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Off-Farm Labor and the Structure of U.S. Agriculture: The Case of Corn/Soybean Farms

Abstract

While the growing importance of off-farm earnings suggests large benefits accrue to farmers from efforts
to expand off-farm income opportunities, survival still depends on greater efficiency. To comprehensively
gauge the economic health of farm operator households weinterpret off-farm income as an output along
with corn, soybeans, livestock, and other crops. To accomplish this task we use two related methodol ogies.
First, using 2000 data, we setup a multiactivity cost function to analyze labor allocation decisions within the
farm operator household and also to estimate returns to scale and scope. Second, using 1996-2000 data,
we follow an input distance function approach to estimate returns to scale, technical progress, cost
economies, and technical efficiency--and compare the relative performance of farm operator households
with and without off-farm wages and salaries. Our preiminary results suggest that over our sample period,
scale economies are a primary factor driving up farm operator household size and decreasing the
competitiveness of small farm operator households in the base farm operator household modd where off-
farmincomeis constrained to zero. But small farm operator households appear to achieve efficiency levels
more comparableto larger farm operator households when off-farm income is accommodated. The evidence
therefore suggests that while short-falls in these productivity components are decreasing the
competitiveness of small farm operator households as agricultural structure changes, corn/soybean farm
operator households have partially adapted to such pressures by increasing off-farm income and, therefore,

achieving economies of scope.



Off-Farm Labor and the Structure of U.S. Agriculture: The Case of Corn/Soybean Farms*
Introduction

While the growing importance of off-farm earnings suggests large benefits accrue to farmers from efforts to expand
off-farm income opportunities, survival still depends on greater efficiency (USDA 2001). To comprehensively gauge the
economic health of farm operator households' we interpret off-farm income as an output along with corn, soybeans,
livestock, and other crops. To accomplish this task we use two related methodologies. First, using 2000 data, we setup a
multiactivity cost function to analyze labor allocation decisions within the farm operator household and also to estimate
returns to scale and scope. Second, using 1996-2000 data , we follow an input distance function approach to estimate
returns to scale, technical progress, cost economies, and technical efficiency--and compare the relative performance of
farm operator households with and without off-farm wages and salaries. Therole of off-farm income in analyses of farm
structure and economic performance has been largely neglected .

Off-farm income and non-farm business opportunities have become increasingly important in many agricultura
areas in recent years. Asnoted in USDA (2001), most rural communities that are dominated by small farms are no
longer “anchored” by farming, and in fact non-farm income sources have dominated net farm income in the U.S for
many years.? The Economic Research Service (ERS) has developed a farm typology (Hoppe, Perry, and Banker) that
groups farms based on the sales, occupation of operator, farm assets, and total household income (Table 1). Using these
groupings Table 2 identifies off-farm income by typology group for the U.S. for 1993 to 1999. The table shows that for
al family farms, mean (per farm) and aggregate off-farm income grew dramatically in the short time between 1993 and
1999, almost twice as fast as the mean U.S. household income. While off farm income is clearly concentrated in the
residential farms, it is also important in smaller and intermediate commercia farms. Among large and very large family
farms off-farm income is less important relative to on farm income, but , nonetheless, represents a sizeable income
stream as shown by the 2000 datain Table 2.

TheMethodologiesfor Analysis

* The opinions and conclusions expressed here are those of the authors and do not represent the views of the U.S.
Department of Agriculture.

1 For purposes of our analysis farm operator household income includes income from farm activities and wages and
salaries that the operator and all other household members received from off-farm sources. For our base farm operator
household model we constrain al such off-farm income to zero.

2 Income from farming in the U.S., measured by net-farm cash income, was $55.7 billion in 1999, as compared to
income from off-farm sources of $124 billion (USDA 2001b).



Cost Function Approach

The well-devel oped restricted cost function (Diewert; Lau) is used to estimate theoretically consistent demand and
cost equations. Consider n outputs, m variable inputs, and s fixed inputs and other exogenous factors such as location or
weather proxies, Y = (Y4,...Y,)' denotes the vector of outputs, X = (Xy,...X;,)" denotes the vector of variable inputs, Z =
(Z4,...Z3)" isthe vector of nonnegative quasi-fixed inputs and other (exogenous) factors, and W = (W,...W,,))' denotes the

price vector of variableinputs. The restricted profit function is defined by:

@ C(WY,2) = Min[W'X: XOT].
The production possibilities set T is assumed to be nonempty, closed, bounded, and convex. Under these assumptions
on the technology, the restricted cost function is well defined and satisfies the usual regularity conditions (Diewert). In
particular, with some of the inputs fixed, C is homogeneous of degree onein variable input prices and quasi-fixed input

guantities. Using the Shephard lemma, the per acre input demand functions are given by the following equation:

_dC(W,Y,Z)
oW

@) X
The Empirical M odel
The empirical model uses a normalized quadratic variable cost function, which can be viewed as a second-order Taylor
series approximation to the true cost function (Diewert). With symmetry imposed by sharing parameters and linear
homogeneity imposed by normalization, this functional form may be expressed as:
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where W is avector of normalized variableinput prices, & isascalar parameter, while a, b, and c are vectors of
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constants of the same dimension asW, Y and Z. The parameter matrices B, C, and H are symmetric and of the
appropriate dimensions. Similarly E, F, and G are matrices of unknown parameters.

Using equations (2) and (3), the per acre demand function for variable inputsis:

@) X(PW,2) = 4yCW,Y,Z2) = b + GP+BW + EZ



Considering the case of afive outputs (corn, soybeans, other crops, livestock, and operator and spouse off-farm labor),
four inputs (hired labor, operator labor, spouse labor, miscellaneous inputs, and pesticides), using the pesticides price as
the numeraire, and appending disturbance terms, the per acre demand functions and the

cost function become

(9 X1= ar*BraW, + BioW, +B1a, + B1aW, +E11Y1+ E12Y 2+ E1aY3* E14Y 4+ E15Y5+ F11Z1% F12Z2% €1
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Input Distance Function Approach

Following Morrison Paul et.al. the analysis of production structure and performance requires representing the
underlying multi-dimensional (-input and -output) production technology. This may be formalized by specifying a
transformation function, T(X,Y,R)=0, which summarizes the production frontier in terms of an input vector X, an output
vector Y, and a vector of external production determinants R. This information on the production technology can
equivalently be characterized viaan input set, L(Y,R), representing the set of all X vectorsthat can produce Y, given the
exogenous factors R.

