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Evaluating Forecasts of Discrete Variables:   
Predicting Cattle Quality Grades 

 
Abstract 
  

Little research has been conducted on evaluating out-of-sample forecasts of limited 
dependent variables.  This study describes the large and small sample properties of two 
forecast evaluation techniques for limited dependent variables: receiver-operator curves 
and out-of-sample-log-likelihood functions.  The methods are shown to provide identical 
model rankings in large samples and similar rankings in small samples.  The likelihood 
function method is slightly better at detecting forecast accuracy in small samples, while 
receiver-operator curves are better at comparing forecasts across different data.  By 
improving forecasts of fed-cattle quality grades, the forecast evaluation methods are 
shown to increase cattle marketing revenues by $2.59/head. 
 
Key Words:  forecasting, likelihood functions, limited dependent variables, model 
selection, out-of-sample, quality grades, receiver-operator curves 
 

 

 



Evaluating Forecasts of Discrete Variables:   
Predicting Cattle Quality Grades 

 
Model selection is perhaps the most difficult task in applied economic analysis.  While economic 
theory assists in model formation, it rarely identifies a specific model.  Statistical criteria are 
often employed for further identification.  Many popular criteria are based on in-sample 
statistics, such as likelihood ratio tests and the Akaike Information Criterion.  Others are based 
on out-of-sample criteria.  In some settings out-of-sample criteria are preferred.  Neural 
networks, for example, are susceptible to over-fitting and require out-of-sample forecasts for 
validation.  Other times, the choice between in-sample and out-of-sample criteria is less clear and 
is determined by researcher preference.  For instance, Piggott placed similar weight on in-sample 
and out-of-sample criteria in selecting between fourteen demand systems.  Others place greater 
weight on out-of-sample than in-sample criteria.  Kastens and Brester argue that economic 
restrictions should be incorporated in demand systems, despite the fact that they are rejected in-
sample, because they improve out-of-sample forecasts. 
 
Comparing forecasts between models is relatively straightforward when the forecasted variable 
is continuous.  Typically, the model with lowest mean-squared-forecast error is preferred.  
Hypothesis tests such as the AGS test (Ashley, Granger, and Schmalensee) and a recently 
developed test by Ashley can be used to discern whether forecast errors from competing models 
are significantly different.  How one should compare forecasts of discrete variables has received 
less attention.  Despite the lack of work in this area, economists are faced with a plethora of 
problems where the variable of interest is discrete.  Examples include problems dealing with 
sample selection bias (Heckman), technology adoption (Roberts, English, and Larson), 
predicting turning points (Dorfman), consumer choice (Loureiro and Hine), and willingness-to-
pay (Loomis, Bair and Gonzalez-Caban; Haener, Boxall, and Adamowicz).  Clearly, researchers 
are in need of methods to evaluate the forecasting performance of models with limited dependent 
variables.  Moreover, as methods susceptible to over-fitting, such as neural networks, are 
increasingly applied to discrete dependent variables, forecast evaluation will become a necessary 
component of model selection.   
 
Forecasting limited dependent variables is more difficult than continuous variables.  For 
instance, suppose we are interested in forecasting a variable G, which can only take the values 
zero or one.  Standard logit and probit models forecast the probability G equals one.  Although a 
higher probability indicates a greater likelihood G will equal one, it is not clear what threshold 
this probability should exceed before officially forecasting "G = 1".  Often a threshold of 0.5 is 
used, but this choice is only desirable if the cost of misclassifying a "G=1" is equal to the cost of 
misclassifying a "G=0".1  Because the threshold choice is problem-dependent, general methods 
of model selection should not depend on a specific threshold.   
 
This suggests that forecasts of discrete variables should not be evaluated based on mean-squared 
error, as it requires the specification of a threshold.  Moreover, since the forecast will be either 
zero or one, the mean-squared error criterion will assign a confident correct forecast (such as a 
forecasted probability of 0.99) a score equal to a less-confident, but nevertheless correct forecast 
(such as a forecasted probability of 0.51).  The purpose of this paper is to analyze two methods 
for evaluating forecasts of limited dependent variables.  The first is borrowed from the medical 
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profession, and is referred to as receiver-operator curves (ROCs).  The second method entails 
ranking models by likelihood function values observed at out-of-sample observations.  We refer 
to this approach as the out-of-sample-log-likelihood function (OSLLF) approach. 
  
