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The increase in energy prices between 2004 and 2007 has several potential consequences for
aggregate agriculture in the U.S. We estimate the derived input demand elasticities for energy
as well as capital, labor, and materials using the differential supply formulation. Given that
the derived input demand for energy is inelastic, it is more price-responsive than the other
inputs. The results also indicate that the U.S. aggregate agricultural supply function is re-
sponsive to energy prices.
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This study examines the effect of increased

energy prices on agriculture by estimating agri-

culture’s elasticity of demand for energy. During

2004, crude oil prices in the U.S. increased al-

most 14%, from $27.63/barrel on January 2,

2004, to $32.07/barrel on December 31, 2004.

Since that time, crude oil prices have continued

to increase (Figure 1) reaching a maximum of

$69.52/barrel on August 11, 2006. As of July 6,

2007, the crude oil price stood at $67.65/barrel.

Figure 2 shows the effect of the increased oil

prices on gasoline prices in the U.S. Similar to the

increase in oil prices, gasoline prices increased

by 17% in 2004. Given that fuel is an important

input for the agricultural sector, these price in-

creases would appear to bode ill for agriculture

in the U.S. However, some speculate that agri-

culture could benefit from the fact that ethanol

from either corn or cellulose could increase the

demand for agricultural output in the U.S. For

example, Senator Tom Harkin from Iowa has

recently introduced legislation entitled the

‘‘Farm-to-Fuel Investment Act’’ which would

‘‘. . .provide transition assistance for farmers to

grow dedicated energy crops (crops like switch-

grass grown solely for the purpose of producing

energy)’’ (Harkin, 2007). The net impact of eth-

anol on agriculture in the U.S. is dependent on

its derived demand for energy. Specifically, the

derived demand for energy in agriculture may be

fairly elastic or inelastic. To answer these ques-

tions, we estimate the elasticity of the energy

input demand for agriculture using the differ-

ential approach. Unfortunately, little empirical

estimates exist on the derived demand input

elasticities for U.S. agriculture of which the de-

mand for energy is a key component (Schmitz

and Stevens, 2000). This makes it difficult for

policy analysts who deal with such topics as the

future of biofuels.

The Differential Supply System

Like the familiar Rotterdam (Theil, 1981) for-

mulation of the consumer demand model, the
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differential supply model starts from the choice

of cost-minimizing inputs subject to a given

level of production (ln zð Þ5 h qð Þ). The Lagrange

multiplier is

(1) L q,pð Þ 5
Xn

i51

piqi 1 r ln zð Þ � h qð Þð Þ

where L q,pð Þ is the constrained cost of pro-

duction, pi is the price of the input i, qi is the

level of output i, r is the marginal cost of the

constraint r 5 ›L q,pð Þ=› ln zð Þ, ln zð Þ is the nat-

ural logarithm of the level of output z, and h qð Þ is

the logarithmic production function. Applying the

differential approach to the optimizing conditions

for producers, the univariate production function

depicted in Equation (1) can be used to derive

a differential formulation of the input decision

(2) f id ln qið Þ 5 uid ln zð Þ � y
Xn

i51

uijd lnðpi=PÞ

where f i is the share of cost expended on fac-

tor i, d ln qið Þ denotes the logarithmic change in

the quantity of input i demand, ui is the share

of the overall cost expended on factor i as

the logarithm of output increases (d ln zð Þ), y
is the flexibility of marginal cost with respect

to the overall level of output, uij are parameters

that capture the relative change in demand in

Figure 1. Oil Prices

Figure 2. Gasoline Price (All Grades)
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response to a change in each input price, and P

is a Frisch price index for inputs (an overview

of the derivation is provided in the Appendix).

The system of derived demand curves presented

in Equation (2) is identical to the demand re-

lationships from the Rotterdam formulation

substituting the level of output in the derived

demand relationship for income in the con-

sumer demand model. In addition, an empir-

ical model for the derived demand curve

can be generated from this differential model

using the same approach. Substituting dis-

crete changes (d ln xitð Þ0Dln xitð Þ5 ln xitð Þ�
ln xi,t�1

� �
) and the average input share

ð f it0�f it51=2ðf it1f i,t�1ÞÞ into Equation (2)

yields an empirical counterpart of

(3) �f itD ln qitð Þ 5 uiD ln ztð Þ1
Xn

i51

pijD ln pitð Þ1 eit

where pij is symmetric (pij 5 pji), negative

semidefinite, and homogeneous (
Pn

j5 pij 5 0

for all j), and eit is the error term for equation i

in period t.