An input distance function (denoted by superscript I) identifies the least input use possible for producing the

given output vector, defined according to L(Y,R):

(10) D'(X,Y,R) = max{p: (¥/p) OL(Y,R)} .

It is therefore essentially a multi-input, input-reguirement function, allowing for deviations from the frontier. Itisalso
conceptually similar to acost function, if allocative efficiency is assumed, in the sense that it implies minimum input or
resource use for production of a given output vector (and thus implicitly costs). However, it doessoinaprimal or

technical optimization or efficiency context with no economic optimization implied.



For our preliminary treatment, the Y vector contains Yy = crops (Corn, soybeans, and other crops), Y.=livestock
(A, animal), and, for our off-farm comparison model, Y, * = crops and livestock (c, animal), and Y,* =off-farm income
(1), asfarm “outputs’. With Y,* included one might think of Y as amulti-activity rather than a multi-output vector. For
our base model with just Y; and Y, distinguished we will call our “constrained farm operator household” model, where
off-farm incomeis set to zero, and the model with Y,* included will be denoted our “farm operator household” model.
The components of X are defined as X; = land (LD), X, = hired labor (L), X3 = operator labor (including hours worked
off-farm), (K), X,=spouse labor (including hours worked off-farm), (E), Xs= capita (F), and Xs= materials (M).

A timetrend, t, is the only R component. We wish to establish patterns of measured productivity growth across
space, size and farm/farmer characteristics, rather than attempt to explain al variation in the initial step by including all
potential driving forces of the production process in the functional specification.

The deterministic and stochastic efficiency models used for our analysis are based on characterizing the input
distance function, given these definitions of Y, X and R, dternatively using linear programming and econometric
methods. Estimation of (10) by either method is designed to represent the “distance” from the frontier, or technical
inefficiency, assuming aradial contraction of inputs to the frontier (constant input composition). Thisratio of estimated
potential efficient input use compared to the actual observed use will be denoted TE (for technical efficiency). In
addition, with the time dimension explicitly incorporated in the model, we can separately identify shiftsin the frontier
over time (t) dueto technical progress, or TP. And if variable returns to scale are allowed for, variationsin the
input/output ratio at different scale levels may be identified, which we will call SE (scale economies). CE (cost
economies) will therefore signify the combined scale and scope economy measure.

The Nonparametric (DEA) Approach

Functional relationships representing production processes, such as the distance function discussed above, only loosely
represent a foundation for deterministic programming-based data envelopment analysis (DEA) procedures. Such an
input-oriented linear programming problem may formally be written as:

Min g, 8,st.-Yi+ YA=0, 85 -XA20,N'A=1and | =0,



where 8 is ascaar representing the efficiency score for theith firm, A isan Nx1 vector of constants, NI is a Nx1 vector
of ones, and the NI’ A =1 convexity constraint allows for variable returns to scale (VRS).> For our empirical
implementation, the solutions to this problem were computed using Tim Coelli’s DEAP program.

The results from this DEA framework may be used not only to determine the efficiency scores for each
observation, by establishing measures of 8 representing the deviation from the existing technical frontier, but also to
compute measures of technical progress (TP), or shiftsin the frontier between time periods. Returnsto scale or scale
economy (SE) measures may also be derived from associated measures of “scale inefficiency”, combined with
information from the DEAP program on whether increasing or decreasing returns to scale are implied by the estimates.

These measures are computed within the DEAP program used for analysis, and reported as SECH, TechCH, and PECH.

In the DEA context, therefore, our technical progress measure TP = TechCH indicates positive technical change from
period ty to t; — an inward shift of the input requirement function — if TP > 1, and the deviation from one shows the
proportional change.

Measuring scale economies — g(t)— involves characterizing the efficiency scores from a CRS (constant returns to
scale) as compared to aVRS model. Such ameasure, TEcrs/TEyrs, Will fall short of 1 if either increasing (IRS) or
decreasing (DRS) returns to scale exist, since the CRS frontier will aways envelope the VRS frontier. Comparing
measured TErs to a corresponding measure constrained to non-increasing returns to scale, however, shows whether
increasing or decreasing returns areimplied. We can thus define our returns to scale or scale economy measure as SE =
TEcrs/TEvrs if IRS prevails, and SE = TEr/TEcrs for DRS. SE<1 then impliesincreasing returns to scale, since it
indicates the proportion input use must increase to generate a 1 percent increase in outputs.

In turn, to establish efficiency levels, or the distance from the frontier by observation, we wish to measure
D'11(Yi.Xw) and D'io( Yo, Xio), respectively, for time periodst; and to, rather than their ratio. These efficiency “scores”,
alowing for VRS, are presented in the DEAP program as VRS TE; we will cal such ameasure TEygs, or smply TE.
The shortfall of thisindex from one indicates the proportiona deviation from full technical efficiency in that time period;
that is, 6; indicates the proportion by which inputs could contract and maintain the same output level.

The Parametric (SPF) Approach

3 See Codlli et d. (1998) for an overview of these procedures and extensive references to more rigorous treatments.



As described in Morrison et.al. stochastic production frontier (SPF) measurement involves econometric estimation of
theinput distance function D,(X,Y,R), after adapting for theoretically required regularity conditions, making a functional
form assumption, and specifying a stochastic structure allowing for both a white noise error and a one-sided error
representing deviations from the production frontier.

