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ABSTRACT 
The objective of the paper is to discuss a tool which is proving extremely efficient 
in partial discharge measurement studies. Though the technique itself is not new, 
its application to  partial  discharge studies is. I t  will he demonstrated in this paper 
that  i t  has  tremendous power a n d  this accounts for its rapid growth a s  a n  applica- 
tion in this field. The paper begins with the description of the fundamentals of 
wavelet analysis, wavelet categories and  the properties of the associated wavelet 
transforms. PD pulses a s  acquired from detectors composed of different detection 
circuits a r e  investigated and  numerically simulated, a n d  a method on how to select 
optimally the wavelet corresponding to  the representative forms of I'D pulse is then 
presented. Finally, applications of wavelet analysis to  partial  discharge studies a r e  
explored. The paper demonstrates that  the wavelet based denoising method pro- 
posed in the paper  can he employed in 'separating I'D pulses from electrical noise 
successfully and  can be used in pulse propagation studies of partial  discharge in 
distributed impedance plant to provide enhanced information and  fur ther  infer the 
original site of the I'D pulse. 

1 INTRODUCTION 
AILURE of the solid insulating systems of HV equip- F ment (rotating machines, transformers, bushings etc.) 

can lead to catastrophic failure of the equipment with se- 
rious health and safety, environmental and economic con- 
sequences. It is therefore imperative that degradation in 
such'systems be detected and quantified at an early stage 
in its development so that appropriate replacement/refur- 
bishment can he arranged at a convenient time. When 
degradation occurs in such systems, irrespective of the 
causative mechanism, it generally results in partial dis- 
charges being generated (small electrical sparks within the 
insulation). Once prevalent, partial discharges then repre- 
sent the dominant mechanism of degradation. For this 
reason, it can be appreciated why the detection and char- 
acterization of partial discharge activity is a key approach 
in insulation system condition monitoring [l]. 

Partial discharge (PD) detection involves the capture, 
storage and processing of PD signals, which occur in the 
form of individual or series of electrical pulses. By acquir- 
ing the data at a convenient, non-intrusive location, usu- 
ally the phase or neutral terminals of the power equip- 
ment under test, statistical quantities such as the PD-pulse 
magnitude, phase distribution (over the ac power cycle) 
and their variation with time a n  he obtained [Z]. Further- 
more, based on these quantities, the mechanisms of PD 

activity can be categorized, and the nature, form and the 
extent of degradation can be inferred. 

Traditionally, the techniques used for signal processing 
are realized in either the time or  frequency domain to 
analyze and extract PD events. In the case of the fre- 
quency domain, for instance, the Fourier transform as- 
sumes that any signal could he decomposed into a series 
of sine and cosine waveforms and then summarized by 
these basis functions. Although the signal under analysis 
can be localized arbitrarily throughout the frequency do- 
main following the Fourier transform, information in time 
is, however, lost. With regard to the PD pulse structure, 
there always exist non-periodic and fast transient features 
in the PD signals detected, which tend to be ignored and 
cannot bc revealed efficiently and explicitly by this kind of 
conventional transform. For these reasons, when the 
Fourier transform is applied to partial dischargc analysis, 
it has serious limitations. 

Despite the advances achieved during past decades in 
measuring instrumentation, partial discharge detection 
circuits, e.g., the ultra wide-band detectors coupled to 
real-time oscilloscopes of very wide bandwidth (up to 4 
GHz), a sophisticated analytical tool of similar power to 
pre-process PD data has yet to he realized. 

Since its introduction to practical applications in thc 
mid-1980s as a powerful mathematical means of signal 
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analysis and signal processing, the wavelet and its associ- 
ated transforms r3-51 have been increasingly recognized 
by researchers and engineers and utilized to solve many 
engineering problems. This paper describes the use of the 
wavelet transform to obtain two-dimensional information 
on PD pulses in both the time and frequency domain, and 
to extract features of PD pulses in the measurement data. 
The paper ccnters on the following questions: 

(1) What is the wavelet, its categories and the associ- 
ated transforms? 

(2) How is the wavelet, most suitable for analysis of PD 
measurement data, acquired in different detectors? 

(3)  How can the specific wavelet “pattern”fol1owing the 
wavelet transform (WT) be used to differentiate PD from 
other signals such as noise? 

(4) How successfully can the WT be utilized in prac- 
tice? 

2 WAVELET METHODOLOGY 
A wavelet, as its name implies, can he interpreted as a 

small wave that has a limited duration and a zero mean 
value. It oscillates in amplitude and decays to zero quickly 
on both sides of the central position of the waveform. 
Compared to sine and cosine waves, the hasis functions of 
the Fourier transform, which extend from minus to plus 
infinity, wavelets usually tend to he irregular and asym- 
metric in terms of wave shape. An example wavelet + ( t )  
is shown in Figure la.  