Estimation Issues

Like in the empirical implementation of the

Rotterdam demand system, the empirical esti-

mates of the system of derived input demand

equations specified in Equation (3) often deviate

from some of the theoretical restrictions (i.e.,

homogeneity, symmetry, and concavity). One is

faced with two alternatives: 1) testing the statis-

tical significance of these failures; or 2) simply

imposing the theoretical restrictions. This anal-

ysis follows the latter approach. Specifically

Laitinen (1978) concludes that the standard test

for homogeneity of demand systems overstates

the level of significance leading to excessive

type II error. Moss and Theil (2003) expand on

this increase in type II error. Similarly, Meisner

(1979) finds that symmetry restrictions are

rejected too often using standard tests, espe-

cially in small samples. In addition to the

well-established problems with symmetry and

homogeneity, the estimation and testing of de-

mand systems raises potential difficulties with

the concavity restrictions. Thus, this study im-

poses concavity using the approach suggested by

Terrell (1996).

Following Terrell, we first estimate the sys-

tem of factor demands using maximum likeli-

hood imposing homogeneity and symmetry.

Given these estimates, we then test for concavity

by computing the maximum eigenvalue for the

pij matrix in Equation (3). If the maximum ei-

genvalue is greater than zero, the system is not

concave. Based on this test, we then bootstrap

the estimator 10,000 times retaining the esti-

mates whose pij matrix is concave. The concave

estimator is then the average pij matrix. In ad-

dition, the sample of estimated vectors can be

used to construct robust estimates of the pa-

rameters and elasticities along with their re-

spective variances.

The Terrell approach is very different from

either estimating the Cholesky decomposition

of the second moment matrix (Featherstone and

Moss, 1994) or constraining the eigenvalues

of pij matrix to be less than zero (Shumway,

Alexander, and Talpaz, 1990). Under both of

these approaches, at least one of the eigenvalues

is constrained to zero at the point of estimation:

thus, the need to impose an additional linearity

into the pij matrix. Thus, instead of rank pij

� �
5

n� 1 as implied by
Pn

j51 pij 5 0 the estimated

rank of the system of input, derived demand

equations results in rank pij

� �
5 n� 2 using ei-

ther the Cholesky decomposition approach or by

constraining the eigenvalues to be less than zero.

Data

To estimate the derived input demand elastici-

ties, we use the KLEM (K, Capital; L, Labor; E,

Energy; and M, Materials) (Jorgenson, 2010;

Jorgenson and Stiroh, 2000). These data report

the quantity of agricultural output along with

the price received by farmers and price paid by

consumers along with the expenditures on each

input and a price for each input for 1960 through

2006. Following the differential formulation, we

use the quantity of output as z and divide the

expenditure on each input by the price for each

input to yield the quantity of each input used (qit).

Estimated Demand System

We estimate the derived input demand system

depicted in Equation (3) imposing symmetry
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and homogeneity (by normalizing on the mate-

rials input) conditions (Table 1). The maximum

eigenvalue of these unrestricted estimates is

0.5753, implying that the unrestricted estimates

fail the concavity restriction. Given this result,

we then bootstrap the estimation 10,000 times.

From these results, 55 of the samples obey the

concavity restriction. Averaging across these 55

estimates, we obtain the concavity imposed

estimates (Table 1). The maximum eigenvalue

for the concavity imposed estimates is –0.1454,

implying that the estimated pij matrix is negative

definite as opposed to negative semidefinite.

Imposing concavity improves the fit of the de-

mand system (i.e., in the restricted formulation,

five parameters are statistically significant at the

0.05 level of significance and all of the diagonal

elements are statistically significant). However,

the statistical significance is overstated in that we

only consider variations over solutions that obey

the concavity conditions.

The estimated elasticities (Table 2) indicate

that the demands for all inputs are inelastic with

respect to price. The derived demand for energy

is less price inelastic than the derived demand

for labor but more elastic than the derived demand

for both capital and materials. Furthermore, al-

though the elasticity is statistically significant at

the 0.05 confidence level for labor and materials,

the elasticity of demand for capital and energy are

only statistically significant at the 0.10 confi-

dence level.

