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Information Theoretic Alternatives to Traditional Simultaneous  
Equations Estimators in the Presence of Heteroskedasticity 
 
 
 
Abstract: Finite sampling properties of information theoretic estimators of the simultaneous 
equations model, including maximum empirical likelihood, maximum empirical exponential 
likelihood, and maximum log Euclidean likelihood, are examined in the presence of selected 
forms of heteroskedasticity.  Extensive Monte Carlo experiments are used to compare finite 
sample performance of Wald, Likelihood ratio, and Lagrangian multiplier tests constructed from 
information theoretic estimators to those from traditional generalized method of moments.   
 
 
Keywords:  endogeneity, mean square error, simultaneous equations 
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1. Introduction 

Heteroskedasticity arises when observations exhibit heterogeneity of variances across sample 

observations. Traditional Generalized Method of Moments (GMM) estimators generally remain 

unbiased and consistent in the face of heteroskedasticity of nondescript form, but the typical covariance 

matrix estimators derived from GMM methods are inconsistent in that context, the estimators themselves 

are generally inefficient, and inference procedures based on the estimators are biased and can behave 

poorly.  Appropriate inference methods in the context of an unknown form of heteroskedasticity in 

simultaneous equations models exist asymptotically (White), but are not necessarily accurate or useful in 

finite sample situations.  In contrast, information theoretic estimators, which are asymptotically efficient 

(Kitamura and Stutzer), can be applied directly to data that are heteroskedastic and offer a potentially 

robust estimation and inference alternative to standard estimation methods.  This is particularly 

important in finite samples where the sampling properties of traditional estimators and testing 

procedures are often suspect. 

Information theoretic estimators have been suggested in various forms as alternatives to 

traditional estimators [Owen, 1988, 1991, 2000; Qin and Lawless; Kitamura and Stutzer; Imbens, Spady, 

and Johnson; Mittelhammer, Judge and Miller].  Information theoretic estimators do not require 

specification of the specific parametric functional form of sampling distributions or likelihood functions, 

but rather make mild assumptions concerning the existence of zero-valued moment conditions that are 

no more stringent than used in GMM estimation.  To date, there has been only limited analysis of the 

finite sample performance of these estimators.  The most extensive Monte Carlo investigation currently 

available is the work of Imbens, Spady, and Johnson, who investigated the properties of point estimators 

and hypothesis testing procedures in the limited context of models having scalar parameters under the 

assumption of iid sample observations.   
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In this paper we examine the performance of three different Information Theoretic (IT) 

estimators as competitors to traditional least squares and maximum likelihood methods for estimating 

the parameters of linear simultaneous equations models.  These IT alternatives include the Maximum 

Empirical Likelihood (MEL), Maximum Empirical Exponential Likelihood (MEEL), and Maximum Log 

Euclidean Likelihood (MLEL) estimators.  The finite sample performance of the IT type estimators is 

investigated in the context of an extensive Monte Carlo analysis conducted over a range of finite sample 

sizes and over a variety of different forms of heteroskedasticity designed to typify sampling processes 

encountered in applied econometric work. The competing estimators are compared on the basis of both 

parameter estimation risk and dependent variable prediction risk.  In addition, Monte Carlo simulations 

are used to compare the accuracy of the size and power of asymptotically normally distributed Z-tests 

and asymptotically chi-square distributed Wald, Likelihood Ratio, and Lagrangian Multiplier tests.   

Although results of Monte Carlo analyses are specific to the collection of particular Monte Carlo 

experiments analyzed, the extensive Monte Carlo sampling results examined in this paper suggest that 

the alternative IT estimators exhibit some inherent robustness to heteroskedasticity both in terms of 

parameter estimator risk properties and in terms of the accuracy of test procedures derived from them. A 

principal implication for empirical application is the recommendation of using one of the IT alternatives, 

i.e. MEEL, MEL, or MLEL, in place of, or in addition to, the standard least squares or maximum 

likelihood methods when heteroskedasticity is suspected but the precise functional form of the 

heteroskedasticity is unknown.  