After outlining the two methods, we introduce the concept of divergent distributions, which is 
the source of forecast accuracy for limited dependent variables.  The greater the divergence, the 
greater the forecast accuracy.  We then show that ROCs and OSLLFs are both measures of 
divergence.  We then prove that both criteria will provide an identical model ranking and will 
choose the best model in large samples.  Simulations are then used to determine which criterion 
performs best in small samples.  ROCs are useful because they allow visual inspection of 
forecast performance and are absolute measures of forecast ability, where OSLLFs only provide 
relative measures of forecast accuracy.  However, if the task is to choose between two models, 
simulations reveal slight a preference for the OSLLF criterion.  Finally, we apply the model 
selection criteria to a problem recently posed by Lusk et al. involving the prediction of cattle 
quality grades.     
 

Forecasting Limited Dependent Variables 
 

Suppose the variable of interest, G, can only take on the values zero or one.  Most models do not 
output the forecasts "G=1" or "G=0", but instead output the probability that G will equal one.  
The researcher must then specify a threshold to officially forecast "G=1".  As mentioned 
previously, this threshold is problem specific.  Rather than rank models at one particular 
threshold, many in the medical profession have elected to rank models based on their forecasting 
ability at all threshold values. 
 
Model performance is often measured by the frequency of observations where "G=1" is correctly 
forecasted.  This measure is referred to the sensitivity of the model.  Sensitivity alone is an 
incomplete picture of model performance, because if the mean of G is high, even a naive model 
that always predicts "G=1" will obtain a high sensitivity score.  However, this naive forecast will 
rank low on the specificity scale, which is the frequency of forecasts where "G = 0" is correctly 
predicted.  When a low threshold is used, models will achieve a high sensitivity but a low 
specificity score.  A high threshold implies low sensitivity but high specificity.  To avoid the 
threshold-dependency problem, one can deem Model A superior in forecasting ability to Model 
B if it has a higher sensitivity and specificity at every threshold value. 
 
Receiver-operator curves (ROCs) provide a means of measuring forecast accuracy of limited 
dependent variables.  ROCs are attained by calculating the sensitivity (percent of correct "G = 1" 
forecasts) and specificity (percent of correct "G = 0" forecasts) for each possible threshold.  A 
ROC is then a plot of sensitivity on the y-axis against specificity on the x-axis for all thresholds.  
The ROC will have a negative slope, will be non-negative and have an upper bound of 2 .  An 
illustration is given in Figure 1, where one model's ROC clearly dominates another.  The process 
of picking Model A over Model B if A's ROC always lies above B's ROC is referred to in this 
paper as the ROC dominance (ROCD) criterion.2 

 
In some instances ROCs will cross, leading to an ambiguous model ranking using the ROCD 
criterion.  In these cases, to attain an unambiguous ranking, the model with the largest area 

2 



underneath its ROC can be chosen.  This area is obtained by performing integration of the 
distance from the origin to each point on the ROC over all thresholds, as demonstrated in Figure 
1.  This is referred to as the generalized ROC (GROC) criterion (Reiser and Faraggi).  Recent 
advances have made ROCs easier to use, as they can be estimated as smooth curves directly from 
data using maximum likelihood (Hsieh and Turnbull; Blume) and statistical tests are available 
for distinguishing significant differences in ROCs (Reiser and Faraggi; Venkatraman and Begg).   
 
The term "curve" is actually deceiving, since the functions generating ROCs are not necessary 
continuous.  Let  be the predicted probability GtP̂ t = 1 where "t" refers to an out-of-sample 

forecast.  Also, let "c" be the threshold where we predict Gt = 1 when .  The point on the 

ROC when c = 0.5 is 
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is an indicator equaling one if its argument is true and zero if false.  For continuous ROCs, the 
area underneath the ROC can be calculated as  
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ROCs are not necessarily continuous.  Imagine a model that perfectly predicts whether a variable 
will take the value zero or one, regardless of the threshold.  All points on this ROC will lie at the 
point (1,1).  The absence of a continuous curve does not prohibit integration of (1) though, nor 
does it preclude (1) from being a measure of forecast accuracy.  Integration of (1) for this perfect 
model yields a value of 2 and is the highest possible GROC value. 
 
One advantage of ROCs is that they allow visual inspection of forecast performance.  Moreover, 
since the value of the GROC criterion given in (1) must lie between zero and 2 , the measure 

2
GROC   is similar to the coefficient of determination in that it lies between zero and one.  The 

GROC criterion is an absolute measure of performance, allowing one to compare forecast 
performance across different data and models. 
 