The first of these tasks requires imposing the condition that an input-oriented distance function be
homogeneous of degree onein the inputs. Analogous to the output distance function case described by Lovell et al.
(1994), this constraint can be imposed on the input distance function through normalization by one input. Thisis based
on the definition of linear homogeneity, D'(cwX,Y,t) = wD'(X,Y,t) for any w>0; o if wis set arbitrarily at 1/X;, we obtain
D'(X,Y,t)/X; = D'(X/Xy,Y,t) = D'(X*,Y,t) (wheret is the only component of the R vector and X* represents a vector of
input ratios normalized by input X;). Writing the distance function accordingly, assuming it can be approximated by a

translog functional form to limit a priori restrictions on the relationships among arguments of the function, we obtain:

(loa) In Dlit/X]_’it = GO+ att+ att tz + Zm amln X*mit + 5 Zm Zﬂ an In X*mit In X*nit + Zm ymt In X*mitt
+ 20 INYige + S Y InYigr t+ .5 5 3 Ba In Yige In Vi + 2 2 B IN Yige IN X* i, OF
(lOb) 'In Xl’it: GO+ att+ att t2+ Zm amln X*mit+ 5 Zm Zﬂ anln X*mitln X*nit+ Zm ymtln X*mitt

+ 5 0 In Yige + S Ve In Yige t+ .5 5 5 B In Yige In Yiig + 2 S Bin IN Yige In X* i - In DYy

wherei denotes farm and t time period. This functional relationship, which embodies afull set of interactions among the
X, Y and t arguments of the distance function, can more succinctly be written as-In Xy = TL(X/Xy,Y,t) = TLOX*,Y 0. If
X istaken to be land, therefore, the function is essentially specified on a per-land-mass basis, which is consistent with
much of the literature on farm production and productivity in terms of yields.

Theresulting -In X; = TL(X*,Y,t) + v - u function (with the sub-scripts suppressed for notational simplicity) may
be estimated by maximum likelihood (ML) methods, to impute the TE measures as the distance from the frontier. We
have used Tim Coelli’s FRONTER program, based on the error components model of Battese and Codlli (1992), for this
purpose (see aso Aigner et.a. and Meeusen and van den Broeck). For the SPF model -u thus represents inefficiency;
the efficiency scores generated by FRONTIER essentially measure exp” = D'(X*,Y,t). Thisis therefore our measure of

TE.



In turn, the parameter estimates from the model may be used directly to construct our technical progress measure,
based on the distance function elasticity o, = dn D'(X,Y,t)/ét — or more explicitly in terms of input requirements and
the estimating equation as &yy; = -dln X/t (which we have done using PC-TSP). This measure, expressed in terms of
growth rates, reflects the potential overall contraction in inputs over time, for agiven input composition (since the X*
ratios are held constant by definition). Technical progress therefore impliesIn TP = gy > 0, or TP = exp(exy) > 1. So
the proportion by which TP exceeds (falls short of) 1 indicates the extent of technical progress (regress).*

The SPF-based scale economy measure may also be computed from the estimated model via derivatives or scale
elasticities: -&py = -Zndn D'(X,Y,1)/dn Y,, = &y for M outputs Y ., (similarly to the treatment in Baumol, Panzar and
Willig, 1982 for a multiple-output cost model, and consistent with the output distance function formulain Fare and
Primont, 1995). However, our inverse measure is more comparabl e to the cost literature, where the extent of increasing
returns or scale economies are implied by the short-fall of the measure from 1. Again, this measure is based on
evaluation of (scale) expansion from a given input composition base.

Finally, note that this measure actually embodies both scale and scope economies, since the cross-terms among
the outputs, which comprise the basis of a scope economy measure, are imbedded in the scale (input use or “cost”)
elasticity. Setting these cross-terms to zero results in a measure reflecting only scale economies; the remainder of the
estimated €x;y measure can be attributed to scope economies. Thus, we will define total cost economies as CE = gy,

and “pure” scale economies SE as &y computed with the B4 terms set to zero.

M ultiproduct Economies of Scaleand Scope

When afirm produces more than one output, thereisaqualitative change in the production structurethat makesthe
concept of economies of scale developed for asingle output insufficient. For multiproduct firms, production economiesmay
arise not only because the size of the firmisincreased but also due to advantages derived from producing several outputs
together rather than separately. Thus, more than one measureis necessary to capture theeconomies (or diseconomies) related
to the scale of operation (volume of output) and the economies related to the scope of the operation (composition of output or
product mix). The concepts of economies of scale and scope for multiproduct firms have been developed by Panzar and

Willig (1977, 1981) and Baumol, Panzar and Willig and have been used is agriculture by Akridge and Hertel (1986) and

4 This measure does not fully reflect potentia input substitution, however, since by construction of the model, and the
requirement of linear homogeneity, thisis aradia measure holding input ratios constant.



Fernandez-Cornejo et al. (1992).

Scope and scale economies play an important role in the analysis of market structure. In fact they determine the
viability of perfect competition (Baumal). Perfect competitionislikely to prevail if an industry issuch that economiesof scale
and scope are exhausted at an output level, which is asmall fraction of the market. Otherwise some form of oligopoly with
industry conglomerates or a conglomerate monopolist is the likely outcome.

The measure of scale economies for the multiproduct case is an extension of the concept used by Hanoch in the
single-output situation. It is called by Baumol, Panzar and Willig (BPW) degree of multiproduct scale economies S(Y),

defined as:

(11) SY)= C(Y)/ Z YiCi(Y)

whereY; is the ith component of the output vector Y and C;(Y) isthe partia derivative of C(Y) with respect to Y;. Equation
(11) may beinterpreted astheinverse of the sum of the cost elasticities by writing (Y) = (2Y; Gi(Y)/C(Y)] * = [Z&(Y) oYl -
Yi/C(Y)] ™. In addition, since output is not usually expanded proportionately in a multiproduct firm, another concept, the
degree of product-specific economies of scaleis defined astheratio of the average incremental cost to the marginal cost of a
particular output.

The effect of multi-output production upon costsis captured by the concept of economies of scope, which
measures the cost savings due to simultaneous production relative to the cost of separate production.

For example, for two outputs A and B (with cost functions C(Y,) and C(Yg) static scope economies (SC) will
arise when SC =[ C(Ya)+ C(Yg)-C(Y)]/C(Y)] is positive. In general, scope economies are related to the notion of strict
subadditivity of costs, which occurs when the cost of producing all products together is smaller than producing them
separately.

