
Department of Agricultural and Resource Economics
University of California Davis

Effective Costs and Chemical Use in
U.S. Agricultural Production:

Benefits and Costs of Using the
Environment as a “Free” Input

Catherine J. Morrison Paul, V. Eldon Ball, Ronald G. Felthoven, Arthur Grube, and Richard Nehring

December, 2000

Working Paper No. 00-025

Copyright @  2000 by Catherine J. Morrison Paul

All Rights Reserved. Readers May Make Verbatim Copies Of This Document For Non-Commercial Purposes By
Any Means, Provided That This Copyright Notice Appears On All Such Copies.

California Agricultural Experiment Station
Giannini Foundation for Agricultural Economics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6778901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

Preliminary, January 2001, ajpesf5f.doc

Effective Costs and Chemical Use in US Agricultural Production:

Benefits and Costs of Using the Environment as a “Free” Input

Catherine J. Morrison Paul, V. Eldon Ball, Ronald G. Felthoven, Arthur Grube, and

Richard Nehring

Paul and Felthoven are Professor and Ph.D. candidate at the University of California,
Davis, Department of Agricultural and Resource Economics, and members of the
Giannini Foundation.  Ball, Grube, and Nehring are Senior Economists at the Economic
Research Service, US Department of Agriculture.

All correspondence should be addressed to C. J. Morrison Paul, Department of
Agricultural and Resource Economics, University of California, Davis, One Shields Ave.,
Davis, CA  95616.  Telephone: 530-752-0469, E-mail: cjmpaul@primal.ucdavis.edu

Abstract

This study uses a cost-function-based model of production processes in U.S.

agriculture to represent producers’ input and output decisions, and the implied costs of

reductions in risk associated with leaching and runoff from agricultural chemical use.

The model facilitates evaluation of the statistical significance of measured shadow values

for “bad” outputs, and their input- and output-specific components, with a focus on the

impacts on pesticide demand and its quality and quantity aspects.  We find that the

magnitudes of the shadow values vary substantively by region, are statistically

significant, and imply increased demand for effective pesticides over time, stemming

largely from improvements in quality due to embodied technology.
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Introduction

The benefits and costs of chemical1 use in U.S. agriculture, in terms of the

augmentation of both effective production and environmental degradation, have long

been debated.  Clearly, such chemicals have both private and social value, in that they

allow farmers (producers) to expand output (and revenue) which, in turn, ensures a

greater supply of agricultural products for both U.S. consumers and export.  But there are

also private and social costs of chemical use – in particular the private (purchase) costs

incurred by producers, and the resulting environmental risks.

While the private cost of pesticide abatement obviously includes the per unit price

of the chemical inputs, the true economic cost of pesticides also reflects the research

developments embodied in the pesticide input (through its chemical composition), that

both augment its effective impact and reduce risk.  These associated research costs may

be primarily reflected in the purchase price (and thus borne by the user), but are also

supported through public R&D expenditures.  Social costs also accrue from the use of the

environment as a “free” input, as producers’ use of pesticides potentially imposes risks to

both human health and the broader ecological environment.

The benefit to producers of using the environment as a free input takes the form

of increased output for a given level of inputs (or lower input costs for a given production

level), than would be possible if producers were required to reduce environmental risk.

That is, lowering risk implies either decreased output (since production of desirable and

undesirable outputs is joint), or increased input use (by substitution for the chemical

inputs or by employing alternative waste disposal practices).  Thus, policy legislation

                                                
1 When referring to agricultural “chemicals” from this point forward we are referring to fertilizers and
pesticides, though much of the analysis focuses on the effects of pesticide use.
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requiring reduction of risks associated with pesticide use will impose costs on the

agricultural community, which in turn has implications for agricultural commodity prices.

In this study we explore these relationships using a detailed cost-function-based

model of the production structure of U.S. agriculture.  The analysis is performed using

state-by-year panel data (48 states for the period 1960-96) for multiple outputs as well as

inputs, and including measures of pesticide use and undesirable or “bad” outputs (human

risk associated with leaching and runoff).  The pesticide data are constructed by

calculating hedonic measures of effective (quality-constant) prices, based on application

rate, human risk scores, and half-life characteristics across a broad range of pesticide

types.  The bad output data represent the extent to which the concentration of a specific

pesticide exceeds a water quality threshold.  These data incorporate both direct

information on human risk according to LD50 measures, and data on climate, types of

soils, and application rates and timing.  Our data set thus allows a more detailed

evaluation of production patterns, and their link with pesticide use and environmental

damage, than has been possible in previous studies.

The costs associated with reducing risk are represented by shadow values for the

bad outputs, which embody underlying technological changes and their effects on output

and input composition.  These shadow values may be interpreted as the foregone

marginal benefits of being able to use the environment freely, or, conversely, as the

amount farmers would be willing to pay (on the margin) for the use of the environment.

The shadow values of bad outputs, or risk from agricultural chemical use and

resulting leaching and runoff, thus depend on both the technological substitution

possibilities, and the input demand and output supply behavior, underlying agricultural
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production processes.  Measuring these values, and determining their link to the demand

for pesticides and other components of the production structure, requires a detailed

estimable production model.  Such a model permits a comprehensive analysis of output

and input supply, demand, and composition changes associated with substitution among

netputs in agricultural production, all of which aid in assessing the costs and benefits of

chemical use.  Econometric implementation of the model allows statistical inference

about the costs, and their determinants, of reductions in bad outputs (risk), and effective

demand for inputs (including pesticides), associated with good output production.

The results generated by this comprehensive model and dataset indicate that the

shadow values of risk factors are statistically significant, and larger and increasing over

time for pesticide leaching as compared to runoff.  This implies that substantive (and

rising) costs would be imposed on the agricultural sector by requirements to reduce

environmental risk deriving from pesticides.  These costs are associated with increases in

“effective” pesticide use, for a given level of agricultural output, that stem primarily from

innovation-induced chemical composition changes that improve abatement power while

diminishing risk.  This embodied innovation represents increasing, but costly, pesticide

quality.  Changes in overall netput composition associated with decreases in risk,

including higher levels of other inputs (except land), and a potential shift toward animal

as compared to crop output, are also implied by the measures.  And the costs of risk

reduction are clearly differentiated both temporally and spatially.
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The Methodology

The Estimating Model

Measuring the costs and benefits of agricultural chemical use, and their link to

environmental damage, involves explicitly modeling the production structure and

recognizing the wide variety of output (revenue) and input (cost) patterns exhibited in the

data.  Our state-level data set includes information on the production of two “good”

outputs and two associated “bad” outputs (human risk from leaching and runoff), and the

use of six inputs (including pesticides and fertilizer).  The output and input data are based

on carefully constructed multilateral price and implicit quantity indexes, using detailed

state-specific data and taking into account quality changes, as documented in Ball et al.