A second potentially useful criterion for judging forecast performance of limited dependent 
variables is based on the Kullback-Leibler Information Criterion, which select models closest to 
the true data generating process (Stone; Shao).  This criterion selects the model with the highest 
log-likelihood function observed at out-of-sample observations.3  Originally, this was referred to 
as cross-validation, but over time "cross-validation" has taken on numerous definitions.  For 
clarity, we refer to this approach as the out-of-sample-log-likelihood function (OSLLF) 
approach.  A study has recently illustrated the usefulness of OSLLFs in selecting yield 
distributions (Norwood, Roberts, and Lusk), and has been found to select true models with a 
higher frequency than many competing criteria (Norwood, Ferrier, and Lusk).     
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The OSLLF criterion may be especially desirable in the discrete variable case because it can rate 
forecasting ability without requiring the specification of a threshold.  For variables that can only 
take the values zero or one, the OSLLF is calculated as 
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Evaluating forecasts using log-likelihood functions preserves information on a model's 
confidence that would be lost when using mean-squared error.  For example, one could forecast 
"G=1" whenever  and evaluate the mean-squared error.  However, this gives a correct 

forecast of P  the same score as a correct forecast of P , when it is obvious the 
second forecast should be scored higher.  The OSLLF criterion accounts for differing levels of 
model confidence by giving the first forecast a score of ln(0.51) and the second forecast a higher 
score of ln(0.99).  Contrary to the ROCs, a OSLLF does not provide a visual representation of 
forecast accuracy and is not an absolute measure of performance.  The OSLLF value from 
different data cannot be compared.  However, the next section provides evidence that the OSLLF 
criterion is a better measure of relative performance between models using the same data. 

5.0P̂t >

51.0ˆ
t = 99.0ˆ

t =

 
The next section shows that the predictive power of a model with a limited dependent variable 
depends on how  behaves when the dependent variable is one and when it is zero.  A concept 
of divergent distributions is introduced, where divergence is a measure of the distance between 
the distributions of when the dependent variable is one and when it is zero.  Predictive power 
is shown to be directly related to the degree of divergence.  We then illustrate that the ROCD, 
GROC, and OSLLF criteria are all measures of divergence with similar statistical properties. 

tP̂

tP̂

 
Divergent Distributions, Receiver-Operator Curves, and Log-Likelihood Functions 
 
When forecasting whether a variable Gt will equal zero or one, an index is usually used where a 
higher index value indicates a greater probability Gt = 1.  Conversely, a lower index value 
suggests a greater probability Gt = 0.  This index at observation t is denoted by and is assumed 
to lie between zero and one.  In economics, the index is usually generated from a model such as a 
logit model.  In the medical profession, the index is often the direct measurement of a medical 
test, such as a cholesterol level. 

tP̂

 
If a model has any predictive ability, the value of will tend to be larger when GtP̂ t = 1 than when 

Gt = 0.  For example, if Gt = 1, the average value of should be higher than when GtP̂ t = 0, i.e. 

( ) ( )0G|P̂E1G|P̂E tttt =>= .  Let ( )t0 P̂f  be the probability distribution of when GtP̂ t = 0 

and ( )t1 P̂f  be the distribution when Gt = 1.  If f0 and f1 are identical the model has no predictive 
power.  Moreover, models where f0 and f1 are further apart will have more predictive ability.  
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Hereafter, the distance between f0 and f1 is referred to as "divergence", where greater divergence 
implies greater distance. 
 
Figure 2 illustrates divergence for two hypothetical models.  The distributions are close together 
for Model B, indicating little divergence.  In this case, Model B provides very little information 
on the true value of Gt.  At a threshold of 0.5, where one forecasts "Gt = 1" if , an 
incorrect forecast is almost as likely as a correct forecast.  This is little improvement over a coin 
toss.  Conversely, due to the large divergence for Model A, at a threshold of 0.5 all forecasts will 
be correct.  The predictive pow r f a model stems directly from the degree of divergence 
between the distributions of 

0.5P̂t >

e o
( )t0 P̂f  and ( )t1 P̂f . 

 
Divergence is based on the intuitive notion that certain variables behave differently as the value 
of Gt differs.  To illustrate, suppose Gt indicates whether a steer grades choice or better (hereafter 
choice).  If Gt = 1 then the steer grades choice, while Gt = 0 indicates a grade of select or worse.  
The probability Gt = 1 may be given by the function ( )β̂XFP̂ tt = , where ( )β̂XF t

t β̂β̂X =

 could be a 

logistic or a normal cumulative distribution.  More specifically, suppose , where 
X

t,110 Xβ̂+
t,1 is the number of days the steer has been on feed.  More days on feed increases the 

probability of grading choice, so β .  If the steer truly does grade choice, then the expected 
value of X

0ˆ
1 >

t,1 is greater than when the steer receives a lower grade.  The variable "days on feed" 
behaves differently when the steer grades choice.  Not only will its expected value be higher, but 
the probability of days on feed exceeding a particular level will be higher when G = 1 than when 
G = 0.   
 