2. Empirical Likelihood Estimators 

Consider the ith equation of a system of q linear simultaneous equations 

(1)  ( ) ( ) ( )  for 1,...,i i i i i i i i i i q= + + = + =Y Y � ; � 0 0 / 0  



 5 

where Yi is a 1n×  vector of endogenous variables, and ( ) ( ) and i iY X represent the ( )in q× matrix of 

endogenous and ( )in k× matrix of predetermined explanatory variables, respectively. The ( )1n×  vector 

i0  represents the unobserved residuals for the ith equation.  The parameters to be estimated include the 

( )1iq ×  vector i�  associated with the explanatory endogenous variables and the ( )1ik ×  vector i�  

associated with the predetermined variables.  The structural parameters are combined into the 

( )( )1i iq k+ ×  vector [ ]' | ' 'i i i=/ � � .   

For a complete system of simultaneous equations a consistent generalized method of moments 

(GMM) estimator can be derived from the empirical moments 

(2)  ( ) [ ]1
q v( ) n− ′= ⊗ − h / , = < 0/  

where ( )1,...,v qvec=Y Y Y is a ( )1nq×  vector of vertically concatenated endogenous variables, ý  is a 

( )n m×  matrix of instrumental variables, M is a block diagonal matrix whose ith block is given by M(i) 

and ( )1,..., qvec=δ δ δ  is a ( )1K ×  vector of structural parameters to be estimated.  Here 

( )
1

q

i ii
K q k

=
= +∑  is the total number of structural parameters in the system.  Setting (2) to zero 

generally produces an inconsistent system of equations, so in the estimated optimal GMM estimation 

approach, the estimator of /  is instead defined to be 

(3)  ( ) [ ] ( ) [ ]1 1
GMM q v n q v

ˆ ˆarg min n n− −
′      ′ ′= ⊗ − ⊗ −         

/ , = < 0/ : , = < 0/  

where ˆ
nW  is an estimate of the asymptotically optimal weight matrix. In effect the moments 

( )h /  are driven to zero in weighted (by nŴ ) Euclidean distance as closely as possible via a 
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choice of parameter values. If  ( ) 1
1ˆ ˆ

n n
−− ′= ⊗W � = =  and Z=X then the GMM estimator is 

equivalent to three stage least squares (3SLS).   

 In contrast to the GMM approach, empirical moment conditions for EL type estimators are  

expressed in the form 

(4)   ( ) [ ]q v
 ′⊗ − =  
I p Z Y M/ �:  

where the  unknown ( )1n×  vector p consists of an empirical probability distribution supported on the 

sample outcomes, and : denotes the extended Hadamard (elementwise) product operator.  Comparing 

the two moment conditions it is evident that the GMM approach restricts p 1/  for 1,...,i n i n= = , while 

the EL approach treats the unknown ip s′  as parameters to be estimated.  Note that although we are 

currently examining a linear system of equations, the single-equation equivalent follows for q=1.   

The extremum problem for information theoretic estimation can be formulated as 

(5)  ( ) ( ) [ ]
n

q v i i
i 1

max  s.t. , p 1, p 0 i
=

   ′φ ⊗ − = Σ = ≥ ∀     
p,

p I p Z Y M/ �:
δ

 

which maximizes the objective function ( )φ p  subject to moment, normalization, and nonnegativity 

constraints.  The different objective functions considered for the functional specification of ( )φ p  

include the traditional empirical log-likelihood objective function ( )i1
ln p

n

i=∑ , the empirical exponential 

likelihood (or negative entropy) function ( )i i1
p ln p

n

i=∑ , and the log Euclidean likelihood function 

� �� �1 2 2

1
p 1

n

ii
n n�

 

�Ç .  Each specification leads to a uniquely defined estimator of / .  These estimating 

criteria are nested within the Cressie-Read power divergence statistic that is based on the concept of 
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closeness between estimated and empirical distributions relating to the choice of  p-distributions.  The 

Cressie-Read statistic is discussed further in Cressie and Read, Read and Cressie, and Baggerly. 

The Lagrangian form of the extremum problem is given by 

(6) ( ) ( ) ( )
q n

'
i i (i) i i

i 1i 1

L( , , , ) ' p 1⋅ ==

  η = φ − − −η Σ −    
∑p / � S S = < 0 /λ :  

where ( )1,..., qvec=� � �  is a ( )1mq×  vector  and η  is a ( )1 1×  scalar set of Lagrange multipliers.  First 

order conditions are given by 

 
( ) [ ]( )

q
'
i j ji (i) i

j j i 1

L
' j, 0

p p ⋅
=

∂φ∂  = − − ⋅ −η = ∂ ∂ ∑p
Z Y M /λ  

 ( )'
i (i)

i

L
' [., ] 0

∂ = =
∂

p Z M
/

λ
A

: A  

 ( ) ( ) [ ]i (i) i
i

L
'p Z Y M / �

�
: ⋅

∂ = − − =
∂

 

 
n

i
i 1

L
p 1 0

=

∂ = Σ − =
∂η

 

and jp 0, .j≥ ∀   The first set of equations links the unknown ip s′  to the other unknown parameters 

 and / �  through the empirical moment conditions.  The second and third sets of equations relax 

traditional orthogonality conditions required by two and three stage least squares.  The fourth equation is 

the required normalization condition for the empirically estimated probability weights.  Provided that 