[1999].  The bad output and pesticide data are constructed via comprehensive hedonic

representations, as elaborated in Kellogg et al., and Nehing and Grube, respectively.

 Our analysis is founded on a cost-function characterization of U.S. agricultural

production processes, which represents a broad array of interactions among the

underlying inputs and outputs, including chemical application and environmental

damage.  For empirical implementation, this cost function is augmented by price

determination equations to represent profit maximization over good outputs, and by

spatial and temporal fixed effects to accommodate differences across states and time

periods. 2  The form of the pesticide data allows us to incorporate and analyze the

                                                
2 Preliminary investigation instead using a profit function framework resulted in materials
demand and crop and animal output supply equations that violated standard regularity conditions.
This could be due to presence of negative profits implied in the U.S. agricultural sector when
adjustments to land, capital and other inputs are made to recognize their effective values.  The
alternative pm = MCm equations used here (where MC is the marginal cost and pm the market
price of output Ym) take the form of pricing rather than output choice equations.  This may seem
more valid in an imperfectly competitive market framework where the price is set according to
marginal revenue, but empirical results indicated that the pm data correctly represent marginal
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deviation between pounds of pesticides and the quality-adjusted “effective” pesticides

used in production.  And recognizing the presence of bad outputs in the production

structure permits evaluation not only of shadow values for risk factors, but also of their

linkages with inputs and outputs – in particular, pesticide quantity and quality.

More specifically, our cost function takes the general form TC = TC(Y,B,w,D,t)

where Y is a vector of good outputs (crops, YC, and livestock or animal products, YA); B

is a vector of bad outputs (proxies for environmental risk from pesticide leaching and

runoff, BHL and BHR);3 w is a vector of input prices (land, LD, labor, L, capital, K,

pesticides, P, fertilizers, F, and other materials, M); D is a vector of dummy variables

corresponding to fixed effects for each state, specific time periods, the corn states, and

the cotton states; and t is a time trend.

Perhaps the most difficult “netputs” to measure in this model are the risk factors

or bad outputs, B, which are fundamentally connected with pesticide use.  Concerns

about pesticide residues found in ground and surface water have stimulated pesticide

regulatory changes, and, in turn, the development of chemicals that are less harmful to

humans and the environment, or less likely to migrate and thus contaminate water

supplies.  Kellogg et al. have developed indicators to measure the existence, and temporal

and spatial patterns, of the potential risk to health and the environment due to pesticide

loss from farm fields.  These indicators are estimates of relative risk, reflecting pesticide

concentrations from leaching and runoff that exceed “safe” thresholds for chronic

exposure.  The estimates are based on pesticide application rates, and determinants of

                                                                                                                                                
revenues for agricultural producers.  And omitting these equations reduced the robustness of the
marginal cost estimates.  Thus they were retained for the final empirical specification.
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pesticide loss such as the leaching/runoff potential of soils, chemical properties of the

pesticides, annual rainfall, and changes in cropping patterns.

More specifically, Kellogg et al. use data on physical properties of pesticides such

as soil sorption propensity, vapor pressure and solubility, and the persistence of the

pesticide in the environment, which affect the tendency of chemicals to leach or runoff.

Pesticide loss from fields is then estimated using a process model (GLEAMS), which

incorporates the complex interactions among these soil and pesticide characteristics, and

the contribution of weather factors, into risk indicators that represent changes over time

(year) and space (state) in the potential for agricultural contamination of water resources.4

We use these proxies for contamination as our risk or bad output variables, Bk.

Bad Output Implications: Shadow Values and Input/Output Composition Effects

B is included in the cost function on the realization that bad outputs are produced

jointly with Y, or, conversely, that the environment is used as an unpaid input by

producers disposing effluent.5  Production of bads allows more effective good – or

marketed – outputs to be produced for a given input level, or, conversely, lower input

costs for a given amount of Y.  Thus, reducing risk is costly to producers in terms of net

output – output per unit of input – because it requires substitution toward non-chemical

inputs, or less risky, but more costly, alternative chemicals.

                                                                                                                                                
3 In preliminary estimation fish stock risk from leaching and runoff were also included as bad
outputs, but when both types of leaching and runoff were included the shadow values for fish risk
were invariably insignificant (and sometimes not the expected sign), so they were dropped.
4 Further details about this estimation process is available in Kellogg et. al.  Documentation is
also available at the website www.nhq.nrcs.usda.gov/land/index/publication.html.
5 The notion that a reduction of a bad output is similar to an increase in a good output, in the sense
of defining the technological frontier, also provides the basis for the distance function
specification of undesirable output impacts in Ball et al. [2000].



8

The shadow values (SV) of the bad outputs, or the (input) cost benefits from

generating risk, may thus be measured as the vector of cost effects BTC = SVB.  For

example, the marginal benefit of permitting leaching that may cause risk to human health

(BHL) is SVHL = ∂TC/∂BHL < 0, or more generally, SVBk = ∂TC/∂Bk.  From the reverse

perspective, SVBk represents the input costs that would be incurred on the margin if a

decrease in Bk were legislated.  So these shadow values reflect the marginal amount the

producer would be willing to pay for the right to increase Bk.  The sign and significance

of such measures is thus a primary issue to explore in our analysis of pesticide and

resulting bad output impacts on U.S. agricultural production. 6

Indicators of the temporal and structural patterns of the shadow values may also

be constructed by computing elasticities of the SVBk measures with respect to the time-

shift factor, t, and the components of the D vectors (representing structural changes in P

and F, and geographic location): εSVk,t = ∂ln SVBk/∂t, and εSVk,Ds = ∂ln SVBk/∂Ds.

Constructing such measures allows us to evaluate time- and space-dependent differences

in the costs of risk reduction for agricultural producers.

In addition, the SVBk measures – unlike technological measures of marginal

products or primal-side shadow values of pesticides or bad outputs such as those in

Headley, or Ball et al. [2000]7 – incorporate the behavioral motivations underlying cost-

                                                
6 SVBk should be interpreted in the context of a private value to producers, since it represents the
amount that their expenditure on other inputs would have to increase (for a given output level) if
the environment could not be freely used.   In terms of social costs, SVBk therefore indicates the
amount a marginal risk reduction must be thought to benefit society overall to justify legislation
requiring such reductions.
7 The measurement of marginal products to represent the productivity of agricultural chemicals,
and thus the costs of reducing their use, has been the focus of a large literature, beginning with
studies such as Headley, and Campbell.  The more comprehensive dataset and model used in this
study allows, however, a much more detailed specification of the impacts of pesticides and
associated negative outputs than has previously been possible.
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efficient production choices as well as technical substitution possibilities.  Thus, the

overall cost-effects represented by the SVBk measures may be decomposed into their

input-specific demand effects.  In particular, the linkage between bad outputs and

chemical use may be explored in terms of the impact of risk reduction on pesticide and

fertilizer demand; this is another primary issue we wish to empirically explore.