The greater the divergence in the distributions of days on feed, the more useful that variable is 
for forecasting grades.  If days on feed tends to remain close to 100 regardless of whether the 
steer grades choice or not, that variable provides little information.  Alternatively, if days on feed 
is almost always above 100 when steers grade choice, and almost always below 100 days when 
steers grade worse, that variable will yield accurate predictions.  The change in behavior of days 
on feed is an example of divergence.   
 

At any particular threshold "c", model sensitivity is described by 1 .  This is 

the frequency  will exceed "c" when G = 1, and thus describes the frequency of correct "G = 

1" forecasts at threshold c.  Similarly,  is the model specificity, which details 

the frequency of correct "G = 0" forecasts at threshold c.  By definition, the true ROC is the set 
of points { for all values of c.   
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The GROC and the OSLLF criteria are measures of divergence.  To demonstrate this, first 
consider the true GROC criterion value shown in (3). 
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Greater divergence can be defined as a simultaneous increase in the value of and a 
decrease in the value of ∀ c.  This essentially truncates 

( )cF0

( )cF1 ( )c0f towards zero and 
towards one.  It is obvious that this would increase the value of (3), implying (3) measures 

divergence.  The OSLLF also measures divergence.  The expected value of the OSLLF can be 
written as

( )cf1
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Truncation of ( )t0 P̂f towards zero can be achieved by decreasing the endpoint over which it is 

integrated by ε, while requiring it to still integrate to one.5  Truncation of ( )t1 P̂f  is obtained by 
increasing the beginning point over which it is integrated by ε, also requiring it integrate to one.  
Consider the partial effect this truncation has on the expected OSLLF value. 
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Since ε lies in the (0,1) range, ln(ε) will always be negative making (5) positive, proving that 
greater divergence increases the expected OSLLF value. 
 
This implies that ROCs and OSLLFs are both measures of divergence.  It does not imply that 
they are equally desirable criteria.  Next, we demonstrate that under a plausible assumption, the 
ROCD, GROC, and the OSLLF criteria will asymptotically provide identical model rankings.  
This assumption is referred to as the dual-divergence assumption.  When comparing two models 
in large samples, the dual-divergence assumption states that one model will always exhibit 
greater divergence than the other.  Let the superscript "i" on the term ( )ci

0F  refer to Model i.  The 
dual-divergence assumption requires that if Model A exhibits greater divergence when G = 0 

( ) ( )( )ccFcF B
0

A
0 ∀>

( ) ( )
, then Model A must also exhibits greater divergence when G = 1 

( )ccFcF B
1

A
1 ∀< .  If the assumption does not hold, then Model A could exhibit greater 
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divergence when G = 0 but less divergence when G = 1 compared to Model B, and it would be 
unclear which model displays greater total divergence. 
 
Consider again the example of predicting quality grades in cattle.  Suppose days on feed is the 
only variable that determined whether a steer graded choice.  Further, suppose that a steer grades 
choice always but only if days on feed ≥ 100.  Suppose days on feed is measured with error.  One 
cannot say with 100% certainty whether a steer will grade choice given the measured days on 
feed, but instead must express the probability of grading choice.  A logit model estimating 
whether a steer grades choice as a function of days on feed will specify as a continuous 

function in the (0,1) interval.  The function 
tP̂

( )t0 P̂f will contain mass over a series of points closer 

to zero, and the function ( )t1 P̂f will contain mass over points closer to one.  The dual-divergence 

assumption requires that if the measurement error increases, ( )t0 P̂F decreases and 

( )t1 P̂F increases at every .  Both distributions move closer together. tP̂
 
Now, suppose days on feed  can be measured perfectly.  In this case one can use the indicator 
function P to generate perfect forecasts.  The functions [ 100Iˆ

t ≥= feedondays ]
( )t0 P̂f and ( )t1 P̂f will now be centered with all their mass at zero and one, respectively.  

Divergence increases for both distributions ( )t0 P̂f and ( )t1 P̂f when moving from the 
approximating statistical model to the true deterministic model. 
 
We believe that this provides an accurate depiction of what happens when a model is replaced 
with another that better represents reality.  The new model contains more information, and 
divergence increases for both ( )t0 P̂f and ( )t1 P̂f .  At the very least, this provides us with a useful 
metaphor for characterizing models with more or less information.  We utilize this metaphor in 
the dual-divergence assumption. 

