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SEASONALITY: CAUSATION, INTERPRETATION, AND IMPLICATIONS

Clive W. J. Granger
University of California, La Jolla

CAUSES OF SEASONALITY

It is a very well-known fact that many economic
series display seasonality; that is, they have an observ-
able component consisting of a fairly constant shape
repeated every 12 months. This component is often
treated as being so easily explained that neither an
exact definition nor an explanation of its origins is
required. It is the objective of this paper to suggest
that ignoring consideration of causation can lead to
imprecise or improper definitions of seasonality and
consequently to misunderstanding of why series require
seasonal adjustment, to improper criteria for a good
method of adjustment and to have implications for the
evaluation of the effects of adjustment both on a single
series and when relating two or more series. These con-
siderations do not necessarily lead to better practical
methods of adjustment, but they should lead to a better
understanding of how to interpret time series and
econometric analysis involving seasonal components
and seasonally adjusted series. The only other author,
prior to this conference, who emphasizes causation of
seasonals appears to be BarOn [1].

There are at least four, not totally distinct, classes of
causes of seasonal fluctuations in economic data. These
classes are discussed in the following sections.

the end of a tax year or accounting period are all ex-
amples of decisions made by individuals or institutions
that cause important seasonal effects, since these events
are inclined to occur at similar times each year. They
are generally deterministic or preannounced and are
decisions that produce very pronounced seasonal com-
ponents in series such as employment rates. These tim-
ing decisions are generally not necessarily tied to any
particular time in the year but, by tradition, have be-
come so.

Weather

Actual changes in temperature, rainfall, and other
weather variables have direct effects on various eco-
nomic series, such as those concerned with agricultural
production, construction, and transportation, and con-
sequent indirect effects on ot.her series. It could be
argued that this cause is the true seasonal, being itself
a consequence of the annual movement of the. earth's
axis which leads to the seasons. Other natural causes
can be important, such as the seasonal fluctuations in
the abundance of fish, as discussed by Crutchfield and
Zellner in their book Economic Aspects of the Pacific
Halibut Fishery (U.S. Govt. Printing Office, 1963).

Calendar Expectation

The timing of certain public holidays, such as Christ-
mas and Easter, clearly affects some series, particularly
those related to production. Many series are recorded
over calendar months, and, as the number of working
days varies considerably from one month to another in
a predetermined way, this will cause a seasons]. move-
ment in flow variables, such as imports or production.
This working-day problem could also lead to spurious
correlations between otherwise unrelated series, as I
have discussed elsewhere [4].

Timing decisions

The timing of school vacations, ending of university
sessions, payment of company dividends, and choice of

expectation of a seasonal pattern in a variable
can cause an actual seasonal in that or some other vari-
able, since expectations can lead to plans that theii
ensure seasonality. Examples are toy production in
expectation of a sales peak during the Christmas peri-
od, the closing down of certain vacation facilities im-
mediately after Labor Day in expectation of a decline
in demand for these facilities, and the expectation of
bad weather in New Jersey in January may mean that
few plans are made for new house construction during
that month. People choose their vacation destinations
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on the expectation of weather conditions rather than
on the actual situation. Without the expectation-plan-
ning aspect, the seasonal pattern may still occur but
might be of a different shape or nature. An extreme
example is that of British egg prices in the early sixties.
The eggs were produced almost entirely by battery
hens, who had no idea of the seasons as they existed in
a closely controlled, stable environment, and, thus, pro-
duction could be made steady throughout the year. The
egg prices were fixed by the Egg Marketing Board who,
on being asked why the prices contained a strong sea-
sonal element, replied that "the housewives expect it."
The seasonal in egg prices vanished soon after the
enquiry was made. Expectations may arise, because it
has been noted that the series being considered has, in
the past, contained a seasonai, or. because it is observed
that acknowledged causal series have a seasonal
component.

These four groups may be thought of as basic causes.
They are not always easily distinguishable, may often
merge together, and the list of basic causes may not be
complete. Some series may have seasonal components
which only indirectly due to these basic causes.
Weather may cause a seasonal in grape production that
then causes a seasonal in grape prices, for example.
For many series, the actual causation of a seasonal may
be due to a complicated mix of many factors or reasons,
due to the direct impact of basic causes and many in-
direct impacts via other economic variables. Even if
only a single basic cause is operating, the causal func-
tion need not be a simple one and could involve both a
variety of lags and nonlinear terms. Two fairly obvi-
ous examples follow.

The first example is the impact on a production series
of a public holiday, such as Christmas, might be simply
modelled as production = where 9t is a stochastic
production series on working-day t, and is a dummy
variable, taking the value 1 on nonholidays and 0 on
holidays. Thus, the initial impact of the advent of
Christmas involves a multiplicative seasonal. However,
this model is clearly too simple to be an acceptable ap-
proximation of the true situation. If there is spare
capacity, the occurrence of the Christmas vacation can
be allowed for in the production scheduling by increas-
ing production in working days around the vacation,
giving both expectations and a delayed effect. The
exte.nt to which this planning occurs will depend partly
on the state of the economy, or the order book, and on
current production levels, or unused capacity of the
factory. Thus, the actual seasonal effect may depend on
the level of the economic variable being considered and
possibly also on other variables.