That is, based on Shephard’s lemma, pesticide input demand is represented by P =

∂TC/∂wP (where wP is the market price of P).  Elasticities of this demand relationship

with respect to changes in in the risk factors Bk, εP,Bk = ∂ln P/∂ln Bk, thus reflect the

dependence of pesticide use on the ability to dispose of waste in the form of leaching or

runoff.  Such elasticity measures can similarly be constructed for any input to represent

the input-specific impacts of risk reduction.  That is, assessing changes in input demand

and thus composition depend on the evaluation and comparison of εxj,Bk =         ∂ln xj /∂ln

Bk elasticities, where xj = ∂TC(•)/∂wj for j=F,LD,L,K,M,P.

Although the overall cost elasticity with respect to Bk, εTC,Bk = ∂ln TC/∂ln Bk =

SVBk•Bk/TC, is negative if risk reduction is costly, if P and Bk are joint or complementary

(as one might expect due to the direct relationship between P use and risk), εP,Bk would

instead be positive.  In this case, an input bias in absolute terms is implied; if overall

input costs increase to reduce Bk, but P declines, other inputs must increase even more

than would be implied by the total cost elasticity.  It may be, however, that improvements

in the quality of the chemical inputs cause increased use of effective (quality-adjusted) P

to be associated with decreases in Bk, in which case the associated εP,Bk would be

negative.  If it is smaller (in absolute value) than the cost elasticity, however, reductions
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in risk remain biased, but in relative terms.  Evaluation of these demand relationships and

associated biases thus can provide important insights for assessing Bk effects.

The impacts on marginal costs of the good outputs from restrictions on bad output

production may also be measured to facilitate a full analysis of the input- and output-

specific costs of risk reduction.  That is, the shadow or true economic value of an output,

Ym, is represented by its marginal cost: SVYm = MCm = ∂TC/∂Ym.   The elasticities

εMCm ,Bk =  ∂ ln M Cm /∂ ln Bk thus  pr ovide indicator s of pr oducer s’  motivations  to adapt

output levels  and composition in or der  to r educe r isk.

Pesticide Demand: The Quantity and Quality of Pesticide Inputs

The various cost and demand relationships developed above are characterized

through 1st and 2nd order derivatives or elasticities of the cost function with respect to the

arguments of TC(•).  However, divergence of input demand patterns from those

appropriately represented by Shephard’s lemma often complicates or precludes the

estimation and interpretation of such measures.  For example, fixities, market power, or

changes in quality/composition, may cause the true economic value or quantity of an

input to deviate from its market value.  One way to deal with such a problem is to directly

adapt the price and quantity data to embody the discrepancy, by computing true effective

(or shadow or virtual) prices to be used as arguments of the cost function.8

 Such an issue prevails in our current application9, as violations of standard

regularity conditions, and thus problems with estimated marginal product or input

                                                
8 See Fulginiti and Perrin for a detailed discussion of the conceptual basis and use of the virtual
price framework.
9 Although not the focus here, sensitivity checks were also performed for the potential deviation
of measured and shadow values for the K, L and LD variables, which could rise due to quasi-
fixity.  Our assumption that the careful measurement of these variables maintained their
consistency with Shephard’s lemma was empirically supported.
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demand functions, have often been found for pesticides.10  These violations have been

attributed to mis-measurement of the true pesticide input as a physical quantity (say,

pounds) rather than in terms of pest abatement.  Whereas measurement of abatement

power – increases in effective output from pest reduction, that depends on the chemical

composition of the pesticides – should be the goal if this is actually the “input” that is

being demanded.

Thus, in the pesticide data used for this study (developed by Nehring and Grube),

careful data adaptations were made through hedonic analysis to identify the impacts of

pesticide characteristics on their true or effective price, and thus their implicit quantity, as

motivated by Fernandex-Cornejo and Jans, and Beach and Carlson.  In particular, Beach

and Carlson show that productive characteristics tend to be positively associated with

pesticide price (application rates are inversely related to potency), while hazardous

characteristics are negatively related to pesticide price.  Accordingly, Nehring and Grube

accommodate pesticide application rates, toxicity (chemical composition), and

environmental variables reflecting persistence, mobility, and water quality levels in their

measures of the true economic or effective prices of the quality-adjusted pesticides

inputs, as elaborated in the Appendix.  The resulting adjusted shadow or virtual pesticide

prices of constant-quality chemicals, wP*, were then used to deflate the pesticide

expenditure data to reflect real effective pesticide quantities, P*.11

                                                
10See, for example, Lichtenberg and Zilberman, and Chambers and Lichtenberg.
11 See Nehring and Grube for more details about these computations, and further discussion of the
patterns of the adjusted as compared to unadjusted data.
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These quality-adjusted or “effective” pesticide price and quantity measures thus

accommodate changing pesticide composition.12  Such changes are reflected in “higher

quality” pesticides over time; wP* (P*) grows at a slower (faster) rate than wP (P), which

can be interpreted as a shift to relatively efficacious, less toxic, chemicals, through both

general technical change and responses to environmental concerns (induced innovation).

The magnitude of, and time- and space- variations in, the gap between wP* and wP (P*

and P) can thus be interpreted as the impacts of new technologies embodied in the

pesticide input.  And explicit recognition of this quality-gap allows us to distinguish

changes in the demand for physical pesticide quantities from those related to its quality or

effectiveness.

More formally, we can write the virtual pesticide price as wP* = ADJP•wP, where

the AJPP quality index adapts the price of P in terms of pounds to one embodying quality

characteristics according to the underlying hedonic model.13 And since by definition wPP

= wP*P* = VALP (where VALP is the dollar expenditure on pesticides, and P* is

computed as VALP/wP*), wP*/wP =  P/P*, or P*=P/ADJ.  The multiplicative14

specification of wP* (and thus P*) implies that the contribution of a percentage increase

in pesticide price (use) is the same whether it stems from quality (ADJP) or quantity (wP,

P) changes, but that we can distinguish these two components.

That is, the derivative ∂TC/∂wP* = SQP* yields the shadow quantity of the

effective pesticide input, which will equal P* (the P* demand function) if Shephard’s

lemma holds.  If instead we take the derivative with respect to the unadjusted price, using

                                                
12 Note that pesticide “effectiveness” is here defined according to hedonic analysis in terms of a
quality-constant price and implicit quality-adjusted quantity, rather than its effective application.
13 This is similar conceptually to adaptations of quasi-fixed inputs such as capital to accommodate
utilization as K*=uK or w*K=wK/u, along the lines of Jorgenson and Griliches.
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the equality wPP = wP*P*, we obtain ∂TC/∂wP = ADJP•∂TC/∂wP* = (wP*/wP)•P* =

(P/P*)•P* = P = SQP.  The difference between these values is obviously directly

dependent on the ADJP measure, but this quality gap between P* and P will differ

spatially and temporally, as well as potentially according to output composition patterns.