Formally, consider a partition of the output set N into two (disjoint) groups T and N-T. Let Y, Yyt be the output
quantity (subvector) of each of the two groups and Yy (or simply Y) the output vector, which consists of al the outputs. The
respective cost functions C(Ys), C(Yy.1) give the minimum of the present value of costs of providing the two output groups
separately and C(Y),) denotes the minimum present val ue of the costs of providing them together. The degree of economies of

scope (SC) relative to the (output) set T is defined as



(12) SC=[ C(Y7)+C(Yn1)-ClYn)]/C(YN)

where SC will be positiveif there are economies of scope and negative if there are diseconomies of scope. In our casewe
will consider the first subset of the partition to include the first four outputs (corn, soybeans, other crops, and livestock):

N={1,2,3,4} and the second subset the last output (off farm labor) N-T={5}.

TheU.S. Agricultural Sector Panel Data

The U.S. farm level data used to construct our panel data are from the 1996, 1997, 1998, 1999, and 2000 Agricultural
Resources Management Study (ARMS) Phase 111 survey. Thisisan annua survey covering U.S. farmsin the 48
contiguous states, conducted by the National Agricultural Statistics Service, USDA, in cooperation with the Economic
Research Service.

Ten corn/soybean-states are distinguished in the data: IL, IN, 1A, MI, MN, MO, NE , OH, SD, and WI. The states
straddle traditional regions, but may be categorized in terms of recent USDA regional distinctions documented in Figure
1 as parts of the Heartland-IL, IN, I1A, MO, and OH ; the Northern Plains-SD ; the Prairie Gateway-NE ; the Northern
Crescent or Lake states— MI, MN, and WI.

Farm labor isacritical input in agricultural production and one of the focuses of our cost function analysis. In the
corn/soybean states analyzed, farm operators, household members and their spouses provide more than 80 percent of all
labor hoursin agriculture. A significant proportion of the labor hours worked on corn/soybean farms are not valued
directly in the market place. Previous studies have estimated opportunity costs of labor by imputing predicted off-farm
wage rates to serve as proxies for operators' opportunity cost of unpaid labor for the entire United States, by region, by
size of farm, and by farm type (El-Osta and Ahearn). A useful, more current approximation of the predicted opportunity
costs derived in the EI-Osta and Ahearn study, based on 1988 data, can be computed from the ARMS given the
availability of off-farm income and hours for both operators and spouses by dividing off-farm income by total hours
worked off farm5 (Table 3). It is interesting to note that nominal opportunity costs for operators and spouses do not

appear to have increased in the time period analyzed.

5 Tota hours worked off-farm were computed by multiplying total weeks worked off-farm times the number of hours
worked off-farm. Spouse data for 1997 was not collected. Hence we imputed data for 1997 based on cohort averages for
1996.
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To support empirical production studies using panel data, the temporal pattern of a given farm’s production behavior
must be established. In the absence of genuine panel data, repeated cross-sections of data across farm typologies may be
used to construct a pseudo panel data (see Deaton, Heshmati and Kumbhakar, Verbeek and Nijman) The pseudo panels
are created by grouping the individual observations into a number of homogeneous cohorts, demarcated on the basis of
their common observable time-invariant characteristics, such as geographic location, quality of land, size of land, and
scope of agricultura activities relative to off-farm activities. The subsequent economic analysis then uses the cohort
means rather than the individual farm-level observations.

The recent development at the ERS of farm typology groups, described in Table 1, allows us to assign farm-level
datato cohorts by typology, and sub typology, by state, by year for the corn-producing states. The datain typologies 1
through 3 (limited resource, retirement, and residential) is relatively limited compared to the traditional farm datain
typologies 4 through 7 — particularly cohorts 1 and 2. Hence, typologies 1 through 3 were grouped into three cohorts by
level of agricultural salesin both regions. Similarly, the datain typologies 4 and 6 were used to form three cohorts,
while datain typologies 5 and 7 were grouped into two cohorts each. These categories are summarized in Table 4, and
are documented in our results tables, although we will focusin our discussion on amore aggregated breakdown into (i)
residential cohorts (cohorts 1-3); (ii) small family farms (cohorts 4-5); (iii) larger family farms (cohorts 6-10); and (d)
very large family farms and non-family operations (cohorts 11-13).

Theresulting panel data set consists of 13 cohorts by state, for 1996-2000, measured as the weighted mean
values of the variables to be analyzed. In total we have 650 annual observations (130 per year, a balanced panel),
summarizing the activities of 1934 farmsin 1996, 3890 in 1997, 2311 in 1998, 3201 in 1999, and 2394 in 2000 .

Agricultural output is measured as bushels of corn, bushels of soybeans, tons of other crops and cwts® of
livestock. Off-farm output (1) is based on the wages and salaries, and hours of operator and spouse labor reported in the
ARMS survey. For the (variable) inputs, hired labor (L) is annual hours per-farm of hired labor used’; operator |abor
(OP) isthe annual hours of operator labor used (and operator labor employed off-farm in the off-farm model); spouse

labor (SL) isthe annual hours of spouse labor used (and operator labor employed off-farm in the off-farm model);

6 We constructed the state-level weighted average price for cattle, hogs, and milk, using data from ERS state-level
productivity files. and divided livestock revenues from ARMS by this price to get an implicit quantity.

7 Cdlculated as the some of unpaid worker hours (such as partners, family members, etc) plus the implicit quantity of all
other paid farm and ranch labor divided by the hired wage rate. This aggregation is likely to be reasonable in the states
analyzed. An analysisincluding significant migrant labor would more reasonably disagregate hired labor.