A second example is the effect of rainfall on a crop,
such as outdoor tomatoes grown in California. Early,
plentiful rainfall could bring on a good crop, provided
it is not followed by further heavy rainfall in the next
2 months to the exclusion of sufficient sun. Thus, the

L

rain provides both a distributed lag effect and also an
accumulation effect on the quality, quantity, and timing
of the actual crop.

'l'wo important conclusions can be reached from such
considerations: (1) The causes of the seasonal will vary
greatly from one series to another, and, therefore, the
seasonal components can be expected to have differing
propeities, and (2) the seasonal components cannot be
assumed to be deterministic, i.e., perfectly predictable.
Although it would be interesting and perhaps worth-
while to perform a causal analysis of the seasonal com-
ponent for every major economic series, this task would
be both difficult and expensive. Nevertheless, it would
be unreasonable to assume that all seasonal components
are generated by the same type of simple model, and
this must be acknowledged when attempting to season-
ally adjust a series. Even though some of the basic
causes can be thought of as deterministic series (the
calendar and timing decisions, for example), there is
certainly no reason to suppose that they will lead to
deterministic seasonal components, since the reaction to
these causes need not be deterministic. The other basic
causes, weather and expectations, are not deterministic
and cannot lead to deterministic seasonals. Although
an assumption of a seasonal component
may have some value, this value is usually very limited
and leads to techniques that are capable of improve-
ment. Implications of these conclusions for seasonal
models will be. discussed in the section "Seasonal
Models."

Th consideration of causation also throws doubt on
the idea of the seasonal being simply either an additive
or a multiplicative, component, as will also be discussed
in the section "Seasonal Models."

Before turning to the problem of how to define sea-
sonality, it is worthwhile. considering briefly the types
of economic series that are. clearly seasonal and those
that. are not. For purposes of illustration, consider just
those series that the. U.S. Department of Commerce
decides are. in need of seasonal adjustment and those
that. apparently have, no such need. The types of series
that. aie adjusted are generally those concerned with
product ion, sales, inventories, personal income and
consumption, government receipts and expenditures,
profits. unemployment rates, and imports and exports.
Series not seasonally adjusted include prices (other
than farm and food prices), interest rates, exchange
rates, index of consumer sentiment, new orders (manu-
facturing), liquid liabilities to foreiguers, and U.S.
official reserve assets. If it is possible to generalize
about stich a wide range of variables, it seems that those
needing adjustment are. usually variables requiring
planning or long-range decisionmaking, whereas the
nonadjusted series are typically those that can quickly
'èhange in value and, thus, require only a stream of
short-run decisions.
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If one tries to write down the main causes of season-
al components in the first group of variables, I think
that it is easily seen that the proper specification of
these causes is not a simple task and that this problem
needs to be tackled by empirical analysis as much as by
introspection.

DEFINITION

It is impossible to proceed further without a reason-
ably precise definition of seasonality, although it is re-
inarkable how many papers discuss the topic without
consideration of definition. The belief is, presumably,
that the seasonal component is so simple and obvious
that it hardly needs a formal definition. Nevertheless,
to sensibly discuss such topics, as the objectives of sea-
sonal adjustment or the evaluation of actual methods of
adjustment, a formal definition is required. It is obvi-
ous that this definition should not be based on a specific
model, since this model may not properly reflect reality,
nor should it rely on the outcome of a particular meth-
od of adjustment, since the method may not be ideal,
and it also becomes difficult to evaluate that particular
method. These limitations, together with the fact that
the most obvious feature of a seasonal component is its
repetitiveness over a 12-month period, strongly suggest
that a definition can be most naturally stated in the fre-
quency domain, since spectral methods investigate par-
ticular frequencies and are essentially model-free.

Let be a stochastic generating process and Xt,
t= 1, . . . be a time series generated, by this process.

and Xt might be considered to correspond to a ran-
dom variable and a sample respectively in classical
statistical terminology. For the moment, will be
assumed to be stationary, although this assumption will
later be relaxed. Let f(w) be the power spectrum of
and f(w), the estimated spectrum derived from the
observed Define the seasonal frequencies to be

1, 2, ..., [N/2], where

2,r= —
N

zV is the number of observations of the series taken in a
12-month period, and [N/2] is the largest integer less
than N/2. For ease of exposition, the case of monthly
recorded data will be considered almost exclusively in
what follows, so that the seasonal frequencies are just

k= 1, 2, . . ., 6. Further, define the set of sea-
sonal frequency bands to be

in(w81c8,w8k+6), k1,... ,5, (w,,6—8,7r)}

and so consists of all frequencies within 8 of the season-
al frequencies.

Definition 1

The process is said to have property S if f(w) has
peaks within for some small 8>0.

Definition 2

The series is said to apparently have property S
if f(w) has peaks in for some small 8>0.