From a mathematical viewpoint, if a wavelet is defined 
as $([I, it has.the property of equation (1) and has to 
satisfy the admissibility condition C,(O < C, <m) in equa- 

Re& hqwncy (b) 
Figure 1. Comparisons between scaled wavelets in the time domain 
and in the frequency domain. a, scaled wavelets in the time domain; 
b, their results following the Fourier transform. 

tion (2) so that a signal can he decomposed and then re- 
constructed perfectly through the wavelet transform. 

where 4 is the form of the Fourier transform of + ( t ) ,  
and R the set of real numbers. In wavelet terms, +(f) is 
referred to as the mother wavelet. The family of scaled 
wavelets associated with $(/I can be described as 

/ 
$ ( a t )  = a - ’ f l + ( - ) ,  l7 ( a = 1 , 2 , 3  , _ _ _ )  (3) 

where the scaling variable a determines the amplitude and 
the duration of + ( a / ) .  More precisely, the amplitude of 
+ ( a / )  is inversely proportional to the value of the square 
root of a, whereas its duration is linearly proportional to 
a, thus ensuring that each scaled wavelet has the equiva- 
lent energy of the mother wavelet, as can he seen from 
Figure la.  

Also as can he observed in Figure lb, the scaled wavelets 
of +(af) have different central frequencies w and band- 
width ranges A W ,  high values of a corresponding to low 
values of w and A w ,  whereas low values of a yielding 
high values of o and A w .  If f in expression (3) is re- 
placed by / - h, the wavelet is shifted by b on the time 
axis. Therefore, localization properties in ,both the timc 
and frequency can be achieved simultaneously when the 
signals under analysis are examined using such wavelets. 

There are several families of wavelets already proven to 
he especially useful in practice 161. In terms of wavelet 
expressions, some are given explicitly by their time defini- 
tion, including the Gaussian wevclct, the Mcxicdn hat 
wavelet and the Morlet wavelet, and some by their fre- 
quency definition such as the Mcyer wavelet. Others are 
constructed by their finite impulse response (FIR) filter 
pair that exist a special mirror relationship between fil- 
ters, also known as quadrature mirror filters (QMFs), typ- 
ical examples of which are Daubechies wavelets, Symlet 
wavelets, Coiflet wavelets and Lemarie wavelets. The 
Dauhechies wavelets constituted from 4 and 14 coeffi- 
cients in QMFs are shown in Figures 2a, and 2h respec- 
tively; the former is defined as db2, the latter as db7. 
Among the wavelets available, the Daubechies wavelet 
family has almost all of the required properties such as 
compactness, limited duration, orthogonality and asym- 
metry for analysis of fast transient, irregular pulses.’ It is 
for this reason that the Ddubechies wavelet can be ap- 
plied effectively in partial discharge studies. 

Consider now the types of wavelet transform (more the- 
oretical details can he found in [3-51). The key idea un- 
derlying the wavelet transform (WT) strategy is that a given 
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R&b+ be (b) 
Figure 2. Examples of the shape of wavelets. a, db2 wavelet; b, db7 
wavelet. 

signal can be disassembled into a series of scaled and time 
shifted forms of mother wavelet producing a time-scale 
view of a signal from which the original signal can he re- 
covered. The continuous wavelet transform (CWT) of a 

s: original signal 

Level 1 

Level 2 83 
0 

Level 3 

Approximation 3 

Figure 3. Tree structure of three level FDWT decomposition of a signal. 

time-dependent signal f(t) is described as 

The CWT calculates the wavelet coefficients at every 
possible scale and along every time instant. The value of 
W,f(a, b) represents the similarity extent between the ex- 
amined section of f(t) and the scaled and shifted wavelets. 
The greater the W,f(a,b), the  more energetic the 
W+f(a,b), and the greater the similarity between the 
wavelets and the original signal. 

The discrete wavelet transform (DWT) is realized by 
characterizing thc scale variable a in a = 2”’ and assum- 
ing the time variable b as b = n2” at a given scale m 
(m,n being integer values), thus avoiding time consumed 
in coefficient calculation and eliminating wavelet coeffi- 
cient redundancy. The practical fast discrete wavelet 
transform (FDWT) is implemented based on the filtering 
scheme of QMF pairs g, h at different scales as illus- 
trated in Figure 3. When a signal is fed through a pair of 
low-pass filter g and high-pass filter h respectively, the 
WT yields the low frequency content and the high fre- 
quency content of the signal respectively, the former be- 
ing known as the signal’s “approximations” and the latter 
known as its “details”. 

The signal can be perfectly reconstructed using the in- 
verse discrete wavelet transform (IDWT) by starting from 

Detail 1 

Detail 2 

Detail 3 
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the bottom components and moving to the root compo- 
nent rattier than employing the top to bottom approach of 
the FDWT. At each synthesis level, both the coarser ap- 
proximations and details are firstly up-sampled by the fac- 
tor of 2 and then convoluted with synthesis filters g, A ,  
producing a finer approximation signal. The coefficients 
in synthesis filters g, are identical with those in decom- 
position filters g, h, but are inverse in the time arrange- 
ment. 

3 PULSE SHAPE OF PARTIAL 
DISCHARGES 

The selection of a suitable wavelet and its associated 
analysis algorithm is application dependent. For example, 
time-defined wavelets such as the Gaussian wavelet, the 
Mexican hat wavelet and their CWT have often been used 
for pattern recognition [7], and the Morlet wavelet for 
high-impedance fault detection [81 and the analysis of dis- 
turbances within power systems [91. Dyadic orthogonal 
wavelets such as the Daubechies wavelet have found ap- 
plications in data compression and signal demising 
[lo-131. 