It is thus useful for understanding pesticide quantity and quality demand

variations to compare these measures by time period and regional breakdown.  Patterns

may also be distinguished by considering effective and physical pesticide demand

elasticities, such as εP*,t = ∂ln P*/∂t = ∂ln SQP*/∂t, representing time patterns of P* use, as

compared to εP,t = ∂ln P/∂t = ∂ln SQP/∂t for P.  Such elasticities may also be computed for

other arguments of the TC and thus SQP*, function; e.g., the deviation between εP*,C = ∂ln

P*/∂ln YC and εP,C = ∂ln P/∂ln YC indicates the effect of YC demand changes on P* versus

P.  However, since the difference between P* and P is simply multiplicative, one would

not expect substantive differences in the 2nd order relationships, except in terms of trend

patterns.

The Results

Econometric Implementation

The cost function from the model overviewed in the previous section takes the

general form TC = TC(YA,YC,BHL,BHR,wP*,wK,wL,wLD,wM,wF,t,DP,DF,DCT, DCN,Ds),

where the vector representation has been expanded to make explicit the individual

arguments of the function.15  The vector of fixed effects includes two dummy variables

                                                                                                                                                
14 Or log-linear, as is typical for a hedonic equation: ln wP* = ln ADJP + ln wP.
15 The prices of the inputs other than P may also be thought of as effective or virtual prices,
accommodating in the data the stock/flow effects of fixities (for, say, K, LD), or other quality
characteristics (such as education for labor), although we will not make this explicit using *s
since this is not the focus of the current analysis..
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for structural shifts in pesticides and fertilizer use (DP, DF)16 and two for the cotton and

corn states as groups (DCT, DCN). 17  To incorporate state-specific intercepts in each

estimating equation, 48 state-level dummies (Ds) were used, with cross effects included

for each input price and output quantity.

Econometric implementation of the model and construction of parametric

derivative and elasticity measures requires first specifying a functional form for TC(•).

We approximate the cost relationship as a generalized Leontief form, where the output

levels and shift factors are included in quadratic form, as in Paul:

(1)  TC(Y,B,w,D,t) = δP1 wP*DP + δF1 wF DF+ ΣsΣi δsj wj Ds + Σjwj (ΣsΣm δsm Ym Ds)

+ ΣjΣi (i≠j) αji wj
 .5 wi

.5 + Σj αjDP wj
 .5 wP*.5 DP + Σj αjDF wj

 .5 wF
.5 DF

+ ΣjΣm (j≠M) δjm wj Ym + ΣmΣr δmPDr Ym wp* Dr + ΣmΣr δmFDr Ym wF Dr

+ ΣjΣk δjk wj Bk + Σk δkDP Bk wp* DP + Σk δkDF Bk wF DF

+ Σj δjt wj t + Σr δtPDr t wp* Dr + Σr δtFDr t wF Dr

+ Σjwj (ΣmΣn γmn Ym Yn + ΣmΣk γmk Ym Bk
  + ΣkΣl γlk Bk Bl

+  γtt t
2 + Σm γmt Ym t  + Σk γkt Bk t) ,

                                                
16 The DP dummy variable (with interaction terms for all wP* cross-effects) represents a 1984
break in the pesticide data found with the hedonic research to indicate roughly the year in which
most cropping sectors switched from or reduced use of many of the old line chemicals to the new.
The DF dummy variable (with interaction terms for all wF cross-effects) for the post-1979 time
period represents results from Chow tests that show this is an important point of structural change
in the fertilizer input, reflecting the energy crisis.  Note also that the corn and cotton dummy
interaction terms were not included for the bad outputs (Bk) due to their insignificance in
preliminary empirical investigation.
17 These fixed effects reflect differences in production structure with respect to chemicals use in
these areas, since the corn areas tend to use more old line chemicals with water quality but not
toxicity issues, and have lower pesticide prices, than do the cotton states.
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where i,j denote the input market or virtual prices of the inputs, m,n the good outputs, k,l

the bad outputs, and r the DP, DF, DCT and DCN fixed effects. 18  The system of estimating

equations derived from this function comprises six factor demand equations, two output

pricing equations, and the cost function itself.  The factor demand estimating equations

are defined via Shephard’s lemma; P*=∂TC/∂wP*, F=∂TC/∂wF, K=∂TC/wK, L=∂TC/∂wL,

LD=∂TC/∂wLD, and M=∂TC/∂wM.  The output pricing equations are defined according to

pm=MCm equalities representing optimization over outputs (where pm is the market price

of Ym); pA = ∂TC/∂YA, and pC = ∂TC/∂YC).19

 The resulting equation system was estimated using seemingly unrelated (SUR)

econometric procedures.  Instrumental variable (IV) techniques are instead often used in

the production literature when it is believed that potential errors in variables may be

present (for example, if quality-unadjusted pesticide data were used as a proxy for the

abatement input).  Use of the IV approach, however, may introduce further problems if

one does not specify the instruments appropriately (or if relevant instruments do not

exist), and is often not robust to alternative specifications.  IV can also cause problems

when used in conjunction with panel data, or in models in which an autoregressive

structure is explicitly incorporated, especially if the values of the lagged exogenous

variables are used as instruments (as is often done).  Due to these problems, and the care

                                                
18 The j≠M and i≠j requirements for the cross wj-Ym and cross-input-price terms is due to the
otherwise linear dependency from the wj summation before the fixed effects.
19 The behavioral implications of the output pricing specification might initially seem
questionable, since producers would be expected to output levels given observed output prices in
the presence of competitive markets.  However, as alluded to above, in preliminary investigation
other specifications based on just a cost model, a profit function, and an imperfectly competitive
market specification, generated implausible estimates.  An ex-post pricing mechanism clearly
dominates, possibly because prices in agricultural markets are determined by the amount of
output available after the growing period (for either a crop or animal product).
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taken in our data development, such that both the input demand and output pricing

equations appear empirically well characterized, SUR is preferable for this application.

Adaptations were made to the estimating model to accommodate potential

heteroskedasticity.  A standard way to accomplish this is to transform the input demand

equations into input/output measures, which reduces variations in scale across states and

time periods, but this did not affect the estimates substantively.  We thus, however,

simply used a procedure in PC-TSP that computes White’s heteroskedastic-consistent

covariance matrix, to generate appropriate standard errors.