A process with property S will be called a process
with seasonal component. This definition closely re-
sembles that proposed by Nerlove [14] in an important
paper on seasonal adjustment.

Definition 3

A process is said to be strongly seasonal if the
power contained in w8(6) almost equals the total power,
for some appropriate, small 8. This can be stated more
formally as

I f(w)dw=A(8)

where A (8) is near 1. Thus, the variance due to the sea-
sonal band frequencies is nearly equal to the total van-
alice of the process It follows that f(w) is relatively
small for w in the region not — w8 (6), compared to w in
the region The choice of 6 is unfortunately arbi-
trary and has to be left to the individual analyst. It
can be strongly argued that the need for allowing the
seasonal component to be nondeterministic implies that
it is not correct to take 6=0. If A(0) is some positive
quantity, then the seasonal does contain a deterministic
component, but, given just a finite amount of data, this
hypothesis cannot be tested against the alternative
A(8) >0 for some small positive 8. which allows also a
nondeterministic seasonal component.

The assumption of stationarity in these definitions is
too restrictive for our needs. Although the spectrum is
strictly based on this assumption, the problem can be
removed in the case of actual data analysis if in the
definitions one replaces the estimated spectrum by the
pseudospectrum [10]. The pseuclospectrum is essential-
ly the spectrum estimated by the computer as though
the data were stationary. It can also be loosely thought
of as the average of a time-changing spectrum. If this
way out is taken, peaks in the pseudospectrum at the
seasonal frequency bands will indicate that the series
did have property S for at least some of the time spami
considered.

SEASONAL MODELS

There are many time series models that generate data
with property S. Some examples follow, using the nota-
tion that is a process with property 5, is a process
without property 5, and is a strongly seasonal proc.
ess. The additive seasonal models then take the form

xt = +

• where is a unrestricted nonseasonal series. Various
forms for 5, have been suggested.

V
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Model 1

is perfectly periodic so that St=St_,,. Thus, Sg
can always be represented by

or by

6
cos

:1=1

12

>
a'd,

where d3 = 1 is j" month of the year
=0 in all other months.

In this model, St is deterministic.

Model 2

is almost periodic, so that
6

COS

2=1
where ajg, are slowly time-varying and can either be
assumed to be deterministic functions of time, such as
ajt = exp (ajt), or they can be considered to be stochastic
processes with spectra dominated by low-frequency
components. If is perfectly periodic, as in model 1,
its theoretical spectrum will be zero, except at the sea-
sonal frequencies, whereas, if is almost periodic, its
spectrum will be almost zero outside of the frequency
band where the size of 6 will depend on the rate
at which change in value.

Model 3

is a strongly seasonal process. For example, S,
could be a multiple of a filtered version of an observed
strongly seasonal causal series, such as a weather series.
Equally, may be generated by a simple ARMA
model with coefficients such that the resulting process
is strongly seasonal. An example generated by

St= +O.677t_t

where is white noise, as considered by Grether and
Nerlove [9]. The weather series just considered might
also be considered to be generated by such a model, but
presumably the could then be estimated by analysis
of causal series. If the causal series has not been identi-
fied, the component might be thought of as unob-
servable, meaning that the cannot be directly ob-
served or estimated from data. These problems are
further considered in the next section.

Model 4

In multiplicative models, where

zg=yt . St

SECTION I

and is constrained to be positive, th can be taken to
be generated by any of the previous models, plus a
constant to ensure that it is positive. These models seem
to be suggested to allow for the apparently observed
fact that the amplitude of the seasonal component in-
creases in size as does the level of An assumption
of a multiplicative model is an attractive one as the
application of a logarithmic transformation to the data
produces an additive seasonal model. However, al-
though attractive, this assumption is not necessarily
realistic, since the amplitude of may be trending in
the same direction as is but not proportionately.
Other transformations may be appropriate or much
more general classes of models should perhaps be
considered.

Model 5

Harmonic processes is a very general class of the non-
stationary processes, which allow the amplitude of one
frequency component, such as the seasonal, to be corre-
lated with that of another component, such as the low.
frequency component corresponding to business cycles.
In the frequency domain, such processes have the
representation.

where

sit

—d'F(w, A), all A

x) is the bivariate spectral function, and its
values are in a sense dominated by values along the

main diagonal wA. If d'F(w, w)f and f(w) has
peaks at the seasonal frequency bands, the harmonic
process will be said to have property S. Stationary
processes, the almost-periodic model 2 and the smoothly
changing class of nonstationary processes considered by
Priestley [14], are usually members of the class of har-
monic processes. Unfortunately, much of this class has
not been studied empirically and no specific set of time-
domain models have been identified that represent the
majority of the class.