11



materials (M) is tons of miscellaneous inputs (miscellaneous expenditures divided by the weighted price of feed,
fertilizer, fuel, and pesticides)®. Capital machinery (K) is measured as the sum of depreciation and repairs. Our base
land variable (LD), is constructed as an annuity based on a 20-year life and a 10 percent rate of interest, and an
annualized flow of quality-adjusted services from land. State-level price data used to derive implicit quantities for corn
and soybeans were obtained from Ag Statistics. State-level price data used to derive implicit quantities for other crops,
livestock, and miscellaneous inputs were based on information from ERS state-level productivity files. To trandate
nominal valuesinto real terms, all expenditure variables are deflated by the estimated increase or decrease in cost of
production in 1997-2000 compared to 1996 (in terms of agricultural prices).

A summary of the sample data used in the cost function is presented in Table 5. The price data are normalized on
the pesticide input. A summary of the sample data used in the input distance function estimationsis presented in Table
6. The average farm size varies from 151 acresin the limited resource typology to 2,168 acresin the industrial farm
typology. Off-farm incomeis highest, in aggregate and per acre, in the residential typology, and islowest per acrein the
large family farms and industrial farm typologies. Operator labor off-farm is highest for residential farms, averaging
twice the mean of 1,030 annually ; for spouses off-farm labor is also highest for residential farms, but only 40 percent
higher than the mean of the sample of 873. Operator hours worked on farm average 1,498 annually, about 4 times the
annual hours for spouse and hired labor (the sum of unpaid hours for partners, family members, etc plus the implicit
number of al other paid farm and ranch labor—annual totals for 1996-1999 tend to be significantly higher than for
2000) in 2000. The average age of farmersis highest in retirement and low sales typologies, and lower in the residentia
and higher salesfarm typologies. The farmer education average of 2.5 is between a high school diploma (2) and some
college (3), and tends to be slightly greater in the high sales typologies.

The Results
Cost Function Results

Our preliminary cost function results are for 2000 only. The normalized quadratic variable cost function (9) and the
four cost share equations (6-8) are estimated in an iterated seemingly unrelated regression (ITSUR)framework with
symmetry imposed by sharing parameters and linear homogeneity imposed by normalization arereportedintable 7. The

R?swere 0.99 for the quadratic cost function, but only 0.26 for the hired labor input, 0.21 for the operator labor

8 The weighted average price of feed, fertilizer, fuel, and pesticides was calculated using data from ERS state-level
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equation, 0.30 for the spouse labor equation, and 0.60 for the miscellaneous labor equation. However, we find that 48
percent of coefficients for the joint estimates are significant at the 10 percent level or better, and 56 percent of
coefficients are significant at the 20 percent level or better.

The own price effects for the inputs exhibit the expected negative signs. We find that the own price effect for hired
labor is significant at the 10 percent level, while the own price effects for operator labor and spouse labor are not
significant in this cross-section . The own price elasticity of demand for hire labor, computed as B11* (price of hire
|abor/quantity of hire labor)--((-.55* (2.29)/.48))---is highly elastic with avalue of -2.62. These results are not directly
comparable with cost function studiesin the literature (Ray reports an own price elasticity of demand of -0.83) but their
relative significance, provides preliminary evidence that operator and spouse labor can be satisfactorily included as
factors of production in a multi-activity model.

There are substantial economies of scope (SC=0.238) for the pair traditional farm products (corn, soybeans, other
crops, livestock) and off farm labor. This means, for example, that on average, by the operators working off farmin
addition to producing the traditional farm outputs, farm operator households have a cost savings of 24 percent, compared
to the base farm operator household were off-farm wages and salaries are constrained to zero. Traditionally, separate
production is associated with the term output- specialization and the presence of scope economiesis a condition of
output-diversified firms. In general, holding everything else constant - including transaction costs, the higher the scope
economies the more likely that the firm is diversified. The degree of multiproduct scale economies S(Y) at the means of

the datais equal to 0.908, meaning that the average farm is exhibiting increasing returns to scale.

Input Distance Function Results

The constrained farm operator household model may be compared with the farm operator household model.
The farm operator household estimates, presented in Table 9 for the DEA and SPF models, show significant differences
compared to the constrained farm operator household estimates presented in Table 8. For the DEA specification
somewhat higher scale economies, greater technical progress and slightly higher efficiency scores are evident for the
farm operator model compared to the constrained farm operator household model. For the SPF specification this pattern
ismirrored; RTSis significantly higher, TP is somewhat higher, and TE is significantly higher and cost (scope)

economies are lower. Regional differences also arise, with significantly higher efficiency levels for the farm operator

productivity files.
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household estimates in Indiana, Michigan, and Ohio in both the DEA and SPF results, but less change elsewhere, except
Wisconsin—down in DEA and up slightly in SPF. This impact on the performance estimates, particularly for efficiency,
appears to support the suggestion in USDA (2001) that off-farm income benefits do accrue to all farmers who work off
the farm, at least for this sample of corn/soybean states.

The most obvious differences revealed by these numbersis amuch smaller rise in SE through the cohorts for
the farm operator household estimates compared to the constrained farm operator household estimates, especially for the
DEA specification. The highest cohort levels appear similar, but the lower levels indicate much less potential scale
economies. For scope economies on the other hand small cohorts fall proportionately more than for larger cohorts,
suggesting an even gresater role for scope economies when off-farm income (here scope economies are interpreted as the
difference between SE—pure scale economies and CE—ie CE includes scale and scope economies), and thus expanded
output composition, is accommodated. This supports the USDA (2001) observation that off-farm income has very little
impact on larger commercia farms, but is used by small farms as a diversification mechanism. The recognition of the
strong and increasing tendency of small farmers to seek off-farm income correspondingly smoothes the size patternsin
the cost economy estimates. Note, however, that the small farm cohorts — especially C4 and C5 — till face some of the

greatest unexploited cost economies.