( ) ( ) ( )( )1 nf ,..., ff p = p p , where 
( )

j
j

f ( )
p

∂φ
=

∂
p

p  j∀ , admits an inverse function, 1( )− ⋅f , the general 

solution for p is  

(7)  [ ]( )
q

1 '
i j ji (i) i

i 1

' j, , j−
⋅

=

  = − ⋅ + η ∀   
∑p f � = < 0 /  
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For the three distinct objective functions identified above, three separate econometric estimators are 

derived below. 

2.1 Maximum Empirical Likelihood 

The empirical log-likelihood objective function, ( )i1
( ) ln p

n

i
p

=
φ =∑ , yields the Maximum Empirical 

Likelihood (MEL) estimate of / .  The optimal pj can be expressed as (note it can be shown that 1η =  at 

the optimal solution) 

( ) [ ]( )
1q

'
j i j ji (i) i

i 1

p , n ' j, n
−

⋅
=

 
= − ⋅ + 

 
∑� = < 0 /δ λ . 

Concentrating the objective function by substituting � �jp ,� /  for jp  generates a system of ( )K mq+  

first order conditions and ( )K mq+  unknowns represented by  and / � .  This leads to a conventional 

empirical likelihood estimator of the linear simultaneous equations model. 

2.2 Maximum Empirical Exponential Likelihood 

The empirical exponential likelihood function, ( )i i1
( ) p ln p

n

i
p

=
φ =∑ , leads to the Maximum Empirical 

Exponential Likelihood (MEEL) estimate of / .  The optimal pj can be expressed as 

 (8)  ( )
[ ]( )( )

[ ]( )( )
q '

i j ji (i) ii 1
j n q '

i j ji (i) ij 1 i 1

exp ' j,
p ,

exp ' j,

⋅=

⋅= =

 − ⋅ =
 − ⋅ 

∑
∑ ∑

� = < 0 /

� /

� = < 0 /

 

Concentrating the objective function by substituting � �jp ,� /  for jp  yields a system of ( )K mq+  first 

order conditions and ( )K mq+  unknowns represented by  and / � .  For further insight into the MEEL 

estimator see Mittelhammer, Judge, and Miller (Chapter 17).  

The MEEL estimator is similar to the generalized maximum entropy estimators proposed by 

Golan, Judge, and Miller in the sense that it uses the same basic functional form of objective function.  



 9 

However, the MEEL estimator is fundamentally different from generalized maximum entropy estimators 

of the linear simultaneous equations model.  MEEL does not utilize user supplied support spaces for the 

parameters and error terms as do generalized maximum entropy estimators, but rather recovers the 

unknown structural parameters /  and empirically estimated probability weights p supported on the 

sample outcomes.  See Marsh, Mittelhammer, and Cardell for a generalized maximum entropy analysis 

of the linear simultaneous equations model. 

2.3 Maximum Log Euclidean Likelihood 

The log Euclidean likelihood function � �� �1 2 2

1
( ) p 1

n

ii
n n�

 

I  �Çp  yields the Maximum Log Euclidean 

Likelihood (MLEL) estimate of / .  The optimal pj can be expressed as 

 (9)  ( ) ( ) [ ]( )1 '
j i j ji (i) ip , 2n ' j,

−
⋅ = − ⋅ + η � / � = < 0 / . 

Again concentrating the objective function by substituting � �jp ,� /  for p j  yields a system of ( )K mq+  

first order conditions and ( )K mq+  unknowns represented by  and / � .  Of the three specifications 

considered in this study, the MLEL estimator has received the least attention in the econometrics and 

statistics literature.  