Examining the cross-price elasticities, we

see that increased energy prices lead to a re-

duction in the demand for labor but an increase

in the demand for both capital and materials.

These interactions could be interpreted in a

number of ways. First, we may anticipate that

increased energy prices would reduce the demand

for capital items. Specifically, a large portion

of agriculture’s capital investment is in tractors,

combines, and other mobile equipment. Hence,

we would hypothesize that increased energy

costs would reduce the demand for these energy-

consuming items. However, since World War II,

agriculture has seen a continual trend toward

larger equipment. This trend coincides with a re-

duction in the number of farm operators, which

is evident in the positive but statistically insig-

nificant cross-price elasticities between labor and

capital in our results. A secondary effect may be

that this larger equipment is relatively more fuel-

efficient than older, smaller capital items.

A similar explanation may be possible for

the relationship between materials and energy.

Looking back on row-crop agriculture, numer-

ous row operations were often required to con-

trol weeds in cotton. However, at the same time

larger equipment arrived (e.g., two-row to four-

row and six-row planters), pesticides were in-

troduced that reduced the necessity of some of

these row operations. This replacement ulti-

mately culminated with the introduction of low-

till and no-till technologies for many crops in

which a vast majority of energy-based operations

have been replaced by material applications.

Implications and Conclusions

The empirical results suggest that imposing

concavity on the differential cost system

Table 1. Estimated Derived Demand for
Parameters for Aggregate U.S. Agriculture,
1958–2005 (*100)

Variable

Without

Concavity

Concavity

Imposed

u1(Capital) 1.284 3.243***

(1.142)a (0.903)

u2(Labor) –6.316* –3.943

(4.735) (4.040)

u3(Energy) 1.601* 2.303***

(1.034) (0.905)

p11 0.289 –0.256**

(0.320) (0.127)

p12 1.023* 0.806*

(0.682) (0.283)

p13 0.427** 0.190

(0.247) (0.172)

p22 –6.806** –7.992***

(3.113) (2.646)

p23 –0.191 –0.507

(0.637) (0.487)

p33 –0.540* –0.863**

(0.408) (0.401)

a Values in parentheses denote standard errors of estimates.

* Denotes statistical significance at the 0.10 level of confidence.

** Denotes statistical significance at the 0.05 level of confidence.

*** Denotes statistical significance at the 0.01 level of

confidence.
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significantly improves the estimated system of

demand equations for aggregate U.S. agriculture.

After imposing concavity, agriculture’s energy

demand, although inelastic, appears to be more

sensitive to price changes than any other input.

The estimated input demand elasticity for energy

is –0.3403 compared with an own price elasticity

of –0.3989 for labor, –0.1486 for materials, and

–0.0126 for capital inputs. Furthermore, the

largest cross-price effect between input prices

appears to be between energy and labor followed

by a substitution of labor for materials. Thus, we

conclude that increases in energy prices will af-

fect the supply of agricultural products more

significantly than other inputs. Also, that increase

in energy prices will have a significant impact

on agriculture’s labor demand. However, as we

expand the specification in an attempt to estimate

the effect of energy prices on the supply of ag-

ricultural outputs, we are plagued by additional

concavity concerns. Specifically, although the

empirical results in that the estimated parameter

on energy prices is negative but insignificant at

any conventional confidence level, the estimates

suffer anomalies of the output price and other

input prices. Furthermore, these discrepancies

cannot be solved using the procedure outlined by

Terrell.

Given that the empirical results of our anal-

ysis are somewhat mixed, several alternatives

may provide additional insight. One possibility

involves generalizations of the differential supply

system. First, the data set KLEM provides an

aggregate agricultural output, which may average

out the effect of energy prices on crop vs. live-

stock operations. Laitinen and Theil (1978)

provide a multiproduct version of the differ-

ential model of the firm. However, data work

would be required to produce livestock and crop

output indices comparable to the Jorgenson

KLEM data. An alternative extension would be

the incorporation of quasifixed inputs particu-

larly for capital and farmland. A multiproduct

model of the differential model including qua-

sifixed variables is presented in Livanis and

Moss (2006). Finally, Livanis (2004) presents a

more flexible formulation of the effect of changes

in output level on relative input shares.