Summary and Conclusions

The past few decades have seen increased evidence of, and concern about, the impacts of the structural
transformation of agriculture on the economic health of farm operator households. To explore the potential of these
farmersto exploait off-farm opportunities in amulti-activity sensein order to survivein such arapidly changing
environment, this study examines labor allocation decisions and the productivity and efficiency of farm operator
households at the state level. We use a cost function and frontier methods to measure and evaluate factor underlying
price elasticities, technical change, efficiency, and scale economies of corn/soybean farms, based on annual 1996 to
2000 USDA surveys. We examine such indicators for corn/soybean states as awhole, and compare them across time,
farm typology, and alternative estimation methodologies. Our preliminary results suggest that over our sample period
scale economies are a primary factor driving up farm size and decreasing the competitiveness of small farmsin the
constrained farm operator household model. But small farms appear to achieve efficiency levels more comparable to

larger farms when off-farm income is accommodated. The evidence therefore suggests that, while short-fallsin these

14



productivity components are decreasing the competitiveness of small farms as agricultural structure changes,
corn/soybean farms have partialy adapted to such pressures by increasing off-farm income and, therefore, achieving
economies of scope. The cost function results also suggest that off-farm outputs and inputs can be modeled in a multi-
activity framework and that this is a useful tool to analyze labor allocation decisions and to identify not only economies

of size but of scope.
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Figure 1. Farm Resource Regions
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Table 1. Farm Typology Groupings

Small Family Farms (sales less than $250,000)

1. Limited-resource. Any small farm with: gross sales less than $100,000, total farm assets less $150,000, and total
operator household income less than $20,000. Limited-resource farmers may report farming, a nonfarm occupation, or

retirement as their major occupation

2. Retirement. Small farms whose operators report they are retired (excludes limited-resource farms operated by retired
farmers).

3. Residential/lifestyle. Small farms whose operators report a major occupation other than farming (excludes limited-
resource farms with operators reporting a nonfarm major occupation).

4. Farming occupation/lower -sales. Small farms with sales less than $100,000 whose operators report farming as their
major occupation (excludes limited-resource farms whose operators report farming as their major occupation).

5. Farming occupation/higher-sales. Small farms with sales between $100,000 and $249,999 whose operators report
farming as their major occupation.

Other Farms
6. Largefamily farms. Saes between $250,000 and $499,999.
7. Verylargefamily farms. Sales of $500,000 or more

Nonfamily farms. Farms organized as nonfamily corporations or cooperatives, as well as farms operated by hired
managers

Source: U.S. Department of Agriculture, Economic Research Service
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Table 2. Off-Farm Income, by year, and farm typology

----Typology Class Aggregate Off-farm  Share of Aggregate Mean Off-farm  Share of
Income Income Off-farm Income Income from
off-farm billion dollars percent billion dollars
sources

1993 1999 1993 1999 1993 1999 2000
Limited Resouce 3.657 1.664 4.9 13 12,398 13,114 127.1
Retirement 8.078 12.495 11.2 10.0 34,273 41,991 103.8
Residential 40.792 81.787 56.6 65.7 59,216 87,796 107.6
Farming/low sales  12.950 19.166 13.9 154 25489 39,892 105.8
Farming/high sales 3.597 4.669 5.0 3.7 17,286 26,621 69.3
Large family farms 1738 2.675 24 21 25,487 34,598 47.2
Very Lrg family faams 1.358 2.078 19 17 32,840 35,572 21.7
All op households ~ 72.080 124.534 100.0 100.0 35408 57,988 95.5

Source: ERS estimates and Hoppe (2001).

Table 3. Opportunity costs of farm operators and spouses, 1996-
2000 and hirewage rate in dollars per hour

Year Operator Spouse Hired

1996 2288 1787 742
1997 26.72 19.06 801
1998 2214 1877 8.30
1999 2219 1796 867
2000 21.07 1747 899

ERS estimates for corn/soybean states analyzed
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Table4: Final Cohort Definitions

Small farms Largefarms
Cohort Typology GV Sles Cohort Typology GV Sles
COH1 1-3 <2,499 COH9 6 250,000-330,000
COH2 1-3 2,500-29,999 COH10 6 330,000-410,000
COH3 1-3 >30,000 COH11 6 >410,000
COH4 <10,000 COH12 7 <1,000,000
COH5 4 10,000-29,999 COH13 7 >1,000,000
COH6 4 >30,000
COH7 5 100,000-174,999
COH8 5 175,000-249,999

Table 5. Data used in cost Function, normalized by Pesticide price: 2000

Variable Unit Mean Std Dev Minimum Maximum
Prices

Hire labor $/hour 2290 0560 1571 2985
Operator labor $/hour 5476 1876 2.938 14.816
Spouse labor  $/hour 4446 1390 2.054 12.879
Misc inputs $/ton 26.559 7.479 17.675 37.510
Pesticides $/pound 1.000 0 1000 1.000
Input quantities

Hire labor hours 0483 0.619 0 6.233
Operator labor hours  3.922 1.073 1.031 6.622
Spouselabor  hours 1223 0.522 0 269
Misc inputs tons 1458 7.479 0 19.545
Pesticides pounds 3.723 0 0 30.288
Output quantities

Corn tons 25.382 30.022 0 158.205
Soybeans tons 9.047 11.001 0 56.844
Other crops tons 0.967 3.734 0 38.260
Livestock cwts 6.237 15.586 0 109.151
Off farm hours 1370 0.892 0 3.798
N 130
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Table6: Summary Statisticsfor Selected Variablesin Corn States, 2000

Farms Area Corn Soybeans op hours op hours sp hours sp hours hired Off-farm Acres Age Ed

Type (%) (%) bu bu
Limited 44 14 16259 563.7
Resource
Retirement 11.4 4.0 649.7 268.9

Residental/ 38.35 14.8 22715 1053.2
lifestyle

Farming/ 235 21.3 5156.9 1973.2
lower sales

Farming/ 125 251 255959 7869.1
higher sales

Large 5.0 152 49046.7 14544.1
family farms

Veylarge 2.8 15.6 822284 24232.7
Family Farms

Nonfamily 2.0 27 121828 50115
Farms

All Farms  100.0 100.0 10278.9 3369.0

off-farm on-farm off-farm on-farm labor
hours

4843 10824 1384 1947 115.0
1328 7537 3924 1193 106.9
2062.4 898.8 12522 210.0 160.0
486.3 1926.7 672.1 4053 3125
3919 27225 903.0 552.6 521.2
288.2 28646 8182 700.0 899.5
128.6 2969.6 785.9 685.5 2464.5
0.0 1126.1 0.0 97.2 800.5
1030.9 1498.3 873.1 319.0 343.6

($1000)

6.5

101

58.2

15.7

20.1

17.7

19.6

income  (Fm)

151 56.9 2.1

137 704 23

152 488 238

338 584 2.2

768 48.8 25

1300 49.2 2.7

2160 485 2.8

0.0 1064 49.7 3.0

32.0

398 539 25
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Table 7. Estimation Results of the Normalized Quadratic Variable Cost Function:2000.