Also, Durbin-Watson tests indicated that first-order autocorrelated errors were

present in the cost and input demand equations.  Therefore, an AR(1) term was directly

incorporated into the cost equation, and TC = TC(•) + ρ TC⋅εt-1 + εt was estimated (where

ρTC is the cost function-specific AR(1) parameter, and εt is the period t estimation error

for TC(•)).  Analogous adaptations were made to the input demand equations based on

the general form Y = βX + ρY⋅εt-1 + εt.
20  This approach led to a complex non-linear

estimating system, but the resulting estimates of the ρ’s were very significant, and

standard statistical tests indicated that the adjustment accounted for autocorrelation.

The parameter estimates for this model are presented in the Appendix (with the

coefficients on the state dummies omitted to keep the table manageable).  Although in a

model this multifaceted the individual parameter estimates have limited interpretation,

the overall statistical significance of the parameters is notable (even most of the states

dummies were significant).  Also, the R2s indicate excellent “fits” for the estimated

equations, with all of them reaching at least 0.92.

                                                
20 Because of this specification, the first observation for each state was dropped for estimation.
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The Overall Estimates: Risk Shadow Values, Pesticide Demand, and Netput Interactions

Bad output and pesticide cost and benefit indicators computed from the estimated

parameters for the full data sample are presented in Table 1.  The reported estimates are

(non-weighted) averages across all states and time periods.  The t-statistics are based on

evaluation of the measures at the mean values of the data, using the ANALYZ command

in PC-TSP to implement a generalized Wald test.21

The primary measures indicating the marginal benefits of using the environment

for leaching and runoff are the shadow values SVBk=∂TC/∂Bk for BHL and BHR.  These

measures are both negative (indicating that allowing higher risk factors is cost-saving for

the producer) and statistically significant at approximately the 5% level on average for

the whole sample (the SVHR and SVHL p-values are 0.051 and 0.034).22

Overall patterns in bad output shadow values associated with time and structural

trends may also be assessed from the estimates in Table 1.  The positive εSVHL,t =

∂ln SVHL/∂t elasticity, for example, shows that SVHL is increasing (in absolute value, so

the costs of reducing BHL are greater) over time, whereas the reverse seems true for

SVHR.23  In the post-1979 and post-1984 periods (represented by DF and DP), SVHL seems

to have risen slightly and then fallen from trend (in absolute value), although SVHR seems

to have been consistently ratcheting upward.  None of these relationships are, however,

statistically significant.

                                                
21 The procedure computes the constraints for the hypothesis that the measure equals zero, and the
associated covariance matrix, evaluated at the estimated parameter vector for a given data point.
22 When leaching and runoff risk factors for fish stocks were also included, their shadow values
were almost invariably statistically insignificant, although when they were incorporated without
the associated human risk factors their estimates were similar to those for the BHL and BHR

measures.  This suggests that their costs are not separately identifiable for these data.
23 Note that a negative value for the εSV,r elasticity implies a positive measure of ∂SVBk/∂r, since
the derivative is multiplied by the (negative) SVBk value to construct the elasticity.
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In terms of input-specific patterns, risk reduction is clearly pesticide-using in the

absolute sense that lowering risk requires increasing effective pesticide use; εP*,HL =

∂ln P*/∂ln BHL and εP*,HR = ∂ln P*/∂ln BHR are negative and significant, both statistically

and in terms of magnitude (especially for runoff).  This implies that technology or

innovations embodied in P* increase substantively to attenuate risk.  By contrast, the only

input insignificantly related to both risk factors is the other chemical input, fertilizer.

The analogous negative εK,HL and εK,HR measures suggest that capital has a

tendency to “substitute” for the environment, in the sense that additional capital is

required to reduce human risk factors, although εK,HL is insignificant.  The M elasticities

with respect to BHL and BHR are also negative and both relatively large and significant.

Land instead seems in some sense “complementary” with risk; risk reduction implies

lower land use.  The indications for labor are mixed, although generally toward

substitutability, as for capital.

The input composition effects associated with marginal changes in risk are clearly

biased, as indicated by comparison of these input/risk elasticities to each other and to the

overall cost elasticities εTC,HL = -0.009 and εTC,HR = -0.008 (where εTC,Bk = ∂ln TC/∂ln Bk

= SVBk•Bk/TC).   For a BHL decrease, for example, P* is affected the most (reducing

human risk from leaching is greatly P*-using), L and M demands rise relative to other

inputs, capital changes less than overall input use (a relative capital-saving bias), and land

use decreases (an absolute land-saving bias).  So input composition adapts substantially

to accommodate risk reduction.

For the outputs, the εMCm ,Bk = ∂ ln M Cm /∂ ln Bk elasticities are small and generally

positive.  In particular, the positive (but small and not quite significant at the 5% level)
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εMCA,HL and εMCA,HR elasticities suggests that human risk reduction is consistent with

lower marginal costs of animal production, thus implying some motivation toward

producing YA rather than YC.  This is intuitively plausible, since one might expect YA to

have little connection to leaching and runoff from chemical use.24  By contrast, the

negative and significant εMCC,HR estimate indicates jointness between crop production and

risk from runoff, or higher marginal costs of crops associated with lower risk levels.

In turn, implications about pesticide demand, and its quality as compared to

quantity components (P* versus P) are evident from the overall SQP*, SQP, and ADJP

measures in Table 1.  The fitted shadow value of P* is on average nearly 1.5 times as

large as the unadjusted P level , implying an average measured quality adaptation factor

of approximately 0.70. The average ADJP is instead approximately 0.88.  So quality-

adjusted pesticide use P* exceeds P by more than the average adjustment factor.25  This

suggests that a large portion of the measured variation in P* involves quality rather than

quantity differentials, in turn supporting the notion that the increases in P* required to

decrease risk are driven primarily by quality change, or embodied innovation.

The impacts of (temporal and spatial) shift factors and output composition on P*

as compared to P demand can also be evaluated using the indicators presented in Table 1.

Note that all measured elasticities of P* demand with respect to these factors are

statistically significant and positive, except that relating to fertilizer structural change,

(εP*,DF = ∂ln P*/∂DF), which might be expected.  In particular, measured effective

                                                
24 Of course risk from animal waste is also a major issue, particularly in some states.  Although
we do not currently have measures of such factors, work is proceeding to generate such measures
that will be used in later research to establish these relationships.
25 The difference between P* and P implicitly weights the ADJP measures, since we are
computing the average of the multiplicative relationship SQP* = fitted P*= fitted P/ADJP = SQP,
rather than averaging P*, P and ADJP separately and then multiplying them.
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pesticide use increased significantly over time (εP*,t = ∂ln P*/∂t >0), and especially after

1984 (εP*,DP = ∂ln P*/∂DP>0).  However, these positive relationship are much smaller in

magnitude for P than for P*,26 again suggesting that structural adaptations in the pesticide

input have primarily worked to increase the quality component of P*.