Prior to discussing wavelet selection with respect to 
partial discharge studies, it is important to discuss PD 
pulse shape. For solid or fluid dielectrics, partial dis- 
charge phenomena are mainly caused hy voids or bubbles 
within or  at the surface of insulating materials. The charge 
displacement in  the system produces current flowing in 
the leads to the object, which can be detected by a cou- 
pling capacitor in parallel, or by an impedance in series, 
with the test sample. Normally discharge pulses are recog- 
nized as having a very steep wave-front and short dura- 
tion. The rise time of the discharge pulse is as low as a 
few ns (perhaps even faster) whereas its duration is in the 
order of 10 ns. The pulse shape of the discharge current is 
determined by the cavity dimension, such as its radius and 
height, and the external measuring circuit, whereas the 
number of almost simultaneously occurring discharges is 
determined by the cavity shape. For instance, spherical 
cavities cause onc individual discharge at a time, whereas 
flat cavities yield many discharges at a time [14]. 

In relation to detection methods, both narrow-band and 
ultra wide-band (UWB) detecting circuits have been 
adopted. Narrow-band detection can give an erroneous 
quantification and information loss due to quasi-integra- 
tion adopted or when multiple overlapped pulses exist. 
The characteristic parameters, which describe the shape 
of an individual discharge pulse, cannot be described ex- 
plicitly in narrow-band detection. With ultra wide-band 
(UWB) detection techniques [14,151 coupled to fast oscil- 
loscope acquisition, the true PD pulse shape can be 
recorded and the shape of the individual PD pulse can be 
obsemed. Compared to the phase-resolved measurement 
primarily related to narrow-band detection, UWB detec- 
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Figure 4. Typical time parameters describing the shape of a PD 
current PUlSC. 

tion is primarily associated with time-resolved measure- 
ments. 

Figure 4 demonstrates a typical PD current pulse, which 
could be characterized by a series of discharge parameters 
including A (pulse peak value), f, (pulse rise time from 
10% to 90% levels), t ,  (pulse width between 50% levels) 
and fd (pulse decay time from 90% to 10% levels) [11,14]. 
In practical measurements, discharge voltage signals are 
captured by feeding the discharge current through a de- 
tection circuit. On this basis, detected voltage signals are 
likely to have different pulse shapes, depending on the 
configuration of the detection circuit. As far as the detec- 
tion circuit [161 is concerned, it is realized in either a R C  
impedance circuit or a RLC impedance circuit, as shown 
in Figures %a) and 5(b) respectively. The transfer func- 
tions of RC and RLC impedance circuits can be expressed 
in the following Laplace forms 

where r = RC, and w O  =I,". For the input of a Dirac 
current pulse Xf) (ideal impulse, no time duration), the 
output voltage pulse u(f) is represented as a damped ex- 
ponential pulse in the RC impedance circuit and a damped 

id) 0) 
Figure 5. Detection impedance. a, RC circuit; b, RLC circuit. 
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. .  
Figure 6. Two typical PD pulses. a, simulated DEP-type pulse; b, 
simulated DOP-type pulse. 

oscillatory pulse in the RLC impedance circuit. The value 
of T controls the decay time of both representative forms 
of pulse and w,)  determines the oscillation frequency of 
the latter output pulse. 

In practice, the current pulse i ( f )  caused by a PD is not 
an ideal Dirac current, because it has duration in time, as 
shown in Figure 4. When a practical PD pulse passes i(t) 
through a detection circuit, the output pulse produced al- 
ways has a finite rise time. Considering the shape of a PD 
current pulse and the characteristics of detection circuits, 
the damped exponential pulse (DEP) and the damped os- 
cillatory pulse (DOP) can be numerically simulated as the 
mathematical models of (7) and (8) respectively, and fur- 
ther displayed in Figures 6a and 6b. 

(7) 

(8) 

DEp( 1 )  = A ( ~ - @ I  - 

D O P ( t )  = Asin(27if,r)(e-"h -e-"i ) 

where A gives the pulse peak value, f , , t ,  the damping 
coefficients that determine those typical characteristic pa- 
rameters r,, r,, f d  describing the pulse shape, whilst f, is 
the oscillatoty frequency of the DOP-type pulse. 

4 OPTIMAL WAVELET SELECTION 
The WT of a signal produces a wavelet detail coeffi- 

cient distribution throughout the entire time-scale 
(frequency) view which, referred to as the "wavelet pat- 
tern'' of a signal, depends on the wavelet chosen in the 
WT. For a better understanding of this, an example of a 
discharge signal with 5 successive DEP-type pulses is given, 

Figure 7. Wavelet patterns of a DEP-type pulse. Sampling fre- 
quency, 1GHz; data record, 2100 points. a, With the db2 wavelet; b, 
With the db7 wwclct. 

where 1, = 5ns, r ,  = Ions and fd = 20ns in each pulse. Its 
wavelet pattern after applying FDWT with 5-level (scale) 
using the db2 and db7 wavelet is displayed in Figures 7a 
and 7b respectively. Here, FDWT with low level is cho- 
sen as the PD pattern can be characterired within such a 
level range. The same reasoning applies for the level de- 
termination later in characterizing the patterns of noise. 
Despite the similarity in both patterns, the values of their 
coefficient are significantly different, as seen from all lev- 
els. The "optimal" wavelet suitable for analyzing a given 
signal is the one which is capable of generating as many 
coefficients with maximal values as possible within the 
time-scale domain. In this case, db2 is a more appropriate 
wavelet than db7 for analyzing this type of PD pulse. 