3. Asymptotic Properties and Tests for IT Estimators 

The MEL, MEEL, and MLEL estimators are all consistent, asymptotically normally distributed, and 

asymptotically efficient relative to the optimal estimating function estimator (See Mittelhammer, Judge, 

and Miller, Chapter 17, for further discussion).  The estimators are asymptotically distributed as 

( ) ( )1/ 2 N ,
d

n / / �
A − →  where the index A  represents the specific EL estimator 

{ }, ,MEL MEEL MLELA∈ .  For iid sampling the asymptotic covariance matrix 
  can be defined as 
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 (10)  

1-1

1 1 1

1

( ) ( )
plim plim ( ) ( ) plim

n

j j
j

n n n

−

− − −

=

 ′  ∂ ∂    ′=      ′ ′∂ ∂      
∑h / K /


 K / K /

/ /

 

In the expression above h represents the estimating function specified as 

 (11)  

[ ]

[ ]

1 (1) 1

( )

,

( ) [ ,.]

,

j

j

jq q q

Y j

j

Y j

M /

h / =

M /

#

  − ⋅
   ′= ⊗  
  − ⋅  

 

and note that    

(12)  [ ]
1

( , ) ( )
n

j q v
j=

 ′= = ⊗ − ∑h Y / K / , = < 0/  . 

See Imbens, Spady, and Johnson, as well as Kitamura and Stutzer, for underlying assumptions and proof 

of consistency and asymptotic normality. The estimated asymptotic covariance matrix can be used in the 

usual way to form asymptotically valid hypothesis tests and confidence interval estimators for the 

parameters of the structural model.  In the case of non-iid sampling, the above covariance expression can 

be extended (Kitamura and Stutzer).  

3.1 Testing Moment Conditions 

A statistical test of particular interest for IT-type estimators is the test of the validity of moment 

conditions 

(13)  ( )0 : ,H =  E h Y / �  

which are the moment conditions specified in the IT extremum problem.  This evaluates the hypothesis 

that there is a value 0
/ that solves the above moment conditions and is equivalent to testing the 

unbiasedness of the estimating function ( ),h Y / .  Imbens, Spady, and Johnson, as well as Mittelhammer 

and Judge, examine properties of Wald (W), Psuedo-Likelihood Ratio (LR), and Lagrange Multiplier 
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(LM) test statistics.  Here, we examine the performance of the W, LR, and LM tests in the presence of 

heteroskedasticity.    

The Wald test statistic has a 32 limiting distribution with m-k degrees of freedom under H0, 

where the statistic is defined by  

(14)  � � � �1 2, ' ,
d

m kh Y / 
 K < /
�

�

�F . 

An empirical likelihood ratio test statistic under H0 can be defined by  

(15)  ( ) ( ) 2ˆ ˆ2  ln ln
d

m kn n −′ + →p p χ  

The appropriate LM test statistic under H0 is defined by  

(16)  2ˆ ˆ '  
d

m kn −→� 5 � χ  

where the matrix R is defined by  

1
2

1 1 1

ˆ ˆ ˆ 
n n n

i i i ii i i i i i
i i i

p p p
−

= = =

     ′ ′ ′=      
     
∑ ∑ ∑R h h h h h h   

and constitutes a robust estimator of the covariance matrix of the moment functions (Imbens, Spady, and 

Johnson). 

4. Finite Sample Properties  

Because the derivation of the finite sample properties of the IT estimators presented above are not 

tractable, Monte Carlo sampling experiments are used to identify and compare the repeated sampling 

properties of the estimators.  In this study we attempt to focus on small-to-medium sample size 

performance of the IT estimators, and their performance relative to 2SLS and GMM.  In the experiments 

below, the covariance matrices for 2SLS and GMM are not corrected for heteroskedasticity because our 

objective is to benchmark the performance of IT estimators to traditional estimators. To measure the 

performance of the estimators, we use the squared error loss between the true and estimated values of 
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structural coefficients and the prediction squared error between the actual and predicted dependent 

variable.  Regarding performance in inference settings, simulated rejection probabilities of true and false 

hypothesis are used to evaluate the size and power of statistical tests. 