P* demand is also strong, in terms of levels, in both the corn and cotton states

relative to others (εP*,DCN and εP*,DCT are positive), although in this case this differential is

even more marked for P then P* (εP*,DCN and εP*,DCT fall short of εP,DCN and εP,DCT)  And

the impacts of greater crop products in the output mix are quite dramatic – a 1 percent

augmentation of crop output implies a dramatic 2.7 percent rise in P* (εP*,C

= ∂ln P*/∂ln YC ≈ 2.7, with εP,C ≈ 1.5), so scale increases with respect to the crop output

are biased toward pesticide use.  By contrast, higher levels of animal outputs generate a

much smaller (less than 0.3 percent) but still positive proportional change in quality-

adjusted pesticide inputs (although a more than 0.45 percent change in P), possibly

associated with greater crop production for animal feed.

Temporal and Spatial Patterns

It is also informative to explore more explicitly the temporal and spatial patterns

of the shadow value and pesticide use/quality measures by comparing some primary

elasticity estimates across time periods and regions.  For the temporal dimension, we

separate the measures by the decades covered in the data – the 1960s, 1970s, 1980s, and

1990s, and for the spatial dimension we distinguish 10 regions (for the 48 contiguous

states), according to the USDA breakdown for regional productivity, as in Table 2.

                                                
26 The significance level is the same, given the multiplicative relationship.
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Table 2

CN Corn States IL, IN, IA, MI, MN, MO,

NB, OH, WI, SD

CT Cotton States AL, AZ, AR, CA, GA, LA,

MS, NC, TN, TX

Region 1 Northeast CT, ME, MA, NH, RI, VT,

DE, MD, NJ, NY, PA

Region 2 Corn Belt IL, IN, IA, MO, OH

Region 3 Lake States MI, MN, WI

Region 4 Northern Plains KS, NE, ND, SD

Region 5 Appalachian KY, NC, TN, VA, WV

Region 6 Southeast AL, Fl, GA, SC

Region 7 Delta AR, LA, MS

Region 8 Southern Plains OK, TX

Region 9 Mountain AZ, CO, ID, MT, NV, NM,

VT, WY

Region 10 Pacific CA, OR, WA

The εTC,HL and εTC,HR values by decade, presented in Table 3, indicate an upward

trend in the proportional agricultural sector marginal-cost-benefits of BHL disposal.  But

the reverse occurs for BHR, which is consistent with the more general εSVk,t estimates,

from Table 1.27  The implications for the associated pesticide costs follow closely;

                                                
27 It is important to present these in proportional (real) terms, εTC,Bk = ∂ln TC/∂ln Bk to see these
trends, since the nominal trends reflected in the SVBk = ∂TC/∂Bk values can be somewhat
misleading for comparisons. The tendency for the BHL value to increase is exacerbated if one
looks instead at the SVBk values, and that for BHR appears slightly upward rather than downward
as it is when looking at percentage changes.
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pesticide-quality-enhancing costs of reducing BHL (represented by εP*,HL=∂ln P*/∂ln BHL)

are increasing over time, but are declining for BHR (from εP*,HR).

For the regional breakdown, note first that the Corn Belt states have a far smaller

marginal cost (shadow value) of risk reduction in percentage terms, at least for leaching

(εTC,HL=-0.0007), than is found in other areas.  Leaching-risk reductions in the corn states

also seem associated with lower effective pesticide use; εP*,HL is positive, and larger than

for any other region (although Northern Plains and Pacific states exhibit similar

tendencies).  The highest proportional costs of reducing leaching, BHL, appear instead in

the Southeast and the Appalachian regions.  The implied change in P* follows closely,

with the Appalachian and Southeast states requiring the most augmentation of P* to

reduce leaching risk, and the Northeast closely following.

By contrast, the costs of reducing runoff are significantly larger in the Corn Belt

states, where decreases in runoff are strongly linked to increased effective pesticide

application.  The states with the next highest costs of reducing runoff are in the Lake,

Southeast, and Delta areas, which also exhibit some of the greatest corresponding

increases in P*.  However, the impact of BHR on effective P use, εP*,HR, is even larger in

the Northern Plans and Appalachian regions; the magnitude of εP*,HR in these areas is

next to the Corn Belt in terms of magnitude, although the implied P* adjustment to

reduce runoff risk is less than one-third that for the Corn Belt states.

These patterns embody both quality and quantity components, as exhibited by

regional variations in the levels and composition of applied pesticides.  They are likely,

for example, linked to the more dramatic increases in herbicide use found in the Corn and

Southern states than in other regions.  This hypothesis seems consistent with the Beach
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and Carlson finding of a positive relationship of herbicide prices for corn (and soybeans)

to productive characteristics of pesticides.  By contrast, the Pacific region exhibits

virtually no change in effective pesticide use in order to lower runoff, which may reflect

the large quantities of non-persistent petroleum oils and sulfur used in California.

To facilitate evaluating the quality and quantity components of the pesticide input

relationships, elasticities reflecting the temporal and spatial patterns of SQP* (P*) and

SQP (P) demand are reported in Table 4.  First note the dramatic difference in the time

trends of – and thus the gap between – P* as compared to P.  From the 1960s to the 1990s

the fitted value of P*, SQP*, increased by a factor of 5, whereas the average SQP doubled

by the 1980s and then dropped again.  This corresponds to a drop of ADJP from 1.3 to

0.26 during this time period, clearly indicating that increases in the shadow quantity of P*

have primarily been driven by quality changes.  This seems broadly consistent with the

finding of Fernandez-Cornejo and Jans that constant quality pesticide use peaked in 1981,

and yet expenditures, and thus implicitly quality, continued to increase significantly.

In terms of regions, the largest quality gap appears in the Southern Plains,

followed by the Mountain States (that also exhibit very low pesticide use overall), and the

Delta region.   In terms of levels, the Corn Belt states show the highest P* demand, with

the Pacific region, which has many pesticide-intensive crops, the second in line.

However, in the Corn Belt the ADJP measure on average actually suggests a low level of

pesticide quality (along with the Lake and Southeast states, with the Northern Plains

next), whereas the Pacific states are above average in terms of quality levels.  Note also

that although some of these regions exhibit ADJP levels that exceed one, the (implicitly
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weighted) SQP/SQP* ratios all fall short of one, and of the associated ADJP averages, thus

supporting again the predominance of quality- to quantity-attributes driving demand.

Overall, costs of risk attenuation, and pesticide use/quality patterns, have differed

dramatically in both temporal and spatial dimensions.  This has important implications

about where risk reductions are likely to be the most prevalent without direct regulation.

It also indicates how and where agricultural producers are likely to be the hardest-hit in

terms of costs, if regulations requiring reductions in risk from leaching and runoff were to

be implemented.