In statistical analysis, the correlation coefficient y [17] 
is used to detect one particular relationship between vari- 
ables. The greater the value of y ,  the more approximate 
in wave shape between two variables. Uncorrelated data 
sets result in an y of 0, whereas equivalent data sets have 
an y of 1. For this reason, the correlation coefficient y 
can also be used as a criterion in identifying an appropri- 
ate wavelet choice for PD pulse examination as described 
below: 

1. the discharge pulse data sct is first obtained from its 
mathematical expression (7) or (81, and 
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db2 
db3 
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0.5272 0.2410 
0.4557 0.2042 

db4 
db5 
db6 
db7 
db8 
db9 
dbl0 
d b l l  
db12 
db13 
db14 
dbl5 
db16 I 

db19 
db20 
svm2 I 

0.3761 0.3281 

0.0234 0.7841 

0.2213 0.3526 
0.1443 0.7747 

0.0447 0.7257 
0.0632 0.6590 
0.0151 0.5607 
0.0196 0.5894 
0.0633 0.6108 
0.0708 0.6055 
0.0622 0.6075 
n.0516 0.6057 
0.0231 0.5949 
0.0212 0.5755 
0.0418 0.5648 

0.U484 0.5351 
0.0527 (l.5517 

0.5237 0.2410 
0.4557 0.3486 
0.5126 0.28(10 

lem3 0.2462 0.5972 

2. the wavelet data set is acquired from thc available 
wavelet families by use of the aforementioned methods in 
the section of wavelet methodology, 

3. a set of correlation coefficients y is then calculated 
and finally 

4. after comparing all of the correlation coefficients, the 
optimal wavelet for the defined discharge pulse is the one 
with the maximal value of y. 

For example, let us consider a DEP-type pulse with pa- 
rameters t ,  = 5ns, t ,  = l0ns and Id = 20ns and a DOP-type 
pulse with the same time paramcters as above with an 
oscillation frequency f, = 2OMHz. Table 1 lists all of the 
calculated values of the correlation coefficient y between 
the PD pulses and the available wavelets investigated, 
where all of wavelets are named using their abbreviations 
and the number behind indicates thc order of the wavelct 
in its corresponding family. The results show that the dh2 
is the best wavelet for the DEP-type discharge pulse and 
the db7 for the DOP-typc pulse. It can he seen from Fig- 
ures 8a and 8b that the bcst wavelct based on the corrcla- 
tion coefficients appear remarkably similar to the pulse 
under analysis. 

Does this tcchnique apply to all other discharge pulses 
with different characteristic parameters? The authors be- 
lieve that during the WT, the mother wavelet is scaled 
both in amplitude and in duration at different scales pro- 
ducing the best match result with the detected discharge 
pulse at a certain scale as long as a reasonable mother 
wavelet is chosen. Normally, the wavclets with lower order 
such as db2, db3, sym?, sym3, Iem2 and lem3 are appro- 
priate to the PD data measured with RC detection circuit, 
whilst for the PD data measured with RLC detection cir- 
cuit, higher order wavelets of db6 - dblO are appropriate. 

I M  2w IW 400 YUI 6W 7W 8oJ 
R & b  he (b) 

Figure 8. Comparisons hetween thc PD pulse and the determined 
optimal wavelet. a. optimal wavelet far DEP-type PD pulse; b, opti- 
mal wavelet for DOP-type PD pulsc. 

In practical use, the potentially candidate wavelets can be 
applied to the same problem under investigation simulta- 
neously to determine the one which yields thc best result. 

5 PD PULSE EXTRACTION 
The denoising of PD measurement data is closely asso- 

ciated with the feature extraction from the discharge pulse. 
Prior to an investigation of the PD activity of high voltage 
components in service, a reduction in the effect of noise 
may he a prerequisite to increase the signal-to-noise ratio. 
The noise appearing on-site includes corona, communica- 
tor operation, thyristor firing etc. generated inside electri- 
cal machines and/or externally induced interference from 
communication systems, e.&, radio signals from broadcast- 
ing stations etc. In terms of their nature, noise types 
prevalent on-site can be classified as sinusoidal noise such 
as that found from communication systems, pulse-type 
noise from thyristors etc. and stochastic noise, random 
both in amplitude and time occurrence, such as that asso- 
ciated with corona and electrical noise induced by the de- 
tection circuit itself. Over the years, methods employing 
filtering techniques [18]: neural networks [191 etc., have 
been designed to suppress noise with some limited suc- 
cess. To date, only a few research papers [I 1,131 have been 
published using the wavelet analysis technique to deal with 
noise problems in PD studies. Angrisani ct al. [ll] dealt 
with thc distortion in the PD pulse by cxternal interfer- 
ence due to poor electrical contacts and random noise in 
an ultra widc-band measurement system to improve the 
recognition of the pulse's time parameters, where mea- 
surement data have a very high signal to noise ratio. Shim 
et al. [13] gave a general introduction on the relationship 
betwcen wavelets and filters and wavelet based denoising. 