4.1 Monte Carlo Experiments 

To analyze the influence of heteroskedasticity, we consider a single-equation SEM with a single 

exogenous and single right hand side endogenous variable.  The data sampling process has the following 

form 

(17)  1 2 1 1 1 1Y Y  i i i i i iZγ β= + + = +0 0 / 0   

where [ ]1 2 1 =M Y Z , [ ] ′′ ′=/ γ β ,  and 

(18)  
4

2 0
1

i ij j i
j

Z vπ π
=

= + +∑Y  

The vector of unknown parameters, / , is defined to be [ ]1, 2 .′−  Outcomes of the random vector 

[ ]2 1 2 3 4,0 � � � �i i i i i iY Z Z Z Z  are generated iid from a multivariate normal distribution having a zero mean 

vector and standard deviation of five.  To generate valid instruments, correlations between 0i  and the 

'ij sZ  were set to zero.  A correlation of 0.50 was specified between the random variables 2iY  and 0i  to 

represent moderate endogeneity.  Likewise, degrees of correlation between the instruments and the 2iy  

variable and the levels of collinearity existent among the instrumental variables were set to 0.50. 

 Because heteroskedasticity arises when observations exhibit heterogeneity of variances across 

sample observations, one general functional representation of heteroskedasticity is 

1var( ) ( )i i i ig zε = σ = .  For the Monte Carlo simulations below, four specific cases are examined:  Case 

1 represents the homoskedastic error model, or ,σ = σ ∀i i ;  Case 2 assumes the standard error of the 

SEM is proportional to the first exogenous variable for each observation, or ( )1.5 ,i iz iσ = σ ∀ ;  Case 3 
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specifies that the standard error is proportional to the square of the first exogenous variable for each 

observation, or ( )2
1.5 ,i iz iσ = σ ∀ ; and Case 4 is a standard multiplicative heteroskedastic model, or 

( )1exp .5 ,i iz iσ = σ ∀ .  Estimates below are based on 1000 Monte Carlo repetitions for sample sizes of  

n = 50, 100, 500, and 1000. 

4.2 Results:  Parameter and Prediction Expected SEL 

In performing comparisons, we examine the impacts that different forms of heteroskedasticity have on 

precision of parameter estimates and accuracy of predictive fit.  Table 1 reports mean estimates of the 

squared error loss (SEL) between the true and estimated coefficient values of β  for MEEL, MEL, 

MLEL, 2SLS, and GMM.  For each estimator the mean SEL values increased for the heteroskedastic 

error Cases 2-4 relative to the homoskedastic Case 1, with the largest SEL values being associated with 

Case 3, followed by Case 4 and Case 2 respectively.  For n = 50, with the exception of Case 4 denoting 

multiplicative heteroskedasticity, 2SLS had the smallest mean SEL.  As the sample size increased from 

50 observations the mean SEL values decreased in each experiment.  Overall, for Cases 1-3, the 

estimators had very similar SEL values. For Case 4 with multiplicative heteroskedasticity the MEEL, 

MEL and MLEL estimators dramatically outperformed 2SLS and GMM in SEL.  These results 

underscore an advantage of IT estimators over traditional estimators in that they appear to be more 

robust across different forms of heteroskedasticity.  

 Table 2 reports mean prediction squared error (PSE) between the actual and predicted 1iY values. 

Across the different forms of heteroskedasticity, and for all sample sizes, 2SLS and GMM have smaller 

mean PSE than do MEEL, MEL or MLE, although for the most part the prediction performance of all of 

the estimators was quite similar.  The relative difference of the mean PSE values between the estimators 

decreased with increasing observations.  Overall, 2SLS, followed by GMM and MEEL respectively, 

exhibited the smallest values of mean PSE. 
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4.3 Results: Standard Errors 

Table 3 contains empirical measures of the bias of the estimated standard error of β̂ , calculated as the 

simulated standard error of the empirical distribution of the β̂ ’s (measuring the true standard error) 

minus the mean asymptotic standard error of the β̂ .  From this information we can infer several 

implications as to the performance of the IT estimators.  At n = 50 all three of the IT-type estimates 

exhibit more bias than do 2SLS and GMM, but by 100 observations the IT-type estimates exhibit less 

bias than 2SLS and GMM for the heteroskedastic Cases 2-4.  As the observations increase from 100 to 

1000, the MEEL, MEL and MLEL asymptotic standard errors are converging to the simulated true 

standard errors.  By 1000 observations, for all three cases of heteroskedasticity, the MEEL, MEL, and 

MLEL standard error estimates have dramatically smaller empirical biases that do 2SLS and GMM.   