Model 6

Adaptive models are any models that take a white
noise series and, by the choice of an appropriate filter,
produce a series where property S is clearly an appro-
priate model. The class of such models, suggested by
Box and Jenkins [2], has received the most attention
recently and can be represented by

aa(B8)

b,8(B')

- where B is the backward operator. 8=12 for monthly
data, a, b are polynomials in B and does not have

C
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property S and is usually taken to be ARIMA. The
only values of d3 required for economic data seem to be
o or 1, and, typically, a series with property S is as-
sumeci to have d, 1. They are called adaptive models,
as the seasonal can change shape in an unspecified way
and still belong to the class. Other adaptive models
have also been suggested. but they are generally special
cases of the Box-Jenkins model. It has been suggested
that a very simple form of the model, such as

(1— =

where is white noise and A is near one, cannot be used
to represent real data. The reason given is that the
estimated spectrum of real series, with property 8, has
peaks of very unequal heights, whereas the theoretical
spectrum, generated by the simple model, has peaks of
almost equal heights at the seasonal frequencies. Al-
though the theory is correct, in practice, a series gen-
erated by the simple model can produce almost any
seasonal spectral shape depending on the starting
values used. Thus, the full model consists of the gen-
erating equation, plus the 12 starting values. It is clear-
ly important to fit the model to a series whose first year
is in some way typical in terms of its season shape.

This list of models, producing series with property 8,
is merely an illustrative one and does not pretend to be
complete. However, it is sufficient to show the wide
variety of models available and how inappropriate it is
to just assume that some single model is the correct one
and then to base subsequent analysis on this chosen
model, without performing any confirmatory analysis
or diagnostic checking. In practice, given a limited
amount of data from a single series, it may be impossi-
ble to distinguish between various models. This sug-
gests that a good method of seasonal adjustment must
be fairly robust against various types of generating
models. However, it does not follow that it is sufficient
to assume the correctness of a simple model, such as a
deterministic Model 1, and to adjust using a method
designed to deal with such a model. Although a compli-
cated, stochastic model might be well approximated by
a deterministic model, in some sense over time. periods,
to use the simple model can lead to important problems
when a sophisticated analysis is undertaken. It is simi-
lar to saying that a random walk with drift can be
approximated by a linear-trend function and then using
this function to forecast future values of economic vari-
ables (or their logarithms). Although such forecasts
may not be disastrously bad in the short run, they can
be easily improved upon.

DECOMPOSITION

A great deal of the academic literature dealing with
seasonal problems is based on the idea that a seasonal
series can always be represented by

xt = F, + 8,

this is possibly after a logarithniic transformation,
where Ft does not have property 5, and St is strongly
seasonal. It is often furt.her assumed that the two corn-
ponents Ft and 5, are uncorrelated. This idea is so basic
that it needs very careful consideration. At. one level,
it might be thought. to be clearly true, given the as-
sumption that F, is stationary. Let X,(w,(8)) be the
summation of all of the frequency components of X,
over the frequency set w8(6) and let —

X, (w8(8)) ; then 8S, can be. associated with X,(w8(8))
and Ft with St will necessarily be strongly sea-
sonal, F, will not have property AS'. and AS,, F, are un-
correlated.

However, this solution to the decomposition problem
is iiot a generally acceptable one, since does not
have the kind of properties that are usually required, at
least implicitly, for the nonseasonal component Ft.
This component is almost inevitably taken to be a typi-
cal kind of series, generated, for instance, by a non-
seasonal ARIMA process and, thus, to have a smooth
spectntm with neither peaks nor dips at seasonal fre-
quencies. On the other hand, has a spectrum which
takes zero values at the seasonal frequency band w8(8).
The equivalent requirement, placed on 5, for the de-
composition to be acceptable. is that it contributes the
peaks to the spectrum at the seasonal frequencies but
iiot the total power at these frequency bands. If this
requirement is not imposed. a series without property
AS, such as a white. noise, would have a seasonal decom-
position into and X, (W8 (8)).

To illustrate the. consequent difficulties that. arise con-
ce rning seasonal decomnposit ion from these considera-
f ions, suppose that F, is generated by

and S, by
a8(B)8,= bg(B)-q,

where are. two white-noise or innovation series, a
and b are chosen so that, the spectrum of F, has no
peaks at seasonal frequencies, and a8, b3 are such that the
spectrum of 5, has virtually no power outside. the sea-
sonal frequency band w, (6) for some small 8. If and

are uncoirelated, the spectrum of X is the sum of the
spectra for F and S. However, if the only data avail-
able for analysis ai'e a sample from X. then F, and 5,
are unobservable components: it follows that there is
no unique decomposition of X, into plus 5,. Coeffi-
cients of a and b can be chosen so that. has a
slight dip at and the coefficients of b, are
altered so that remains unchanged. Only by im-
posing very stringent conditions, of a rather arbitrary
kind, on the shape of around the frequencies in
w8 (8), can a unique decomposition be achieved, and one
rarely has a strong a priori knowledge about the series
to impose such conditions.
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38 SECTION I

The situation becomes clearer if is a filtered ver-
sion of a causal series, such as monthly rainfall
Suppose

and

=

c are all polynomials in B. It then
follows that b8(B) =b*(B) . c(B). By analysis of
the series can, in principle, be estimated, and, by the
joint analysis of and the seasonal component
can be isolated, hence also Ft. It is then seen that, at
least intrinsically, the use. of causal knowledge can al-
low a unique seasonal decomposition that cannot be
achieved without the use of this knowledge.