452 Ma et al.: Interpretation of Wavelet Analysis and its Application in Partial Discharge Detection 

(b) +-+ 
Figure 9. Wavelet patterns of the noise with the db2 wavelet. Sam- 
pling frequency, 1GHz; data record, 2100 points. a, sinusoidal noise 
by broad frequency range between 100 kHz and 200 MHr; b, random 
noise by white noise, 

The present paper addresses two important and novel 
issues, which are missing from previous publications, re- 
lated to wavelet based denoising methods, i.e., optimal 
wavelet selection and automated thresholding to accom- 
modate the typical PD pulses and representative forms of 
noise with varying signal to noise ratio. The former has 
been addressed in the previous section, whereas this sec- 
tion presents an automatic level-dependent thresholding 
criterion which can be used to separate PDs from “noise” 
by means of characteristic patterns following the applica- 
tion of the DWT with the selected wavelets. 

Thc coefficient distributions of two types of noise have 
been examined against a PD pulse. The first was continu- 
ous sinusoidal noise with very broad frequencies between 
100 kHe and 200 MHz. Its wavelet pattern, as demon- 
strated in Figure 9a, decays asymptotically, in a significant 
way, with the increment of decomposition level. Secondly, 
the wavelet signature of stochastic noise given by white 
noise has the form shown in Figure 9b. In this case, the 
average density of coefficients is inversely proportional to  
the dyadic scale 1/2’ ( j  is the decomposition level), or, 
half the number of coefficient extremes do not propagate 
from one scale 1/21 to a coarser scale 1/2’+’ [201. In sin- 
gularity terms in signal processing, its Lipschitz exponent 
is negative. 

As described above, PD signals and noise present dif- 
ferent wavelet patterns, thus enabling PD feature extrac- 
tion. For a given set of PD data in the presence of noise, 
the denoising can be performed through wavelet decom- 

position, thresholding of wavelet coefficients and wavelet 
reconstruction. Thresholding is of vital importance during 
denoising, which is conducted by retaining the wavelet co- 
efficients associated with discharge events and, on the 
other hand, discarding all other discharge-free coeffi- 
cients which characterize noise. 

An automatic level-dependent thresholding criterion 
and hard thresholding approach is recommended to be 
applied to both details across decomposition levels and 
approximations at the user-predefined maximal level of a 
signdl following the FDWT. The former at level j is de- 
fined ass, mj/0.6745* d m ,  where mj  is the esti- 
mated level-dependent median value and n, the level-de- 
pendent length of the signal. As can he seen from this 
thresholding estimator which considers the coefficient 
fluctuation at each decom osition level, both the basic 
threshold estimate e- *log( n j )  and the rescaling factor 
mJ0.6745 are level dependent, thus facilitating the most 
effective suppression of indeterminate noise. 

Hard thresholding processes the data in such a way that 
those wavelet coefficients whose absolute values are 
greater than the threshold are kept and those less than 
the threshold are replaced by zero, as can he expressed 
mathenlatically as y = x * ( I  x I > A), where n, y are origi- 
nal and retained coefficients respectively and A the 
threshold value. Unlike the hard thresholding, soft thresh- 
olding shrinks the kept coefficients as can he seen from 
the thrcsholding rule y = sign(x)*( 1 x 1 - A). Hard thresh- 
olding was preferred by the authors in PD denoising due 
to the higher coefficient values associated with discharge 
events being kept thus yielding an improved PD signal to 
noise ratio in comparison with software thresholding. 
More information on the thresholding rules can be refer- 
enced in [6,211. 

Consider now the efficiency of wavelet analysis in the 
denoising of signals containing partial discharges from 
some examples. Two sets of PD pulse sequences, one with 
.5 individual DEP-type pulses and the other with 5 DOP- 
type pulses, were immersed in electrical noise constituting 
various forms of electromagnetic radiation (both sinu- 
soidal and stochastic), and recovery implemented. As 
shown from Figure 10, the db2 wavelet yields an effective 
denoising result when adopted in the DEP-type PD ex- 
traction. The frequency spectra of such DEP-type pulses 
and the superimposed noise are illustrated in Figures lob, 
and 10c, respectively. The correlation coefficient y he- 
tween the separated PD signal and the original one has a 
value of 0.890, indicating the great similarity between them 
in nature, and the relative error in amplitude between 
them is within only 2%. However, for the DOP-type PD 
extraction, dh7 wavelet yields a better denoising result, as 
shown in Figure 11 as an example. By observing Figures 
I l h  and l l c ,  it can be seen that the frequency spectra of 
DOP-type pulses and the superimposed noise partially 
overlap around the resonant frequency of such DOP-type 
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Figure 10. Demising of a DEP-type P D  event immersed in noise in 
the case of UWB measurement simulation. Sampling frequency, 1 
CHI; data record, 2100 points. a, original noisy signal; b, frequency 
spcctrum of PD pulses; c, frequency spectrum of the superimposed 
noise; d, PD pulses extracted. 
P D  pulses: r, = 5ns, t,, = 10ns. rd = 2Ons, 50ns time separation; noisc, 
combined by sinusoidal noise in broad frequency range hetween 100 
kHz and 200 MHz and white noise. 

pulses. However, this kind of resonant PD pulse can still 
be separated from the combined electrical noise using the 
proposed denoising method. In this case, the denoising 
result shows the value of y is high at approximately 0.95, 
and the relative error in amplitude is down to 4%. 