[Received July 2007; Accepted June 2010.]
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Appendix: Derivation of the Differential

Supply System

Taking the first-order conditions of Equation (1)

with respect to ln qj

� �
yields

(A.1)
›L q, pð Þ
› ln qj

� � 5 pj

›qj

› ln qj

� �� r
›h qð Þ

› ln qj

� � 5 0.

Substituting for the logarithmic differentiation

in the first term on the right-hand side of Equation

(A.1) yields

(A.2)
›L q, pð Þ
› ln qj

� � 5 pjqj � r
›h qð Þ

› ln qj

� � 5 0.

Substitution of f j 5 pjqj=C where C 5
Pn

i51 piqi

gives

(A.3)
›L q, pð Þ

›qj

5 f j �
r
C

›h qð Þ
› ln qj

� �5 0

Further substituting

(A.4)

r [
›C

› ln zð Þ0
1

C

›C

› ln zð Þ 5
›C=C
› ln zð Þ

5
› ln Cð Þ
› ln zð Þ [ g

.

Substituting this result back into Equation (A.3)

yields

(A.5)
›L q, pð Þ
› ln qj

� � 5 f j � g
›h qð Þ

› ln qj

� � 5 0

and solving Equation (A.5) yields Theil’s ex-

pression ›h qð Þ=› ln qj

� �
5 f j=g . Next differenti-

ating Equation (A.5) at the point of optimization

gives

(A.6)

›L q, pð Þ
› ln qj

� �
› ln qið Þ

5
›f j

› ln qið Þ

� g
›h qð Þ

› ln qj

� �
› ln qj

� �
To simplify the derivation, we introduce two

matrix derivatives into Equation (A.6). Focus-

ing on the first term on the right-hand side of

Equation (A.6)

(A.7)
›f j

› ln qið Þ
5

›
qjpj

C

� �
› ln qið Þ

5
qjpj

C i 5 j
0 i 6¼ j

�
.

Thus, we construct a matrix F whose diagonal

elements are qipi=C following the results of

Equation (A.7). Next, we define H as the

matrix of second logarithmic derivatives

(A.8) H 5
›2h qð Þ

› ln qj

� �
› ln qið Þ

" #
i, j51,...n

Thus, Equation (A.6) can be rewritten as
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(A.9)
›L q, pð Þ

› ln qj

� �
› ln qið Þ

5 F � gH

Differentiating Equation (A.2) with respect to

the natural logarithm of the level of outputs

(ln zð Þ) yields

(A.10)

›2L q, pð Þ
› ln qj

� �
› ln zð Þ

5 pjqj

› ln qj

� �
› ln zð Þ

� r
›h qð Þ

› ln qj

� � › ln rð Þ
ln zð Þ

� r
Xn

i51

›2h qð Þ
› ln qj

� �
› ln qið Þ

› ln qið Þ
› ln zð Þ

� r
›h qð Þ

› ln qj

� �
› ln zð Þ

5 0

.

Imposing the first-order condition from

Equation (A.2) (qjpj � r›h qð Þ=› ln qj

� �
5 00

›h qð Þ › ln qj

� �
5 qjpj=r

�
) into the second term

on the right-hand side of Equation (A.10) yields

(A.11)

qjpj

› ln qj

� �
› ln zð Þ � qjpj

› ln rð Þ
› ln zð Þ

� r
Xn

i51

›2h qð Þ
› ln qj

� �
› ln qið Þ

› ln qið Þ
› ln zð Þ

� r
›2h qð Þ

› ln qj

� �
› ln zð Þ

5 0

Multiplying Equation (A.11) by 1=C, sub-

stituting g 5 r=C, and the definition of input

shares and collecting like terms yields

(A.12) F � gHð Þ › ln qð Þ
› ln zð Þ � Fi

› ln rð Þ
› ln zð Þ 5 gH*

where i is a vector of ones and H* 5 ›2h qð Þ=½
› ln qj

� �
› ln zð Þ�j51,...n.