 
Large Sample Properties 

 
When calculating empirical ROCs, the empirical distributions ( )t0 P̂F̂ and ( )t1 P̂F̂ are used to 

calculate (3).  Asymptotically, ( )t0 P̂F̂ and ( )t1 P̂F̂ will converge to ( )tP̂0F and ( )tP̂1F by definition.  
Consider Models A and B.  The dual-divergent assumption implies that one model, say Model A, 
will display greater divergence and that the two conditions in (6) will hold. 
 

 (6)      
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( ) ( ) ccFcF
and
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B
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A
0

B
1

A
1

∀>
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This implies that Model A's ROC will always lie underneath Model B's ROC in large samples, 
and will be chosen under the ROCD and the GROC criterion.  Note that (6) implies6  
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which states that the expected value of is larger for Model A than Model B when GtP̂ t = 1, and is 
smaller for Model A when Gt = 0.   
 
It is now proven that, asymptotically, Model A will be ranked higher using the OSLLF criterion 
as well.  The difference in OSLLF values between Models A and B is 
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According to Slutsky's Theorem, (8) converges in probability to 
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Using the result from (7), we see that Model A will asymptotically obtain a higher OSLLF 
function, proving that asymptotically all three criteria will choose the same model.   

 
Small Sample Properties 

 
In small samples, or if the dual-divergence assumption does not hold, ROCs may cross.  The 
ROCD criterion will then yield an ambiguous model ranking.  In these cases, although the 
GROC and OSLLF criteria will provide an unambiguous ranking, they may not agree on the 
preferred model.  This begs the question which of the two criteria is "better".  We address this 
using a simulation.  Refer to Figure 3 where divergence is illustrated for hypothetical Models A 
and Models B.  It is obvious that Model A exhibits greater divergence, but the difference in 
divergence for the two models is not as stark as the example in Figure 2.  In seems plausible that, 
in finite samples, Model B may sometimes appear to exhibit greater divergence and will be 
chosen by the GROC and/or the OSLLF criteria.  Using simulations, we calculate the percent of 
times Model B is incorrectly chosen using each criteria.  The method with the lowest percentage 
of incorrect choices is deemed a better detector of divergence. 
 
The distributions in Figure 3 are assumed to be normal distributions truncated between zero and 
one.  The means of and  before truncation are assumed to be 0.3 and 0.7, while the 
means for and f  are 0.32 and 0.68, respectively.  The standard deviation for all 

( )cf A
0

( )cB
1

( )cf A
1

( )cf B
0
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distributions before truncation is 0.1.7  By this choice of parameters, Model A has greater 
divergence, but due to their similarities Model B may be chosen in small samples.  Since Model 
A exhibits greater divergence, it said to be superior.  In repeated samples it will provide better 
forecasts.  The true frequency at which Gt = 1 is set to 0.7 and the sample size is 50.  At each 
simulation, values of Gt are randomly chosen.  If Gt = 0, values of are randomly drawn from 

the distribution 
tP̂

( )t
A
0 P̂f  for Model A and ( )t

B
0 P̂f for Model B.  If Gt = 1, the values of are 

randomly drawn from the distribution 
tP̂

( )t
A P̂1f  for Model A and ( )tP̂B

1f  for Model B.  The random 
draws are then used to calculate the OSLLF value in (2).  The area underneath the ROC is 
measured by the integral given in (1). 
 
The preferred model at each simulation is the one with the largest OSLLF or GROC value.  After 
1,000 simulations, the OSLLF criterion chose the inferior model in 17% of simulations with a 
standard error of 0.0118, while the percentage for the GROC criterion was 23% with a standard 
error of 0.0133.8  Although the criteria performed similarly, the simulations suggest the OSLLF 
criterion is slightly better at detecting divergence.  This finding was robust across alternative 
means, standard deviations, and expected values for Gt. 
The next section applies the two criteria to a problem posed by Lusk et al. where a marketing 
strategy for fed-cattle entailed forecasting whether cattle will grade Choice or better.  Lusk et al. 
only considered one model for predicting choice.  The next section compares this model against 
several other forms to determine if better forecasting models exist.  The marketing simulation in 
Lusk et al. is repeated with a better forecasting model to estimate the monetary value of the ROC 
and the OSLLF criteria. 