DF DF Adj
Equation Model Error SSE MSE Root MSE R-Square R-Sq
COST 64 66 7131.8 108.1 10.3951 0.9929 0.9860
X1 6 124 33.7157 0.2719 0.5214 0.3189 0.2915
X2 6 124 47.6642 0.3844 0.6200 0.2432 0.2127
X3 6 124 23.6513 0.1907 0.4367 0.3283 0.3013
X4 6 124 426.9 3.4427 1.8555 0.6144 0.5988

Approx Approx

Parameter Estimate std Err t value Pr > |t]

AQ -5.91909 15.3703 -0.39 0.7014

Al 0.57348 0.2985 1.92 0.0577

A2 1.63815 0.4173 3.93 0.0002

A3 0.42640 0.3618 1.18 0.2415

Ad 0.70689 1.0471 0.68 0.5012

Bl 1.19012 0.6414 1.86 0.0680

B2 -1.50652 2.0600 -0.73 0.4672

B3 3.62794 7.8031 0.46 0.6435

B4 6.00878 1.9587 3.07 0.0031

B5 -0.22876 5.3364 -0.04 0.9659

cl -1.80851 0.6001 -3.01 0.0037

c2 0.10548 0.1254 0.84 0.4034

C3 7.21504 13.935 0.52 0.6063

B11 -0.54945 0.2771 -1.98 0.0503

B12 0.07197 0.0409 1.76 0.0811

B13 -0.08764 0.0546 -1.60 0.1116

B14 0.03642 0.0226 1.61 0.1098

B22 -0.03697 0.0628 -0.59 0.5577

B23 0.01596 0.0528 0.30 0.7632

B24 0.00294 0.0167 0.18 0.8602

B33 -0.03717 0.0799 -0.47 0.6428

B34 0.01473 0.0155 0.95 0.3426

B44 -0.04352 0.0363 -1.20 0.2338

E11 -0.00569 0.0036 -1.60 0.1126

E12 0.01628 0.0114 1.43 0.1553

E13 -0.06335 0.0212 -2.98 0.0036

E1l4 -0.02668 0.0072 -3.71 0.0004

E15 -0.02001 0.0597 -0.34 0.7382

E21 -0.00392 0.0058 -0.68 0.5007

E22 -0.03443 0.0184 -1.88 0.0637

E23 -0.09527 0.0341 -2.80 0.0062

E24 -0.04952 0.0114 -4.33 <.0001

E25 0.30965 0.0970 3.19 0.0019

E31 0.00059 0.0051 0.12 0.9081

E32 -0.00998 0.0152 -0.66 0.5140

E33 -0.04212 0.0284 -1.48 0.1410

E34 -0.01249 0.00997 -1.25 0.2134

E35 0.32645 0.0874 3.74 0.0003

E41 -0.00600 0.0108 -0.55 0.5807

E42 -0.06257 0.0431 -1.45 0.1503

E43 -0.04382 0.0980 -0.45 0.6558
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Table 7. Estimation Results of the Normalized Quadratic Variable Cost Function: 2000 (continued).

Approx Approx

Parameter Estimate std Err t value Pr > |t]
E44 -0.01714 0.0259 -0.66 0.5096
E45 0.13130 0.1384 0.95 0.3451
F11 0.01763 0.0042 4.15 <.0001
F12 -0.00121 0.0014 -0.85 0.3989
F13 -0.23837 0.1469 -1.62 0.1080
F21 0.02679 0.0069 3.89 0.0002
F22 0.00390 0.0023 1.67 0.0975
F23 -0.00092 0.2331 -0.00 0.9969
F31 0.01041 0.0061 1.72 0.0888
F32 0.00049 0.0020 0.24 0.8103
F33 0.01214 0.2004 0.06 0.9518
F41 0.05379 0.0136 3.96 0.0001
F42 0.00699 0.0029 2.43 0.0172
F43 -0.36245 0.5422 -0.67 0.5055
Gl1 0.01104 0.0114 0.97 0.3348
G12 0.01097 0.0030 3.66 0.0005
G13 -0.70638 0.3562 -1.98 0.0515
G21 0.17955 0.0377 4.77 <.0001
G22 -0.00139 0.0068 -0.21 0.8374
G23 2.42658 0.8286 2.93 0.0047
G31 0.48500 0.1186 4.09 0.0001
G32 -0.04546 0.0551 -0.82 0.4125
G33 8.68232 3.9654 2.19 0.0321
G41 0.01248 0.0209 0.60 0.5518
G42 0.02200 0.0114 1.92 0.0587
G43 1.18184 1.3573 0.87 0.3871
G51 0.48648 0.2605 1.87 0.0663
G52 -0.04805 0.0568 -0.85 0.4010
G53 -0.54472 2.8306 -0.19 0.8480
cl1 -0.02077 0.0166 -1.25 0.2152
cl12 -0.07320 0.0194 -3.78 0.0003
c13 0.17419 0.1159 1.50 0.1378
cl4 -0.08082 0.0269 -3.00 0.0038
c15 -0.47864 0.2602 -1.84 0.0704
Cc22 -0.21733 0.0783 -2.77 0.0072
c23 0.17542 0.2281 0.77 0.4446
c24 -0.13766 0.0983 -1.40 0.1662
Cc25 1.44979 0.8204 1.77 0.0818
Cc33 -1.29684 0.9628 -1.35 0.1826
Cc34 -1.71761 0.3526 -4.87 <.0001
Cc35 -13.23010 5.7065 -2.32 0.0235
c44 0.07357 0.0403 1.82 0.0725
c45 -0.42080 1.0512 -0.40 0.6902
C55 -1.31377 0.9543 -1.38 0.1733
D11 -0.03028 0.0148 -2.05 0.0441
D12 -0.01096 0.0039 -2.84 0.0060
D22 -0.00095 0.0009
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Table 8: DEA and SPF, 2-Output, Constrained Farm Operator Farm Operator Household M odel*