It is interesting to relate the decomposition model
with t.hat employed by Box and ,Jenkins, discussed as
Model 6. Using the notation introduced at the. start of
this section,

so

xt=
b(B) &8(B)

a(B) O'R(B)

b

The righthand side is the sum of two uncorrelated mov-
ing averages and, consequently, can always be repre-
sented by where d(B) is a polynomial in B of
limited order, and is a white noise. Typically, is a
very complicated amalgam of the two component white
noises et, 'it. (For proof, see [6].) Thus, a Box-Jenkins-
type model is achieved but with the driving series
involving which is the driving series of the seasonal
component if one analyzes by building a single.
series Box-Jenkins model, it will be virtually impossi-
ble to pick out and By the use of partial frac-
tions, one might be. able. to obtain a decomposition of
the form

where A. is strongly seasonal, but now both the
seasonal and the nonseasonal components are driven by
the some innovation series The two components
clearly will not be independent.

It is probably true to say that the requirement that a
series be decomposed into seasonal and nonseasonal
parts has the implicit idea that the two parts have their
own separate, nonoverlapping sets of causes. It is these
different causes that ensure the two parts are uncorre-
lated and, in fact, independent and also provide one
reason for seasonally adjusting. However, using a
single series, it is seen that the seasonal decomposition
is very difficult and perhaps impossible to achieve, pro-
vided the seasonal component is taken to be stochastic,

which is essential. The only sure way of achieving the
required decomposition is by a full-scale causal analy-
sis of one or another of the components, which may not
always be practical. In later sections, a method of ad-
justment that uses the past values of the series to be
adjusted will be called an autoadjustment method,
whereas, if the past values of seasonal causal series are
also used, the method will be called a causal adjustment.

WHY ADJUST?

The seasonal components of economic series are
singled out for very particular attention. Why should
this be so, and why is so much effort expended on try-
ing to remove this component? Presumably, the season-
a.! is treated in this fashion, because it is economically
unimportant, being dull, superficially easily explained,
and easy to forecast but, at the same time, being sta-
tistically important in that it is a major contributor to
the total variance of many series. The presence of the
seasonal could be said to obscure movements in other
components of greater economic significance. Such
statements contain a number of value judgments and,
thus, should not. be accepted uncritically. It. can cer-
tainly be stated that, when considering the level of an
economic variable, the low frequency components, often
incorrectly labelled the "t rend-cycle components." a re
usually both statistically and economically important.
They are. statistically important, because they con-
tribute the major part. of the total variance, as the
tV1)icfll results and the usefulness of integrated
(ARIMA) models indicates. The economic importance
arises from the difficulty found in predicting at least
the turning points in the low-frequency components
and the. continual attempts by central governments to
control this component, at least for GNP, employment.,
price, and similar series. Because. of their dual im-
poitalice. it is desirable to view this component as clear-
ly as possible and, thus, the interference from the sea-
son should be removed. This argument can be taken
further and leads to the suggestion that only the low-
frequency component is of real economic importance
and, thus, all other components should be removed.
This easily achieved by applying a low--band pass
filter to the. series. However, if one's aim is not merely
to look imp the. business cycle component. but to analyze
the whole series. this viewpoint is rather too extreme.

I think that it is true to say that., for most statistical-
ly unsophisticated users of economic data, such as most.
journalists, politicians, and upper business manage-
ment, the preference for seasonally adjusted data is so
that. they Cflfl more clearly see. the. position of local
trends or the place on the business cycle. It is certainly
true that. for any series containing a strong season, it is
very difficult, to observe these local trends without sea-
sonal adjustment. As these. users are an important



group, there is clearly a powerful reason for providing
seasonally adjusted data.

For rather more sophisticated users who wish to
analyze one or more economic series, without using
supersophisticated and very costly approaches, it also
makes sense to have adjusted data available. If one is
forecasting, for instance, it may be a good strategy to
build a forecasting model on the adjusted series, possi-
bly using simple causal techniques such as regression,
and then to add a forecast of the seasonal component
to achieve an overall forecast. Similarly, if the rela-
tionship between a pair of economic variables is to be
analyzed, it is obviously possible to obtain a spurious
relationship if the two series contain important season-
als. By using adjusted series, one possible source of
spurious relationships is removed. The kinds of users I
am thinking of here are economists or econometicians
employed by corporations, government departments or
financial institutions.

There are obviously sound reasons for attempting to
produce carefully adjusted series, but there are equally
good reasons for the unadjusted series to also be made
equally available. For very sophisticated analysis, an
unadjusted series may well be preferred, but, more im-
portantly, many users need to know the seasonal com-
ponent. Firms having seasonal fluctuations in demand
for their products, for example, may need to make de-
cisions based largely on the seasonal component. The
Federal Reserve System is certainly concerned with
seasonal monetary matters, and a local government
may try to partially control seasonal fluctuations in
unemployment. Many other examples are possible.
Only by having both the adjusted and the unadjusted
data available can these potential users gain the maxi-
mum benefit from all of the effort that goes into col-
lecting the information.