Simulation studies showed that the denoising of both 
DEP-type and DOP-type PD pulses for narrowband sinu- 
soidal noise is more efficient than that for wideband 
stochastic noise. As the DEP-type pulse has a wideband 
frequency spectrum, when the narrowband sinusoidal 
noise is superimposed on the DEP-type pulses, they can 
be identified from the coarsest approximations at maximal 
level and the details along decomposition levels which 
represent the specific frequency band involved in a signal. 
In the case of the narrowband DOP-type pulses superim- 
posed by narrowband sinusoidal noise, the local irregular- 
ities of tlie signal are dominated by PD data when sam- 
pled with a suitable resolution, which can be detected from 
the details at lower levels following the FDWT. However, 
the denoising quality deteriorates gradually with the in- 
crement of the frequency spectrum range that the PD sig- 
nals and noise overlap. This method is less efficient in 
suppressing stochastic noise from both types of PD pulses 
when the signal to noise ratio is less than -3dB due to 
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Figure 11. Demising of a DOP-type PD event immersed in nuke 
in the case of narrow-hand measurement simulation. Sampling fre- 
quency, 10 MHz; data record, 4200 points. a, original noisy signal; h, 
frequency spectrum of PD pulses; c, frequency spectrum of the su- 
perimposed noise; d, PD pulses extracted. 
PD pulses: I ,  = 0.07 ps, r ,  = 0.5 ps. rd = 1 ~ s ,  20 WLS time separation; 
noise, combined hy sinusoidal noise in frequency range between 50 
kHz and 1 MHr and white noise. 

stochastic noise having a wideband frequency spectrum 
and a random occurrence in time. 

It is worth underlining that the characteristic parame- 
ters of the PD pulse influence significantly the efficiency 
of PD pulse extraction from various forms of noise inter- 
ference. The greater the damping coefficient and interval 
between pulses, the better the result in terms of PD event 
denoising. For the sampling frequency f, utilized, the 
higher the f,, the higher the wavelet decomposition level 
required in order to achieve the same efficiency for PD 
denoising, since a longer original sequence is available with 
the increment off ,  within a fixed time period. 

Further evidence of the power of this technique is illus- 
trated in Figure 12. In this case, partial discharge signals 
were acquired from a cable component energized at 5 kV 
in the presence of significant electronic noise and corona. 
The wavelet with higher order, dblO, was chosen in this 
analysis, since an RLC detection circuit with a resonant 
frequency of 260 kHz was utilized in the measurements. 
By inspection of Figure 12b, three pulses appear at the 
time instants 0, 63 &s and 100 ps, respectively. By inspec- 
tion of Figure 12a, the PD pulses at 0 and 100 &s might 
have been surmised, but clearly not that at 63 ~ s .  Hence, 
the wavelet based denoising method is clearly successful 
in extracting the ?D pulses from the noise. 
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(b) Tim 64 
Figure 12. Denoising of PD pulses immersed in actual narrowband 
electronic noise and corona. Sampling frequency, 10 MHz; data 
recurd, 2048 points. a, detccted original PD data; b, separated PD 
pulses. 

To further evaluate the performance of this denoising 
technique, the PD H,(+,q) patterns generated by using 
the original data without any processing, by using a 
threshold technique and the wavelet denoising technique 
are presented here for the test on the cable component. 
The sampling frequency utilized in this test was 2.5 MHz 
obtaining 5 X lo4 points for each data record with respect 
to a complete ac power cycle of 50 Hz. Each PD pattern 
was generated with 100 data records as acquired by the 
above narrow-hand detection system during a measure- 
ment duration of 10 min. The PD pattern shown in Figure 
13a is dominated by the noise where the original data are 
directly used to produce the pattern. Figure 13h gives the 
PD pattern by using a threshold technique applied to the 
original data where the noise level is estimated as 2 times 
of the standard deviation value of the acquired data. Fig- 
ure 13c gives the PD pattern based on the wavelet-based 
noise suppression. It is evident the wavelet denoising 
technique not only has eliminated the noise but also de- 
tected more PD activity with low apparent discharge mag- 
nitude, and is thus much more unambiguous and effective 
in characterizing the nature of the discharges in this par- 
ticular PD geometry. 

The time using a standard Pentium 3 to  denoise a sig- 
nal consisting of 2048 points illustrated in Figure 12 is 
0.2 s. The time needed to denoise such a data stream of 
5 x lo4 in generating PD patterns is around 1.5 s, giving a 
good result potentially for on-line dkagnOStiCS or quality 
assurance of power equipment. Another attractive benefit 
coupled to this method is data compression of PD mea- 
surement data. Because only those coefficient data re- 
lated to discharge events need to be used to precisely re- 

Figure 13. PD patterns of B cable component energized at 5kV. 
Sampling frequency, 2.5 MHr; measurement duration, 10 mi". a, With 
original data without any processing; b, With a threshold method 
directly applied to original data; c, With wavelet-based noise sup- 
pression. 

construct the actual PD signal extracted, the amount of 
data storage space can he greatly reduced. If the compres- 
sion measure is evaluated in compression ratio C, in per- 
centage between the total retained coefficients across de- 
composition lcvels and the length of the original signal 
under analysis, C,  is found to he within 5%. 