 
Forecasting Fed-Cattle Quality Grades 

 
A larger portion of animals are being marketed on an individual basis, where they receive 
premiums and discounts for carcass and quality characteristics.  Schroeder and Graff illustrated 
the economic value of producers accurately knowing their cattle quality and marketing them 
accordingly.  Unfortunately, cattle quality is not known until after slaughter and producers must 
use forecasts of quality characteristics to determine the optimal marketing strategy.  Koontz et al. 
showed that profits could be enhanced through forecasting quality grades and sorting animals 
according to optimal marketing dates.  A number of observable factors, such as the number of 
days on feed, placement weight, genetics, etc. can be used to forecast cattle quality at slaughter.  
In addition to these measures, recent research has illustrated the ability of ultrasound 
measurements of ribeye area, backfat, and marbling to improve forecasts of cattle quality (Lusk 
et al.) 
 
In this paper, we seek to determine whether the aforementioned model selection criteria can be 
used to identify superior forecasting models of cattle quality.  We apply the model selection 
techniques to the data used in Lusk et al., which focused on the predictive power on ultrasound 
data.  The primary determinant of profitability on a grid is whether an animal grades Choice or 
higher (hereafter, Choice).  Lusk et al. used a logit model to predict whether an animal will grade 
Choice based on the several variables mentioned, including ultrasound measures.  The authors 
demonstrated that predictions from the logit model incorporating ultrasound data could enhance 
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revenue by $4.16/head over models that ignored ultrasound information.  Lusk et al. also showed 
that if the model forecasts were 100% accurate, revenue would increase by $21.35/head. 
 
The latter result exemplifies the potential economic value in determining better forecasting 
models.  In the following, we seek to determine whether the model selection criteria can be used 
to identify models with superior forecasting ability, which in turn would result in greater 
economic value associated with ultrasound technology.   
 
Let G = 1 if the quality grade is Choice or better and G = 0 otherwise.  In addition to the logit 
model used in Lusk et al., a probit model and neural network model are also used to estimate the 
probability G = 1.  Moreover, different combinations of explanatory variables are evaluated for 
the logit and probit models.  The probability of achieving a Choice or better grade was stated as a 
function of ribeye area (REA), backfat (BF), marbling (MAR), each measured using ultrasound.  
Other attributes not measured by ultrasound are days-on-feed (DOF), placement weight (PLWT), 
and a dummy variable indicating whether the dire or dam was an Angus (ANGUS). 
 
Lusk et al. evaluated the two sets of variables using a logit model.  One form uses ultrasound 
variables and the other form does not. 
 
(10)   Variable Set 1:  Probability (G = 1) = f(DOF, PLWT, Angus) 
 
(11)   Variable Set 2:  Probability (G = 1) = f(REA, BF, MAR, DOF, PLWT, Angus)  
 
Alternative specifications are also developed by letting f(.) be a logit or probit model or a neural 
network.  For the logit and probit models, the following additional explanatory variables are 
considered. 
 

(12)  Variable Set 3:  Probability (G = 1) = f(REA, BF, MAR, DOF, PLWT, Angus, REA2, 
 MAR2) 
 
(13)  Variable Set 4:  Probability (G = 1) = f(REA, BF, MAR, DOF, PLWT, Angus, REA*MAR) 
 
(14)  Variable Set 5:  Probability (G = 1) = f(REA, BF, MAR, DOF, PLWT, Angus, REA2, 
 MAR2, REA*MAR) 
 
This provides a total of eleven models.  Estimation of probit and logit models were accomplished 
using standard maximum likelihood procedures in MATLAB.  The neural network model was a 
multilayer perceptron network with two hidden layers, which can be written as 
 

(15)  Probabilit    ( )











+











++

++++
=== ∑

=

2

1j
0

j,6j,5j,4

j,3j,2j,1j,0
jjt W

AnguswPLWTwDOFw
MARwBFwREAww

fWFP̂1Gy 

 
where Wj and wj,i denote parameters to be estimated, fj is a symmetric logistic function and F is a 
logistic function.  The weights were estimated by maximizing the binomial log-likelihood 
function with a weight decay term as shown below. 
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In (16), λ is a weight decay coefficient used to prohibit the network from over-fitting the data, 
and is set equal to 0.005 (Chavarriaga).  The weight decay term is not included when calculating 
the OSLLF value.  The estimation, performed in MATLAB, used 100 different starting values 
with the non-linear constraint 0.05 ≤  ≤ 0.95.tP̂ 9  
 
A total of 162 observations are available for estimation and forecasting.  The forecasts are 
accomplished using grouped-cross validation, where for each validation, 27 observations are left 
out of the estimation and used for forecasting.  This follows Zhang's suggestion that there be at 
least five validation groups.  For the 162 forecasts, the OSLLF and the GROC values are 
calculated for each model and shown in Table 1.   