It is seen that alternative users may have different
reasons for requiring adjusted series. I believe that it is
important for econometricians and others who analyze
economic data to state clearly why they want their
data seasonally adjusted and what kind of properties
they expect the adjusted series to possess, since these
views may be helpful in deciding how best to adjust.

It is not completely clear why the central govern-
ment should place most of its control effort on the long
swings in the economy and yet make little attempt to
control the seasonal. Perhaps, people prefer having
seasonal components in the. economy rather than not
having them because of the generally surprise-free
variety of provided. One wonders if, when
a group of astronauts go on a 20-year trip through
space., their enclosed environment will be given an
artificial seasonal.

OVERVIEW OF ADJUSTMENT METHODS

39

rFhere is certainly no lack of suggested methods for
seasonal adjustment; dozens already exist, and others
are continuously being proposed. It would be inappro-
priate to attempt to review even the major properties
or objectives of all of these methods in this paper.
There are, however, certain features of the methods
actually used that deserve emphasis. I think that it is
fair to say that virtually all of the methods are auto-
matic ones in that essentially the same procedure is
used on any series given as an input to the computer
rather than being individually redesigned for each
series. Secondly, all of the methods are based on the
past values of the series being adjusted and not on the
values taken by other series. That is, they are auto-
adjustment methods rather than causal adjustment.

The two basic approaches involve regression tech-
niques, using seasonal dummy variables or cosine func-
tions and filtering methods, designed to isolate a major
part of t.he seasonal frequency component. These two
approaches are not unrelated, and, with an assumption
of stat.ionarity, the theoretical properties of these meth-
ods can be derived from some well-known theory, the
easiest interpretation coming from the effects of linear
filters on a spectrum. However, most of the more wide-
ly used methods of adjustment are not perfectly equiva-
lent to a linear filter for two reasons that are much
emphasized by those applied statisticians, usually in
government service, who are most concerned with the
mechanics of the adjustments and with the production
of adjusted series. These reasons are the strong belief
that the seasonal pattern is often time-varying to a
significant degree and the concern that an occasional
aberrant observation, or outlier, may have an unfortu-
nate effect on the adjusted values over the following
few years. In attempting to counteract these apparently
observed properties of real data, to which academic
writers have generally paid little attention, nonlinear
filters or data-specific methods of adjustment have been
devised. The properties of these methods cannot usually
be determined by currently available theory. As a sim-
ple illustration of a method devised, to allow for these
affects, suppose that the estimate of the seasonal corn-
l)Oflent. next. January is taken to be the average Janu-
ary figure over the last. years. To allow for the possi-
bility of a changing pattern n has to be kept small, say
n=5, and, to allow for the possibility of outliers rather
thaii simply averaging the. last five January
values, one could reject the smallest and largest of
these five values and average the rest. If changing sea-
sonals and outliers are important, as has been sug-
gested, there are clear benefits in adapting methods to
take these problems into account, but if they are not
really important. the extra costs involved in the per-
formance of the adjustment method ma outweigh the
benefits, as will be discussed in the section "Effects of
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Adjustment in Practice." It would be interesting to
see evidence on the frequency of occurrence and im-
portance of evolving seasonal patterns and outliers.
since this would be helpful in evaluating methods of
adjustment. Some methods would be badly affected by
these data properties but others much less so. For ex-
ample, techniques based on the adaptive models in
Model 6., including those associated with Box and
Jenkins, cope very well with changing seasonal pat-
terns, if the change is not too rapid, but are very badly
thrown out 'by outliers or extraordinary data values.

The question of how to deal with outliers clearly ex-
emplifies the basic differences between the auto- and
causal-adjustment approaches. Just suppose that a
series can be decomposed as

It = +

where does not have property 5, is strongly sea-
sonal, and can be fully explained in terms of known
and recorded weather variables. If an exceptionally
severe winter occurs, then, since it cannot be explained
by past values of Xe, any auto-adjustment technique
will have to consider the difference between the excep-
tional value of and its value predicted from the
past as noise. A causal adjustment technique, if based
on the correct structural equation will automatically
take the exceptional value into account and there will
be no residual problems for later years. Now, the out-
her is not noise but an integral part of the seasonal and
is dealt with accordingly. It is quite clear that the
causal-adjustment approach is superior as the excep-
tional winter is not just noise but correctly considered
part of the seasonal, since such winters only occur in
the winter months! The other popular cause of outliers,
strikes, and particularly dock strikes, have similar
properties, since the preponderance of strikes has a sea-
sonal pattern, with few strikes starting in the United
States in December and the next few months than at
other times in the year. Thus, to conside.r strike effects
as completely noise to the system ignores the fact that
this "noise" has property S.