4.4 Results: Coverage Probability and Power 

Table 4 contains coverage probabilities for 0 : 1H β = −  across the homoskedastic and 

heteroskedastic error models.  The targeted true coverage probability is 0.99, which is the complement 

of the true size of the test, or (1-0.01)=0.99.  Across all forms of heteroskedasticity, the MEEL, MEL, 

and MLEL are converging to 0.99 as the observations increase from 50 to 1000.  In contrast, the 2SLS 

and GMM estimators are not.    This illustrates the inference robustness of IT-type estimators in the 

presence of heteroskedasticity.  

Table 5 contains coverage probabilities for 0 : 0H β = , which represents an observation on the 

power of the test for this incorrect null hypothesis.  Interestingly, all the IT-type estimators for 

heteroskedastic Case 2 and Case 4 appear to perform better than 2SLS and GMM.  However, none of the 

estimators perform well for Case 3, with 2SLS and GMM performing better than the IT estimators.  It is 

apparent that the power of the test for 0 : 0H β =  is sensitive to the type of heteroskedasticity existent in 
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the error of the SEM.    Nonetheless, these results suggest that IT-type estimators can be attractive 

alternatives to the standard 2SLS and GMM procedures in heteroskedastic situations. 

4.5 Results:  Moment Condition Tests 

Figures 1-4 illustrate the size of Wald tests for 2SLS and GMM, as well as Wald, LR, and LM 

tests for the three IT estimators.  The targeted true size of the tests was 0.05.  The figures lead to several 

observations regarding moment condition testing.  First, across all experiments the test statistics for the 

IT estimators are converging to the true size 0.05 as the observations increase from 50 to 1000.  Second, 

the LR and LM tests for the MEL estimator appear less robust than those of MEEL and MLEL for 50 and 

100 observations, but become more alike for 500 to 1000 observations. 

Interestingly, in comparing the results of all of the estimators, the Wald tests for 2SLS and GMM 

were not robust across the different forms of heteroskedasticity.  In particular, the Wald tests for 2SLS 

and GMM appear not to converge to correct size for Case 3 with multiplicative heteroskedasticity.  

Given the popularity of the Wald test and the likelihood of heteroskedasticity in cross-sectional data, 

these results have important implications in applied econometrics.     

5. Conclusions 

Three information theoretic estimators for the linear simultaneous equations model were specified, 

including Maximum Empirical Likelihood (MEL), Maximum Exponential Empirical Likelihood 

(MEEL), and Maximum Log Euclidean Likelihood (MLEL).  Asymptotic properties and hypothesis 

testing techniques were identified and discussed for each estimator.  To evaluate the performance of the 

information theoretic estimators in the presence of selected forms of heteroskedasticity over a range of 

finite sample sizes, Monte Carlo sampling experiments were performed for a single-equation 

simultaneous equations model.  Their relative performance was assessed, and also compared to the 

traditional 2SLS and GMM with covariance matrices not corrected for heteroskedasticity.   
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 In the Monte Carlo experiments examined, the estimation performance of the MEEL, MEL, and 

MLEL estimators was quite competitive with 2SLS and GMM across all sampling scenarios, and for 

multiplicative heteroskedasticity, the IT estimators performed dramatically better than the 2SLS and 

GMM estimators.  More specifically, the prediction performance of the MEL, MEEL, and  MLEL 

estimators was also very close to the 2SLS and GMM estimators and the latter pair of estimators 

dominated the IT estimators in prediction performance across all scenarios.  The estimated IT standard 

errors converged to the simulated true standard errors, but 2SLS and GMM did not. Wald, LR, and LM 

moment condition tests for the three IT estimators were robust in the presence of the different forms of 

heteroskedasticity, but 2SLS and GMM were not.  In this aspect of inference, the IT estimators were 

clearly better than the 2SLS and GMM estimators.  Finally the power of tests based on the IT estimators, 

as well as 2SLS and GMM , were sensitive to the form of heteroskedasticity, and comparisons of the 

relative peformance of the IT and 2SLS/GMM estimators was mixed. 

These finding provide insights into the performance of IT –type estimators relative to traditional 

GMM procedures in finite samples when estimating the parameters of a simultaneous equations model.  