Concluding Remarks

This study uses a detailed model of the production structure in U.S. agriculture,

and comprehensive data on outputs and inputs – including effective (quality-adjusted)

pesticide quantities, and risk from leaching and runoff – to address issues of pesticide use

and its benefits and costs to agricultural producers.  In particular, we focus on measuring

the potential costs to producers of reducing human risk from leaching and runoff

associated with pesticide use.  We find that changes in production plans to accommodate

risk reductions result in significant costs (shadow values), that in turn involve clear

output and input composition adaptations.

In particular, these costs are directly associated with substantive increases in

effective pesticide quantities (as opposed to simple poundage), which implies induced

innovation to augment pesticide quality.  This quality is embodied in the pesticides via

R&D and associated technological change, and has risen considerably over the sample

period, and especially since the mid-1980s.  More generally, in terms of netput

composition changes, lowering risk from pesticide use involves more materials and less
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land use, greater capital and labor intensity (perhaps though additional monitoring, or

more careful application), and a potential shift from crop to animal commodity

production.  The costs incurred by agricultural producers to make such adjustments (in

addition to the augmentation of pesticide quality) have increased over time, vary widely

by region, and differ for reductions in risk from leaching as compared to runoff.
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 Appendix
Total pesticide use in terms of pounds of active ingredients in U.S. agriculture

increased by more than 3 percent per year from 1960 through the late 1970s/early 1980s,

and then stabilized, while expenditures continued to increase.28  The mix of

characteristics, such as application rate, leachability, and toxicity, also changed

significantly during this period, as agricultural producers changed their production

processes, including a major move toward herbicide as compared to insecticide use.

To adapt the base measures of pesticide prices and quantities for these quality

changes, Nehring and Grube regressed the prices of a broad range of pesticides on

physical characteristics related to their actual or perceived quality.  The productive and

environmental characteristics incorporated in the analysis include pesticide applications

rates as a proxy for pesticide potency,29 LD50 scores as a proxy for toxicity,30 and

persistence dummies based on solubility, vapor, sorption, and half lives.31  Time

dummies also imbedded in the regressions were converted to hedonic price indexes, or

virtual price indexes for pesticides that capture price effects not connected with quality.

The effective or quality-adjusted quantity indexes, P*, were then computed implicitly by

dividing total expenditures on each pesticide by their adjusted price index, wP*.

Although consistent with Fernandez-Cornejo and Jans, and Beach and Carlson, this

treatment involves a much more detailed representation of the quality characteristics, and

                                                
28 The growth in quantity and costs of the pesticide inputs used, that far exceeded that for any
other input, reflected a shift from labor-intensive production methods to more capital- and
chemical-intensive methods due to changes in technology, production processes, prices, and
regulatory policies.
29 A low rate is assumed to be consistent with a more effective pesticide.
30 LD50 scores indicate the amount of toxicant necessary to effect a 50% kill of the pest being
tested.  Dummy variable divide pesticides into those with high (>500) or low toxicity scores.
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their differential spatial and temporal patterns, of the pesticides.  In particular, the earlier

studies relied on limited survey information, number of crops and chemicals, and

information on variability.  The Nehring and Grube study instead catalogued pesticides

by chemical, crop, year, and location (from Doane and NASS surveys), incorporating

information on close to twenty crops and 200 chemicals.  Thus, this pesticide data

provides a particularly appropriate basis for our state-level analysis.32

                                                                                                                                                
31 Dummy variables represent half lives of more than 65 days (following Fernandez-Cornejo and
Jans), and above-mean values of solubility, vapor, and sorption.
32 Empirical implementation of our model using these data also suggested that the Nehring-Grube
adaptations of the data were carried out in a manner consistent with economic theory.  Our use of
Shephard’s lemma based on the wP* measure is supported by both appropriate (in terms of
regularity conditions) and intuitively plausible estimates of demand behavior.  And when
optimization equations were not imposed for the P input, so its true shadow value (or quantity)
could be indirectly imputed, the resulting production structure pattern estimates remained
substantively unchanged.



Table 1:  Shadow Value and Elasticity Measures, overall averages

measureestimate t-statistic measureestimate t-statistic measureestimate t-statistic
εP*,HL -0.0243 -1.887 SQP* 0.0884 1.955

SVHL -0.0164 -2.118 εP*,HR -0.0644 -2.472 SQP 0.0620 3.816
SVHR -0.0004 -1.951 ADJP 0.8820

εTC,HL -0.0090 -2.118 εF,HL 0.0035 0.175

εTC,HR -0.0077 -1.951 εF,HR -0.0151 -1.273 εP*,t 1.2795 5.162

εLD,HL 0.0086 2.157 εP*,DF -0.2121 -0.981

εSVHL,t 0.0175 1.058 εLD,HR 0.0107 2.348 εP*,DP 2.4116 -3.881

εSVHR,t -0.0104 -0.556 εL,HL -0.0205 -1.867 εP*,DCT 0.8004 7.724

εSVHL,DF 0.0155 0.926 εL,HR 0.0144 1.961 εP*,DCN 0.8274 8.269

εSVHL,DP -0.0030 -0.640 εK,HL -0.0017 -1.063 εP*,A 0.2769 2.441

εSVHR,DF 0.0132 0.406 εK,HR -0.0074 -2.563 εP*,C 2.7145 23.472

εSVHR,DP 0.0145 1.196 εM,HL -0.0141 -1.850

εM,HR -0.0255 -2.875 εP,t 0.3750 5.162

εP,DF -0.0650 -0.981

εMCA,HL 0.0039 1.731 εP,DP 0.6482 -3.881

εMCA,HR 0.0053 1.884 εP,DCT 1.0128 7.724

εMCC,HL 0.0055 1.295 εP,DCN 0.9902 8.269

εMCC,HR -0.0001 -1.943 εP,A 0.4591 2.441

εP,C 1.5444 23.472



Table 3:  Bad Output Measures, temporal and spatial

overall average 1960s 1970s 1980s 1990s
εTC,HL -0.0090 εTC,HL -0.0033 εTC,HL -0.0099 εTC,HL -0.0092 εTC,HL -0.0148
εTC,HR -0.0077 εTC,HR -0.0131 εTC,HR -0.0084 εTC,HR -0.0047 εTC,HR -0.0039
εP*,HL -0.0243 εP*,HL -0.0073 εP*,HL -0.0294 εP*,HL -0.0299 εP*,HL -0.0312
εP*,HR -0.0644 εP*,HR -0.1708 εP*,HR -0.0434 εP*,HR -0.0222 εP*,HR -0.0180