 
Model Selection Results 

 
As shown in Table 1, both criteria agreed on the three highest ranked models and chose the logit 
model using variable set 3 (logit3) as the best forecaster.  Models without ultrasound data (logit1 
and probit1) and the neural network (neural) performed poorly.  In addition to comparing criteria 
in Table 1, models can also be compared by plotting the ROCs as shown in Figure 4.  The ROCs 
for logit3 and neural exhibit ROC dominance over logit1, illustrating the contribution of 
ultrasound data to forecasts.  Although logit3 does not ROC dominate neural, its ROC lies above 
that of neural most of the time. 
 
In the Lusk et al. article, in-sample predictions from logit2 were compared with in-sample 
predictions from logit1 to estimate the returns from ultrasound data.  Here, we are interested in 
determining how much returns might increase if ultrasound data were used in conjunction with a 
better forecasting model.  To determine this, the cattle marketing simulation in Lusk et al. was 
repeated; however, instead of using in-sample predictions, we focus on out-of-sample predictions 
as would be the case in actual cattle marketing decisions.  The simulation involved using 
forecasted quality characteristics to determine whether an animal should be marketed on a live 
weight, dressed weight, or grid basis.  By measuring the increase in revenues using logit3 instead 
of logit2, we can estimate the value of model selection criteria in cattle marketing decisions. 
 
Simulation results indicate that the average revenue obtained using marketing methods based on 
predictions from logit2 was $861.59/head, which is $2.59/head lower than the average revenue 
obtained using marketing methods based on predictions from logit3, which was $864.18/head.  
The marginal cost of using model selection criteria is relatively inexpensive.  Thus, the 
$2.59/head benefit from model selection criteria is quite large, especially in comparison to the 
$4.16/head value of ultrasound technology reported in Lusk et al. 

 
 Discussion 

 
This study is motivated by the frequent use of discrete variable models in economic analysis and 
the importance of forecast evaluation.  Research on how one should evaluate forecasts of limited 
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dependent variables is rare, especially in the agricultural economics literature.  This paper 
evaluates two methods for ranking forecasts of limited dependent variables:  receiver-operator 
curves (ROCs) and out-of-sample-log-likelihood functions (OSLLFs).  Both criteria are shown to 
be statistically valid measures of forecast performance, and share similar large and small sample 
properties.  The theoretical prediction that the model selection criteria will frequently choose the 
same model is verified by an empirical analysis of cattle grades. 
 
The theoretical and empirical examples here assume a single variable which takes on the values 
zero or one.  The ROC and OSLLF criteria are easily extendible to multiple dependent variables, 
such as multiple recreational site choice.  In these cases, there will be a separate receiver-
operator curve for each dependent variable.  The OSLLF is more easily implemented by 
specifying a multivariate likelihood function.  A multivariate function also incorporates 
information on error correlations across dependent variables, which should reap efficiency gains 
similar to those in seemingly unrelated regressions.  This across-equation information is not 
present in the generalized ROC (GROC) criterion.  Given that simulations reveal a slight 
preference for the OSLLF criterion and it is easier to calculate, we recommend using the OSLLF 
for relative model comparisons when the dependent variable can take on multiple discrete 
outcomes. 
 
Receiver-operator curves are more suited to absolute model comparisons, as they allow visual 
inspection of forecast performance.  Also, since the GROC value divided by 2 is bounded 
between zero and one, it is an absolute measure similar to the coefficient of determination.  As 
with the coefficient of determination, the GROC criterion can be used to make broad 
generalizations across data as those made with the coefficient of determination, such as the 
difference in fit between time-series and cross-sectional data. 
 
Several challenges remain.  Emerging classification techniques, such as vector classification and 
machine learning, do not forecast probabilities, but output either zero or one.  Neither the OSLLF 
or the ROC can be used with these methods.  Also, while both criteria will provide an 
unambiguous ranking, they do not indicate whether those rankings are significant.  Would the 
highest ranked model in the empirical section remain the highest ranked in repeated samples?  
Tests are available to determine if ROCs are significantly different, but it is unclear whether they 
are powerful tests.  Statistical tests like the AGS test or the new Ashley test, intended for 
continuous variables, could perhaps be extended to the limited dependent variable case.  This 
study provides the statistical foundation for addressing these challenges. 
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Footnotes 
 

1)  For example, in cancer detection where G = 1 indicates cancer and G = 0 indicates no cancer, 
a lower threshold than 0.5 would be used.  This is because the cost of inaccurately predicting “no 
cancer” can be deadly for the patient, while the cost of inaccurately predicting “cancer” is 
smaller. 
 
2)  This term is chosen by the authors, as no unique name for this approach is offered in the 
literature. 
 