The results suggest that there may be an important role for IT-type estimators as alternatives to 

traditional GMM-type estimators in empirical contexts where heteroskedasticity is suspected, especially 

in the context of inference, but also for purposes of parameter estimation when certain forms of 

heteroskedasticity are present.  Nonetheless, the results also suggest that the IT suite of estimators is not 

a panacea, with the traditional estimators still being the better choice in terms of parameter SEL and 

prediction SEL in many sampling contexts representative of empirical practice.  Additional analysis of 

the finite sample performance of IT-type estimators is needed (i.e., comparing IT-estimators to White’s 

heteroskedastic corrected 2SLS and GMM estimators), and the provocative results of this study suggest 

that such efforts are warranted. 
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Table 1.  Squared error loss (SEL) between true and estimated parameter values of β . 

   Obs 2SLS MEEL MEL MLEL GMM 

 Case 1: iσ = σ  

50 0.5178 0.5756 0.5913 0.6156 0.5982 

100 0.2472 0.2478 0.2497 0.2578 0.2532 

500 0.0473 0.0479 0.0489 0.0499 0.0477 

1000 0.0252 0.0256 0.0259 0.0261 0.0252 

      

 Case 2: ( )1.5i izσ = σ  

50 0.7587 0.8177 0.8803 0.8959 0.7932 

100 0.3644 0.3758 0.3996 0.3947 0.3749 

500 0.0742 0.0763 0.0790 0.0767 0.0741 

1000 0.0387 0.0392 0.0400 0.0392 0.0389 

      

 Case 3: ( )2
1.5i izσ = σ  

50 8.6367 9.0579 9.5703 9.4338 9.2679 

100 4.9133 4.7792 5.0028 4.6950 5.0489 

500 1.1684 1.1161 1.1393 1.0712 1.1754 

1000 0.5870 0.5698 0.5775 0.5496 0.5900 

      

 Case 4: ( )1exp .5i izσ = σ  

50 4.6157 3.9375 4.0166 3.9356 4.8360 

100 2.3104 1.5248 1.5454 1.3808 2.3684 

500 0.6840 0.2565 0.2687 0.2617 0.6879 

1000 0.3426 0.1173 0.1297 0.1282 0.3425 
  



 19 

 

Table 2.  Prediction squared error (PSE) between actual and predicted values of 1iY . 

   Obs 2SLS MEEL MEL MLEL GMM 

 Case 1: iσ = σ  

50 22.9731 25.8801 26.2404 26.6622 24.9978 

100 23.5294 25.0039 25.2186 25.3949 24.4969 

500 24.7011 25.0736 25.1552 25.1883 24.9111 

1000 24.9235 25.1559 25.1793 25.1735 25.0287 

      

 Case 2: ( )1.5i izσ = σ  

50 24.6441 25.8179 26.1924 26.6100 24.9491 

100 25.1713 25.5305 25.6737 25.7255 25.2433 

500 25.1316 25.1464 25.1539 25.1481 25.1329 

1000 24.9395 24.9464 24.9492 24.9473 24.9405 

      

 Case 3: ( )2
1.5i izσ = σ  

50 272.7837 289.8926 293.6553 296.7647 282.6930 

100 288.8104 296.4845 298.0896 298.7322 293.0778 

500 293.9879 295.9929 296.3469 296.3198 294.8674 

1000 300.3475 301.2506 301.3542 301.4237 300.7975 

      

 Case 4: ( )1exp .5i izσ = σ  

50 148.1361 158.9957 160.0775 161.2424 153.1170 

100 159.0306 164.8555 164.9043 165.8437 161.9508 

500 180.8251 182.3342 182.2686 182.3376 181.3416 

1000 187.3857 188.5066 188.3031 188.3390 187.6527 
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Table 3.  Estimates of bias for standard error of β  under homoskedastic errors and 
selected forms of heteroskastic errors. 

   Obs 2SLS MEEL MEL MLEL GMM 

 Case 1: iσ = σ  

50 0.0168 0.1023 0.0973 0.1077 0.0348 

100 0.0130 0.0344 0.0293 0.0355 0.0110 

500 0.0018 0.0047 0.0056 0.0074 0.0017 

1000 0.0049 0.0057 0.0061 0.0068 0.0047 

      

 Case 2: ( )1.5i izσ = σ  

50 0.1991 0.2142 0.2216 0.2267 0.1929 

100 0.1332 0.0925 0.0978 0.0963 0.1330 

500 0.0632 0.0193 0.0221 0.0187 0.0624 

1000 0.0494 0.0131 0.0142 0.0124 0.0496 

      