DEA SPF
SE TP TE SE CE TP TE
Total 0.848 1.118 0.726 0.659 0.531 0.956 0.913
1996 0.876 0.000 0.667 0.647 0.524 1.071 0.855
1997 0.853 0.942 0.795 0.665 0.539 0971 0.892
1998 0.896 1.240 0.825 0.692 0.556 0.956 0.920
1999 0.788 0.911 0.688 0.644 0.518 0.910 0.942
2000 0.829 1.380 0.653 0.647 0511 0.872 0.958
IL 0.832 1.193 0.732 0.652 0.523 0.948 0.919
IN 0.835 1.270 0.671 0.648 0.537 0.944 0.892
1A 0.846 1.079 0.723 0.665 0.525 0.949 0.926
MI 0.833 1.144 0.678 0.653 0.547 0.962 0.917
MN 0.830 1.085 0.720 0.677 0.514 0.962 0.927
MO 0.847 1.012 0.770 0.639 0.554 0.958 0.888
NE 0.871 1177 0.752 0.686 0.554 0.954 0.907
OH 0.868 1.079 0.648 0.647 0.521 0.955 0.896
SD 0.866 1.072 0.780 0.662 0.536 0.961 0.937
Wi 0.856 1.070 0.766 0.660 0.532 0.966 0.923
C1 0.299 1.210 0.872 0.349 0.313 0.893 0.928
Cc2 0.669 1.042 0.629 0.500 0.419 0.939 0.956
C3 0.908 1112 0.612 0.639 0.518 0.951 0.952
C4 0.575 1.160 0.727 0.440 0.375 0.925 0.848
C5 0.838 0.992 0.612 0.585 0.485 0.950 0.872
C6 0.946 1.079 0.590 0.662 0.542 0.955 0.900
C7 0.968 1.128 0.692 0.730 0.589 0.969 0.916
C8 0.968 1121 0.691 0.746 0.596 0.968 0.911
C9 0.969 1.193 0.742 0.767 0.610 0.980 0.920
C10 0.970 1.239 0.781 0.777 0.618 0.977 0.899
Cl1 0.966 1.081 0.782 0.780 0.615 0.978 0.920
C12 0.962 1.090 0.747 0.776 0.609 0.972 0.936
C13 0.992 1.089 0.954 0.815 0.621 0.968 0.917
C1-3 0.625 1121 0.704 0.496 0.417 0.928 0.945
C4-6 0.789 1.080 0.655 0.564 0.467 0.943 0.873
C7-10 0.969 1.170 0.727 0.755 0.603 0.974 0.912
C11-13 0.973 1.087 0.861 0.790 0.615 0.973 0.924

* SE=scdl e efficiency, TP=technical progress, TE=technical efficiency, CE=cost economies, Scope Economies=SE-CE
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Table 9: DEA and SPF, 2-Output, Farm Operator Household M odel*

DEA SPF
SE TP TE SE CE TP TE

0.870 1.214 0.729 0.827 0.417 0.978 0.951

Total
1996 0.913 0.000 0.700 0.893 0.474 1.116 0.923
1997 0.941 1.334 0.719 0.793 0.378 1.008 0.941
1998 0.936 0.938 0.831 0.877 0.441 0.981 0.954
1999 0.794 0.986 0.741 0.791 0.366 0.923 0.965
2000 0.767 1.597 0.656 0.782 0.363 0.865 0.973
IL 0.842 1.255 0.753 0.864 0.440 0.972 0.958
IN 0.871 1.252 0.724 0.842 0.417 0.971 0.949
1A 0.885 1.210 0.737 0.851 0.423 0.970 0.952
MI 0.882 1.138 0.713 0.805 0.378 0.991 0.955
MN 0.860 1.178 0.699 0.806 0.379 0.985 0.953
MO 0.836 1.190 0.741 0.825 0.408 0.977 0.950
NE 0.891 1.381 0.742 0.846 0.420 0.953 0.944
OH 0.874 1.179 0.687 0.830 0.403 0.980 0.946
SD 0.887 1.185 0.771 0.825 0.413 0.976 0.957
Wi 0.874 1.170 0.728 0.776 0.361 0.988 0.949
C1 0.884 1.664 0.970 0.570 0.230 0.923 0.951
Cc2 0.832 1.074 0.754 0.673 0.289 0.966 0.957
C3 0.916 1.048 0.721 0.784 0.344 0.988 0.954
C4 0.631 1.152 0.843 0.679 0.350 0.944 0.948
C5 0.696 1.092 0.718 0.717 0.348 0.970 0.952
C6 0.817 1.175 0.575 0.808 0.390 0.985 0.951
C7 0.907 1.239 0.645 0.871 0431 0.996 0.951
C8 0.921 1.232 0.627 0.895 0.444 0.994 0.950
C9 0.939 1.216 0.646 0.930 0.469 1.001 0.949
C10 0.943 1.274 0.683 0.950 0.494 0.998 0.946
Cl1 0.946 1.203 0.708 0.954 0.490 0.953 0.949
C12 0.897 1.187 0.713 0.938 0.486 0.984 0.957
C13 0.985 1.224 0.879 0.984 0.492 0.977 0.951
C1-3 0.877 1.262 0.815 0.675 0.287 0.959 0.955
C4-6 0.715 1.140 0.712 0.734 0.362 0.966 0.951
C7-10 0.928 1.240 0.650 0.911 0.460 0.997 0.949
C11-13 0.943 1.205 0.767 0.959 0.489 0.985 0.953

* SE=scdl e efficiency, TP=technical progress, TE=technical efficiency, CE=cost economies, Scope Economies=SE-CE
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