3)  "Closeness" here is defined as the logarithm of a candidate model's likelihood function value 
minus the logarithm of the true model's likelihood function value.  The Kullback-Leibler 
Information Criterion states that models with higher expected log-likelihood function values 
contain greater information.  Models are often estimated by maximizing a log-likelihood 
function.  If in-sample observations are used, the likelihood function will be higher than its 
expected value due to the fact that some of the observations are used for parameter estimation 
(Akaike; Sawa).  To correct for this bias, one can provide a penalty that reduces the in-sample 
likelihood function value according to the number of parameters, or employ out-of-sample 
observations, where no penalty is needed. 
 
4)  The variable Gt is not viewed as a random variable here, because we are holding the set of 
observations used for forecasting constant.  Instead, we are evaluating the statistical properties of 
a single model's forecasting ability at a fixed set of observations. 
 
5)  That is, if f(X) is a probability density function with the support (0,1), the integral 

must equal one.  If f(X) is truncated from below at η, the new integral will only equal 

one if it is multiplied by the constant 1 , i.e. 

( )∫
1

0

dXXf

( )∫−
1

η

dXXf
( )

( )
1

dXXf1

dXXf

1

η

η

0 =
− ∫

∫
. 

 
6)  Equation (6) uses the fact that, so long as Y is nonnegative and has an expected value less 

than infinity, where F(Y) is the cumulative distribution function.  This can 

be proven by integrating  using integration by parts. 

( ) ( )( )∫
∞

−=
0

dYYF1YE

( )∫
∞

0

YYdF

 
7)  Random draws from the truncated normal is performed using the acceptance-rejection 
method.  Random numbers are generated from the normal distribution with the specified mean 
and standard deviation, but are only accepted if they lie between zero and one. 
 
8)  It is worth noting that if the sample size is increased to 500 both percentages fall below 1%. 
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9)  Without this constraint, neural networks tend to set equal to zero or one at one or more  
observations, which are outside the domain of the log-likelihood function. 

tP̂
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Table 1 
Fed-Cattle Quality Grade Forecast Evaluation Results 

Model Average Out-of-
Sample-Log-
Likelihood 

Function Valuea 
(Rank)b 

Generalized ROC 
Measurec 

(Rank) 

   
Logit Using 
 

  

Variable Set 1d (logit1) 
 

-0.6692 (11) 0.9403   (9) 

Variable Set 2 (logit2) 
 

-0.6137   (5) 0.9485   (4) 

Variable Set 3 (logit3) 
 

-0.5955   (1) 0.9527   (1) 

Variable Set 4 (logit4) 
 

-0.6178   (6) 0.9470   (5) 

Variable Set 5 (logit5) 
 

-0.5972   (2) 0.9498   (2) 

Probit Using 
 

 

Variable Set 1 (probit1) 
 

-0.6691 (10) 0.9400 (10) 

Variable Set 2 (probit2) 
 

-0.6239   (7) 0.9453   (6) 

Variable Set 3 (probit3) 
 

-0.6028   (3) 0.9495   (3) 

Variable Set 4 (probit4) 
 

-0.6301   (8) 0.9360 (11) 

Variable Set 5 (probit5) 
 

-0.6104   (4) 0.9433   (7) 

  
Neural Network (neural) -0.6308   (9) 0.9419   (8) 
   

a  The OSLLF value divided by 162 forecasts. 
b  Numbers in brackets are the model rankings for each criteria.  A rank of 
one indicates the best model while a rank of 11 is the worst model. 
c  This measure was calculated as (1) and is not divided by 2 . 
d  Variable Set 1 is given by equation 10 and Variable Set 5 is given by 
equation 14. 
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 Figure 1 
Illustration of Receiver-Operator Curves (ROCs)  
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 Note:  Sensitivity is the percent of correct G=1 forecasts, and specificity is the 
percent of correct G = 0 forecasts, given a particular threshold.  A superior 
forecasting model will have a higher sensitivity for every value of specificity, 
and vice-versa.  The model whose ROC lies completely above another is 
deemed the superior model.  Consider the two models at a threshold of 0.3.  At 
this threshold, the superior model has a higher percent of correct G = 1 and G 
= 0 forecasts.  Thus, at that threshold, it is a better model.  If the curves cross, 
one can pick the model with the largest area underneath the ROC.  The area 
can be measured by the integral of the ray drawn above over all threshold 
values. 
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Figure 2 

Degree of Divergence For Two Hypothetical Models 
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Figure 3 

Simulation Exercise 
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Figure 4 
Receiver-Operator Curves For Selected Logit And 

Neural Network Models 

 

 

 

 

 

 

 

 