A further problem of considerable practical un-
portance concerns the question of how to adjust up to
the present. If one is adjusting historical data, it is
generally thought to be very desirable that important
components, such as the business cycle are not lagged as
a result of the adjustment. If a linear filtering method
of adjustment is used, so that

-2—rn
with Za5 =1, the no-lagging property can .be achieved
by taking = a_,. However, as t approaches the pres-
ent time n, the use of such a symmetric filter is not pos-
sible, as the filter involves values of the series that have
not yet occurred. One method of proceeding is to alter
the parameters of the filter as t gets near n. A simple

SECTION 1

example is the following filter applied to quarterly
data:

but, if t=n—1
X4=

and, if t=n

It is seen that the filter is here rolled-up, with the
weight attached to an unobserved value being given to
the latest available figure. The effects of doing this are
to remove only part of the seasonal, even if the season-
al is perfectly periodic and deterministic, and to induce
lags in nonseasonal components. The. seasonal is not
properly removed because if in the above example the

filter weights were used at all times on a series
with property S then the adjusted series will still
usually have this property. As an example of the lags
induced, if the series to be adjusted contained a cycle
of period 40 months, the will contain this com-
ponent lagged approximately 0.4 months, and, in it
will be lagged 1.5 months. Thus, if the component
peaked at time n, this peak would not be observed until
time n+ 1, using quarterly data or n plus 1.5 months
if more regularly observed data were available but
this particular quarterly filter were used. Methods of
adjustment that adapt as the time point approaches the
present will generally have this property of inducing
varying lags in the most recent 'data. This is potentially
a very annoying feature given that in a policymaking
situation this most recent data is by far the most im-
portant and if one is model-building it would probably
usually be preferred that the model best fits the most
recent data. This is certainly true for forecasting pur-
poses. A further unfortunate side effect of using tech-
niques that introduce varying lags in the most recent
data is that it then becomes inappropriate to compare
the most recent adjusted figure with the adjusted figure
for twelve months earlier, to calculate an annual rate
of change, for example. The fact that different lags
are involved effectively means that the change is being
calculated over a period shorter than 1 year.

An alternative approach is to use nonsymmetric fil-
ters but with constant. coefficients. A simple example
would be

— Xt_ 12

This method always introduces a lag of approximately
6 months to the business-cycle components, but, at least,
this is a constant lag and no unnecessary nonstationari-
ty is introduced into the data. Incidentally, any method
of adjustment that subtracts from x,, a measure of
seasonal estimated from data at least 1 year old, will
introduce a lag of at least 6 months into low-frequency
components.

A method of adjustment that has few problems with
outliers, adjusting up to the present or changing sea-
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sonal shape can be constructed, at least in principle, by
identifying causal series for the seasonal component.
Suppose that, as before

it = Ft + St

whare St is strongly seasonal, does not have proper-
ty 5, and that analysis suggests that

= ao + aiRt + atl?t ..i+

where is a monthly rainfall series, is white noise
and a1 and a9 are coefficients that have been carefully
estimated. It follows that the seasonal component can
be estimated directly from the observed values of the
B0 series and up to the most recent time period. Such a
method would have to be based on individual analysis
of each series to be adjusted and may well prove im-
practical and too difficult or costly to implement in
most cases. A slightly less satisfactory method would
be to replace the causal series by a leading indicator of
the seasonal. I know of no attempts to construct such
leading indicators, although methods devised for the
business cycle could be appropriate.

CRITERIA FOR EVALUATION

If, as suggested in the. section "Decomposition," it is
often difficult to identify completely a seasonal com-
ponent, it is clearly going to be difficult to evaluate a
method of adjustment. It is insufficient to say that the
adjusted series should consist just of the nonseasonal
component, if this component cannot be identified. I
would like to suggest that there are three highly de-
sirable properties that, ideally, one would like a method
of adjustment to possess, plus a set of desirable but not
totally necessary properties. The first of the highly de-
sirable properties is that there should be no change-of.
scale effect. If Xt is the raw series and the adjusted
series, then refer to property 1.

Property 1

where c, ci are constants. It thus
follows t.hat if one is adjusting a temperature series,
for example, it is of no consequence whether the tem-
perature is measured in degrees centigrade or fahren-
heit. The second highly desirable property described in
property 2.

Property 2

should not have property S. As property S was
defined in terms of spectral shape, it means that prop-
erty 2 can only be tested by looking at the estimated
spectrum of this spectrum should have no peaks at
seasonal frequencies. It is almost as important that one
has property 2'.

Property 2'

should not have property anti-B, which is just an
unnecessarily formal way of saying that the estimated
spectrum of should not have dips at seasonal fre-
qileilcies, since this would imply that part of the non-
seasonal component has also been removed. Property 2
was a criterion used by Nerlove [12] in an early spec-
tral study of adjustment methods.

It is not necessary to emphasize property 2' further,
since it is subsumed in the next property. Assume that

where is the seasonal component and
further suppose that can be. fully identified, then it
is highly desirable that one. has property 3.