Next, we differentiate Equation (A.2) with

respect to the natural logarithm of input prices

(A.13)

›2L q, pð Þ
› ln qj

� �
› ln pið Þ

5 djiqjpj 1 qjpj

› ln qj

� �
› ln pið Þ

� qjpj

› ln rð Þ
› ln pið Þ

� r
Xn

k51

›2h qð Þ
› ln qj

� �
› ln qkð Þ

� › ln qkð Þ
› ln pj

� � 5 0

where dji is the Kronecker delta, which is 1 if

i 5 j and 0 otherwise. With this substitution

(A.14) F � gHð Þ › ln qð Þ
› ln p0ð Þ � Fi

› ln rð Þ
› ln p0ð Þ5� F

It is necessary to solve for changes in endoge-

nous variables (the quantity of the vector of

inputs used and marginal cost of production)

with respect to changes in exogenous variables

(the vector of input prices and level of output).

We first totally differentiate the output con-

straint first with respect to the natural logarithm

of the level of output

(A.15)

Xn

j51

›h qð Þ
› ln qj

� � › ln qj

� �
› ln zð Þ �

›h qð Þ
› ln zð Þ

5 00i0F
› ln qð Þ
› ln zð Þ 5 g

and then with respect to the natural logarithm

with respect to input prices

(A.16)
Xn

j51

›h qð Þ
› ln qið Þ

› ln qið Þ
› ln pj

� � 5 0 0 i0F
› ln qð Þ
› ln p0ð Þ

Combining Equations (A.12), (A.14), (A.15),

and (A.16) into a matrix equation yields

(A.17)

F � gH i

i0 0

� � › ln qð Þ
› ln zð Þ

› ln qð Þ
› ln p0ð Þ

� › ln rð Þ
› ln zð Þ

› ln rð Þ
› ln p0ð Þ

2
6664

3
7775

5
gH* �F

g 0

" #
.

We derive our differential demand model for the

supply function by solving the system of equa-

tions implicit in Equation (A.17). We first make

refinements in Equation (A.17) to yield the

supply equivalent to Barten’s fundamental ma-

trix equations. By taking the component of

Equation (A.17) that corresponds to Equation

(A.14) and multiplying both sides of this equa-

tion by F�1 one obtains

(A.18)

F�1 F � gHð Þ › ln qð Þ
› ln p0ð Þ � Fi

› ln rð Þ
› ln p0ð Þ

� �
5 F�1 �F½ � F�1 F � gHð Þ › ln qð Þ

› ln p0ð Þ � i
› ln rð Þ
› ln p0ð Þ 5� I

F�1 F � gHð ÞF�1F
› ln qð Þ
› ln p0ð Þ � i

› ln rð Þ
› ln p0ð Þ5� I
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By a similar transformation to Equation (A.12),

the matrix transformation from Equation (A.17)

becomes

(A.19)

F�1 F � gHð ÞF�1 i

i0 0

� �

�
F

› ln qð Þ
› ln zð Þ F

› ln qð Þ
› ln p0ð Þ

� › ln rð Þ
› ln zð Þ

› ln rð Þ
› ln p0ð Þ

2
664

3
775

5
gF�1H* �I

g 0

" #

Solving Barten’s fundamental equation in

Equation (A.19) yields

(A.20)

F
› ln qð Þ
› ln zð Þ F

› ln qð Þ
› ln p0ð Þ

� › ln rð Þ
› ln zð Þ

› ln rð Þ
› ln p0ð Þ

2
664

3
775

5
F�1 F � gHð ÞF�1 i

i0 0

� ��1

� gF�1H* �I

g 0

" #

where

(A.21)

F�1 F � gHð ÞF�1 i

i0 0

� ��1

5
y Q� uu0ð Þ u

u0 �1=y

" #
.

This last result implies that

(A.22)

Q 5
1

y
F F � gHð Þ�1F

y 5 i0F F � gHð Þ�1Fi

u 5 Qi

.

Thus, taking the results of Equation (A.21)and

(A.22), we have

(A.23) F
› ln qð Þ
› ln p0ð Þ5� y Q� uu0ð Þ.

To complete the input demand system, we start

by totally differentiating the input level for

input j

(A.24)

d ln qj

� �
5

› ln qj

� �
› ln zð Þ d ln zð Þ

1
› ln qð Þ
› ln p0ð Þ d ln p0ð Þ

Substituting the solution from Equations (A.20)

and (A.22) into Equation (A.24) yields

(A.25) f id ln qið Þ 5 uid ln zð Þ � y
Xn

i51

uijd ln pi=P
� �

.

which can be estimated using the standard

Rotterdam empirical assumptions.

Journal of Agricultural and Applied Economics, November 2010718