6 TIME-FREQUENCY ANALYSIS 
An early paper by some of the present authors [221 re- 

ported the results of a pulse propagation mechanism along 
the winding in a 6.6kV star-connected induction motor 
which had 6 poles, 90 slots, and its rotor removed. A dis- 
charge simulating pulse of rise time 50 ns with a width of 
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Figure 14. Time-frequency description of a discharge simulating 
pulse propagating along the winding. a, PD pulses measured at dif- 
ferent points; b, wavelct pattern at point A ,  (a point on the end 
winding of thc first turn of a coil); c, wavelet pattern at  point A? 
(same point one turn away from A,) ;  d, wavelet pattern at point A,  
(same point two tums away from A I ) .  

twice the pulse rise time was injected at one point A ,  in 
the winding, yielding output responses at A , ,  A ,  as shown 
in Figure 14a. The detailed experimental setup can be 
found in [22]. In this case, A ,  is a point on the end wind- 
ing of the first turn of a coil, A ,  the same point one turn 
away from A , ,  and A ,  two turns distant from A , .  

In the case of motors, generators and transformers, par- 
tial discharge detection and interpretation is often ham- 
pered by the distorting effect on the PD pulse due to the 
distributed impedance of the windings as the pulse propa- 
gates from its site of origin to the measurement terminals. 
However, its wavelet pattern of a signal created by the 
continuous wavelet transform (CWT) offers the possibility 
of improving the characterization of the pulse propaga- 
.tion and providing better insight into the mechanism of 
propagation since it contains unique and cnhanced infor- 
mation compared with traditional methods in both the 
time and frequency domains [231. 

As is well known, thc factor u in the CWT, as described 
in equation (4), can be varied in either linear or dyadic 
scaling depending on the frequency component contained 
in the signal undcr examination and the required fre- 
quency resolution. Here, the scaling factor a is varied in 
linear increments so that the CWT can provide a finer 
wavelet pattern view through the entire time-frequency 
domain. In the CWT, the relationship between the scale 
and frequency can he understood in the following proce- 
dures. If a mother wavelet has a centra! frequency of 
w&n where wo is defined as wC, = j w  1 $ ( w )  I ’ d w ,  the 
central frequency created by $(a t )  as shown in equation 
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(3) becomes w&na). Furthermore, the frequency f, at 
scale a corresponding to the sampling frequency f, of the 
original signal is then given by f, = (f,wo)/(2rru). 

Consider now the wavelet choice suitable for the time- 
frequency analysis of a PD pulse propagating along the 
winding. To detect the local edges or sharp transitions in 
a signal, which are defined as singularities, the wavelets 
with some vanishing moments are crucial. The wavelets 
with k vanishing moments satisfy the condition 

/;’$(t)dt = 0, (9) 

where j is positive integer j < k.  The modulus maxima of 
the CWT coefficients of f ( t )  yielded with such $ ( I )  are 
given hy 

(10) I W # f ( i ,  h )  I s 

where A is a constant and a the Lipschitz exponent which 
is used to measure the singularity of a signal f ( r )  at time 
instant b. The Lipschitz exponent a gives an indication of 
the differentiability of f(0 more precisely, for example, 
the a of a Dirac signal is estimated as 0, and the a of a 
signal which is differentiable at time b is measured as 1. 
To estimate a signal with a Lipschitz exponent up to k ,  
the wavelet selected should have k vanishing moments. 
However the number of CWT coefficient maxima at a 
given scale often increases linearly with the numbcr of the 
vanishing moment of the wavelet [ZOI. Therefore, the 
wavelets suitable for the PD pulse propagation applica- 
tion are those with as few vanishing moments as possible 
but with enough moments to detect all sharp transitions 
that are of interest in  this field. 

The dh2 wavelet with 2 vanishing moments is chosen 
here to illustrate the wavelet pattern of PD pulses de- 
tected at different points along the winding. Figures 14b 
to 14d display the wavelet patterns of the pulses shown in 
Figure 14a following the CWT with db2 wavelet. The en- 
ergetic wavelet coefficients cover the active frequency 
components up to around 20 MHz and the time range of 
0-600 ns. Clearly, the wavelet pattern can reveal explicitly 
not only the dominant frequencies involved in the signal 
under examination but also the time instants when they 
appear. 

A “traveling wave” on the copper of the winding is 
dominantly present during the propagation of this pulse. 
The further thc detection point from the injection point, 
the progressively wider in shape and lower in magnitude 
the pulse observed, since high frequency components are 
seriously attenuated when the pulse propagates from its 
origin site to the measurement point. Meanwhile, the 
“coupling waves”are found in the waveforms of A , ,  A ,  
points which appear beforc the “traveling wave” arrives 
due to the mutual capacitive interaction intensified by the 
extreme high frequency components involved in the PD 
pulses. 
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. .  
Figure 15. The coefficient distribution of the detected PD pulse and 
the associated local maxima lines used to infer the original site of PD 
pulse. Wavelet, dbl; linear scaling, from 1 to 80; a, hvo-dimensional 
coefficient distribution of PD pulse at point A ,  in the wavelet do- 
main; h, local maxima lines. 

