profit 
Function 

Impact Model 

Output price 
2.95* 2.36* 2.94* 1.88*

Labor price 
-0.34* -0.48* -0.51* -0.52*

Fertilizer price 
-0.34 -0.33* -0.22* -0.35*

Seed price 
-0.37* -0.28* -0.24* -0.13*

Pesticide price 
-0.01* -0.002 -0.12* -0.25*

* Significant at the 10% level 

 

  