Northeast Corn Belt Lake States Northern Plains Appalachian
εTC,HL -0.0088 εTC,HL -0.0007 εTC,HL -0.0077 εTC,HL -0.0031 εTC,HL -0.0177
εTC,HR -0.0031 εTC,HR -0.0264 εTC,HR -0.0134 εTC,HR -0.0068 εTC,HR -0.0080
εP*,HL -0.0534 εP*,HL 0.0406 εP*,HL -0.0035 εP*,HL 0.0130 εP*,HL -0.0691
εP*,HR -0.0200 εP*,HR -0.3059 εP*,HR -0.0817 εP*,HR -0.1004 εP*,HR -0.0595

Southeast Delta Southern Plains Mountain Pacific
εTC,HL -0.0399 εTC,HL -0.0079 εTC,HL -0.0020 εTC,HL -0.0022 εTC,HL -0.0015
εTC,HR -0.0116 εTC,HR -0.0111 εTC,HR -0.0031 εTC,HR -0.0009 εTC,HR -0.0004
εP*,HL -0.0827 εP*,HL -0.0153 εP*,HL -0.0001 εP*,HL -0.0173 εP*,HL 0.0119
εP*,HR -0.0461 εP*,HR -0.0334 εP*,HR -0.0204 εP*,HR -0.0085 εP*,HR -0.0020



Table 4:  P*, P and ADJP measures, temporal and spatial

overall average 1960s 1970s 1980s 1990s
SQP* 0.0884 SQP* 0.0333 SQP* 0.0737 SQP* 0.1162 SQP* 0.1407
SQP 0.0620 SQP 0.0418 SQP 0.0825 SQP 0.0817 SQP 0.0303
ADJP 0.8820 ADJP 1.3110 ADJP 1.1294 ADJP 0.6833 ADJP 0.2625

Northeast Corn Belt Lake States Northern Plains Appalachian
SQP* 0.0227 SQP* 0.2043 SQP* 0.1361 SQP* 0.1088 SQP* 0.0490
SQP 0.0168 SQP 0.1614 SQP 0.0977 SQP 0.0731 SQP 0.0388
ADJP 0.8786 ADJP 1.0825 ADJP 1.0917 ADJP 1.0284 ADJP 0.9182

Southeast Delta Southern Plains Mountain Pacific
SQP* 0.0923 SQP* 0.1356 SQP* 0.1641 SQP* 0.0334 SQP* 0.1717
SQP 0.0793 SQP 0.0790 SQP 0.0741 SQP 0.0180 SQP 0.1190
ADJP 1.0717 ADJP 0.7611 ADJP 0.5429 ADJP 0.6493 ADJP 0.8190



Appendix Table A1:  Coefficient Estimates 
Estimate t-statistic Estimate t-statistic Estimate t-statistic

δF1 -0.139 -5.74 αPFCN 0.036 3.55 δHLDP 0.0005 0.77
δP1 -0.190 -6.32 αFDP -0.002 -0.83 δLDHR 0.00004 1.68
αLDL -0.013 -2.09 δLDA -0.971 -76.43 δLHR 0.0001 3.08
αLDK 0.082 8.12 δLA -0.921 -54.45 δKHR -0.0001 -5.42
αLDF -0.004 -0.91 δKA -0.900 -66.55 δFHR -0.0001 -2.88
αLDDF 0.012 3.61 δFA -0.905 -58.76 δHRDF -0.00001 -0.89
αLDFCT -0.025 -3.48 δADF 0.015 4.90 δMHR -0.0006 -8.24
αLDFCN -0.007 -0.97 δPA -0.931 -65.03 δPHR -0.0001 -3.61
αLDM -0.034 -3.74 δADP -0.001 -0.56 δHLDP -0.00003 -2.18
αLDP 0.006 1.19 δAPCT 0.026 2.43 γAA -0.0003 -0.43
αLDDP -0.012 -3.21 δAPCN -0.014 -1.29 γCC -0.0011 -3.13
αLDPCT 0.001 0.09 δAFCT -0.013 -1.07 γHLHL 0.00003 1.86
αLDPCN 0.013 1.50 δAFCN -0.029 -2.44 γHRHR 0.00000001 1.41
αLK 0.012 1.65 δLDC -0.623 -87.22 γAt -0.0018 -26.53
αLF -0.022 -1.93 δLC -0.584 -55.48 γCt -0.0018 -28.78
αLDF 0.013 1.30 δKC -0.576 -88.39 γHLt -0.0001 -1.54
αLFCT 0.026 1.47 δFC -0.571 -69.82 γHRt 0.000001 1.27
αLFCN 0.075 4.46 δCDF 0.004 2.00 γAHL 0.0003 2.20
αLM 0.234 8.70 δPC -0.613 -84.63 γCHL 0.0005 3.62
αLP 0.016 2.30 δCDP -0.001 -0.49 γHLHR 0.000005 2.20
αLDP -0.001 -0.15 δCPCT 0.021 4.48 γAHR 0.00001 2.43
αLPCT 0.014 1.21 δCPCN 0.009 2.43 γCHR -0.00001 -2.85
αLPCN -0.0004 -0.04 δCFCT -0.011 -1.81 γAC -0.0016 -2.60
αKF 0.019 3.40 δCFCN -0.006 -1.23 ρ 0.835 85.77
αKDF 0.034 10.25 δLDt 0.004 5.67 ρL 0.607 54.85
αKFCT 0.024 2.08 δLt -0.009 -10.71 ρF 0.786 59.89
αKFCN 0.016 1.30 δKt -0.013 -9.63 ρM 0.883 114.40
αKM -0.066 -5.01 δFt -0.003 -4.17 ρP 0.967 294.84
αKP 0.031 3.90 δtDF 0.005 4.62 ρLD 0.896 108.39
αKDP 0.018 4.09 δMt -0.023 -8.54 ρK 0.954 284.05
αKPCT 0.028 1.68 δPt 0.003 2.29
αKPCN -0.004 -0.20 δtDP 0.005 4.22 Equation:R-squared
αFM 0.047 4.07 δtPCT 0.010 4.84
αMDF 0.0004 0.03 δtPCN 0.022 10.52 TC 0.989
αMFCT 0.161 6.27 δtFCT 0.004 4.75 L 0.974
αMFCN 0.169 6.16 δtFCN 0.007 8.89 F 0.932
αMP -0.019 -2.16 δLDHL 0.002 1.18 M 0.970
αMDP 0.043 4.15 δLHL -0.009 -3.52 P* 0.966
αMPCT 0.088 4.46 δKHL -0.002 -1.14 LD 0.999
αMPCN 0.042 1.87 δFHL 0.0001 0.06 K* 0.996
αFP 0.008 2.25 δHLDF -0.001 -1.60 MCA 0.942
αPDF 0.013 3.38 δMHL -0.012 -2.56 MCC 0.920
αPFCT 0.007 0.79 δPHL -0.002 -1.85