 Case 3: ( )2
1.5i izσ = σ  

50 0.8361 0.9511 0.9406 0.9352 0.8401 

100 0.6805 0.5303 0.5265 0.4669 0.6758 

500 0.3820 0.1324 0.1277 0.0999 0.3826 

1000 0.2670 0.0594 0.0561 0.0399 0.2678 

      

 Case 4: ( )1exp .5i izσ = σ  

50 0.6167 0.7448 0.7092 0.6885 0.5982 

100 0.3734 0.3088 0.2801 0.2181 0.3653 

500 0.2794 0.0326 0.0310 0.0233 0.2788 

1000 0.1898 -0.0151 -0.0084 -0.0093 0.1892 
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Table 4.  Coverage probability for 0 : 1H β = −  for homoskedastic and selected forms 

of heteroskastic errors.  True coverage probability is 0.99, or equivalently its 
complement the true test size of 0.01. 

   Obs 2SLS MEEL MEL MLEL GMM 

 Case 1: iσ = σ  

50 0.957 0.932 0.937 0.943 0.957 

100 0.980 0.973 0.981 0.976 0.983 

500 0.989 0.987 0.988 0.988 0.990 

1000 0.982 0.984 0.984 0.983 0.986 

      

 Case 2: ( )1.5i izσ = σ  

50 0.951 0.942 0.947 0.950 0.958 

100 0.955 0.966 0.967 0.969 0.960 

500 0.947 0.982 0.981 0.982 0.947 

1000 0.949 0.985 0.985 0.985 0.949 

      

 Case 3: ( )2
1.5i izσ = σ  

50 0.910 0.926 0.925 0.946 0.921 

100 0.918 0.956 0.957 0.975 0.919 

500 0.899 0.978 0.980 0.983 0.903 

1000 0.903 0.981 0.983 0.986 0.901 

      

 Case 4: ( )1exp .5i izσ = σ  

50 0.948 0.970 0.971 0.973 0.951 

100 0.949 0.970 0.974 0.979 0.952 

500 0.921 0.985 0.985 0.978 0.919 

1000 0.920 0.986 0.992 0.993 0.922 
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Table 5.  Coverage probability for 0 : 0H β =  (or power of test) for homoskedastic and 

selected forms of heteroskastic errors.  True coverage probability is 0.99. 

   Obs 2SLS MEEL MEL MLEL GMM 

 Case 1: iσ = σ  

50 0.442 0.438 0.422 0.412 0.393 

100 0.595 0.575 0.546 0.532 0.561 

500 0.982 0.977 0.974 0.976 0.978 

1000 1.000 1.000 1.000 1.000 1.000 

      

 Case 2: ( )1.5i izσ = σ  

50 0.276 0.291 0.281 0.250 0.266 

100 0.481 0.431 0.424 0.404 0.471 

500 0.978 0.931 0.923 0.920 0.973 

1000 0.999 0.998 0.998 0.998 0.999 

      

 Case 3: ( )2
1.5i izσ = σ  

50 0.145 0.149 0.148 0.121 0.138 

100 0.165 0.110 0.111 0.086 0.157 

500 0.313 0.127 0.118 0.105 0.309 

1000 0.441 0.200 0.194 0.171 0.432 

      

 Case 4: ( )1exp .5i izσ = σ  

50 0.169 0.222 0.214 0.191 0.155 

100 0.195 0.232 0.231 0.195 0.188 

500 0.398 0.564 0.537 0.494 0.393 

1000 0.634 0.834 0.828 0.782 0.634 
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Figure 1.  Testing the validity of moment conditions.  Case 1: homoskedastic errors, or iσ = σ .   



 24 

0.000

0.050

0.100

0.150

0.200

0.250

W (2S LS ) W (E E L) LR (E E L) LM (EE L) W (E L) LR (E L) LM (EL) W (LE L) LR (LEL) LM (LE L) W (G M M )

R
e

je
c

ti
o

n
 P

ro
b

a
b

il
i

5 0
1 0 0
5 0 0
1 0 0 0

 
Figure 2. Testing the validity of moment conditions.  Case 2:  sqrt(variance) is proportional to the first exogenous variable for each 
observation, or ( )1.5i izσ = σ . 
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Figure 3.  Testing the validity of moment conditions.  Case 3:  sqrt(variance) is proportional to the square of the first exogenous variable for 

each observation, or ( )2
1.5i izσ = σ . 
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Figure 4.  Testing the validity of moment conditions.  Case 4:  multiplicative heteroskedasticity, or ( )1exp .5i izσ = σ .   