The combination of information contained in the 
“traveling wave” and “coupling wave” has been used for 
locating PD site in HV plant [24]. Does the wavelet pat- 
tern improve the time-flight method for inferring the orig- 
inal PD site? This will be addressed below in terms of the 
local maxima lines of the wavelet coefficients in the direc- 
tion of the scale. The local maxima line is defined in this 
context as a continuous curve in the wavelet domain along 
which all points are modulus maxima [ZO]. The singulari- 
ties in an irregular signal indicate the onset of the sharp 
transients, the timing of which is of interest for locating 
the transient onset especially resulted from the comhina- 
tion of the “traveling wave”and “coupling wave”. In order 
to minimize the amount of computation, the dbl  wavelet 
with only one vanishing moment is chosen as the analyz- 
ing wavelet for locating the singularities in time. Figure 
15a illustrates a two-dimensional wavelet pattern of the 
PD pulse at point A ,  in the time-scale domain where the 
scales are selected within 80. Figure 15b shows the kept 
local maxima lines in the same wavelet domain by apply- 
ing a predetermined threshold h = p max( I W$a, b )  I ) to 
truncate other local maxima lines whose amplitudes are 
lower than this threshold, where p is a turning factor with 
a value between 0 and 1. As can be seen from the local 
maxima lines, the “coupling wave” and the “traveling 
wave” appear at time instants 0.215 ys and 0.417 ys, re- 
spectively. The “coupling wave” arrives almost instantly 
due to a stray field formed in the dielectric media in which 
energy is coupled to the neighbouring conductors, the ar- 
rival time of which depends on the physical distance being 
divided by the approximate speed of light. The “traveling 

~ 

. 

Table 2. Arrival time of two propagation mechanisms and the in- 
ferred distance with respect to the pulse injection point. 

0.218 0.630 4.944 
I 

wave” arrives with a time delay depending on the electri- 
cal distance propagating along the winding divided by the 
velocity which is insulation material dependent. Therefore 
the arrival time difference between the “traveling wave 
and the “coupling wave”can he used to calculate the dis- 
tance between the detection point and the origin site of 
the PD pulse. Table 2 gives the arrival time of such two 
propagation modes in the waveforms acquired at points 
A , ,  A ,  by which the original PD pulse site can be in- 
ferred. In this case, the velocity of the traveling wave in 
the induction motor winding is around 120m/ys, and the 
electrical distances (conductor length) of points A , ,  A ,  
with respect to pulse injection point A ,  are 2.42 m and 
4.84 m respectively [22]. It demonstrates that the error in 
distance is within 3% hut it increases with the distance of 
detection point, due to the amplitude decrement of the 
PD pulse along the winding. 

7 CONCLUSIONS 
AVELET transforms can reveal enhanced and reli- 

nals. The WT is capable of locating time and frequency 
components simultaneously allowing the analysis of sig- 
nals with irregular and transition features, such as in the 
case of partial discharges. The scaling factor selected in 
the WT can be varied in either linear or dyadic scaling 
depending on the frequency component contained in the 
signal under examination and the required frequency res- 
olution. 

To use wavelet theory for PD analysis, it is vital to se- 
lect the most appropriate wavelet and this is determined 
by the nature of the PD pulse. The correlation coefficient 
between the wavelet and the measured PD pulse can be 
used as an efficient criterion to evaluate the optimal 
wavelet for the measured PD pulse. For PD data acquired 
with a R C  detector circuit, the optimal wavelets are those 
dyadic orthogonal wavelets of lowcr order, whereas for PD 
data obtained with a RLC detector circuit, those dyadic 
orthogonal wavelets of higher order are preferred. 

Based on the patterns of the coefficient distribution of 
the PD pulses and noise following the WT, denoising 
problems can be solved. Further tests on practical PD data 
obtained on-site will confirm its power. 

Because only a convolution calculation is involved in the 
implementation of the FDWT, the algorithm may be po- 
tentially applied for on-line PD detection in the presence 
of severe electrical disturbance. Furthermore, the possibil- 

W ’  able information ’ contained in partial discharge sig- 
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ities for data compression that accompanies the wavelet- 
based method alleviate the problems related to data stor- 
age and data communication during on-line PD detection. 

The technique employing the local maxima lines of the 
PD pulse following the CWT provides the potential for 
locating the original site of a PD pulse propagating along 
the winding more accurately. However, studies have shown 
that this application depends on the wavelet choice, the 
scale range selected and the turning factor for threshold- 
ing, therefore it is application dependent and needs to he 
further justified. 

The present effort of this paper has been devoted to 
finding wavelets from the extensive libraries of mother 
wavelets based on the clear understanding of the test 
specimen and the detection system utilized. Provided the 
behavior of the detection circuit being utilized is fully 
characterized and understood, as is the case in these stud- 
ies, there should be no need to adopt an adaptive wavelet 
approach. However, if the PD data set is non-stationary in 
the measurement, an adaptive wavelet should be consid- 
ered to automatically adjust the shape of the analyzing 
wavelet to the signal of interest. All of these show there is 
still a lot of work to he done in this area, hut it holds very 
significant promise for the future. 
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