Property 3

Coherence yt)=l and phase (x7, at all fre-
quencies which essentially says that and are iden-
tical apart from scale effects. This property can only be
investigated if or Yt are known, which will be true if
Xt is a constructed, simulated series or if has been
identified by use of a causal series analysis. Property 3
is stated in the form given, because, by looking at the
estimated coherence and phase functions between
aiid the extent to which the property does not hold
can he evaluated. Godfrey and Karreman [3] applied
this criterion to a wide variety of simulated series and
various methods of adjustments. Some of their conclu-
sions will be discussed in the next section. Their results
prove why it is easier to evaluate the break-down of
I)ropelty 3, using spectral methods, than it would by
using correlation (x7. 7/0_k) for various for example.
It is usually pointless to look at the cross-spectrum be-
t.ween and as if Xt contains a strong, stochastic
seasonal component; the cross-spectrum will not be
interpretable at. the seasonal frequency bands and
leakage will spoil estimates of this function at other
frequencies unless a very long series is available. It
thus follows that one cannot evaluate a method of ad-
justment on property 3 given only the raw data of a
real economic. variable, and the adjusted series. Simu-
lation is the only easy method of investigating prop-
erty 3. A corollary of this property is property 3'.

Property 3'

if y0 is nonseasonal, so that adjustment of a
series with no seasonal should ideally leave the series
unchanged. The combination of properties 2 and 3'
gives us property 3".

Property 3"

so that a second application of the adjust-
ment procedure should not have any important effect.



An appropriate way of studying this is to use the esti-
mated cross-spectrum between and that can be
obtained directly from real data. Although not an ideal
way to check oii property 3, it might well provide a
useful test that is quite easy to conduct.

Turning now to properties that are desirable but not
completely necessary, the first is that the adjusted series
and the estimated seasonal component are unrelated,
which may formally be stated as property 4.

Property 4

corr(xt — =0, all or

cross-spectrum x,) = spectruiti

The desirability of this property relates to the idea dis-
cussed in the section "Decomposition" that the seasonal
and nonseasonal components have separate and distinct
causes and, thus, should be unrelated. However, as
model 5 suggests, there is no clear-cut reason why the
real world should have this property. A number of
writers have discussed this property without mention-
ing the empirical problems that arise when trying to
test it.. If the adjustment procedure is at all successful,

— will be highly seasonal and virtually or total-
ly nonseasonal. A method based on a simple correlation
or regression between such a pair of series will be
biased towards accepting the null hypothesis of no
relationship just as a regression between two highly
seasonal series or two trending series is biased towards
finding significant relationships, as illustrated by
Granger and Newbold [7]. It follows that property 4
cannot be effectively tested using estimated correlations
when the amount of data available is limited. The cor-
rect way to test. is to find filters separately for each of
and — that reduce these series to white noises and
then to estimate correlations between these residual
white-noise series. This is in fact a test. of the hypothe-
sis that the two series, and Xt — have different
causes, as shown by Pierce and Haugh [13] and by
Granger and Newbold [8].

A further prope.rty that has been suggested as being
desirable is that of summability in property 5.

Property 5

(Xit + a,2t)a = but this does restrict the adjust-
ment methods to being linear filters, I suspect, and this
is a rather severe restriction. Lovell [11] has a very
interesting theorem stating that if property 5 holds
and also then either or
so that it is unrealistic to ask that a method of adjust-
ment has both of these properties.

A requirement placed on adjusted series by some
government statisticians is a consistency of sums over
a calendar year, which may be proposed as property 6.

Property 6

= where the sums are over the months in a
calendar year. This property is based on the belief that
the sum of 5,, over a P2-month period, should be zero,
which follows from the idea that St is purely periodic
and deterministic, an idea that was earlier suggested
should be rejected. The property is politically moti-
vated and is arbitrary in nature, since, if one strictly
believed St to be purely periodic, then the property
should hold for every consecutive 12-month period, but
to require this would remove virtually all of the avail-
able degrees of freedom and no relevant could be
found. It might be more reasonable to ask that proper-
t.y 6 holds approximately true, which would, in any
case, follow from property 3, and to leave it at that. It
is my strong opinion that property 3 is the most im-
portant one, although it has been little discussed except
by Godfrey and Karreman, due to the difficulty in test-
ing it on actual data.

It will be seen that what is meant in this paper by a
good adjustment method is one that removes a seasoimal
component without seriously altering the nonseasonal
component. There also exist various methods which
merely try to remove the seasonal but make no claims
about not altering the nonseasonal. The application of
seasonal filters iii the Box-Jenkins approach is such a
method. They suggest a method of producing a series
without property S and which produces a known effect
on the nonseasonal part of the series that can be al-
lowed for in later analysis. A simple example. is the use
of a twelfth-difference, so that

= — —

If contains a strong seasonal, then will contain,
at. most, a much weaker seasonal, but. the model now to
be built, on the nonseasonal component has become more
complicated. The use of such methods can be considered
as one St age in the process of finding a model that re-
duces the series to white noise, which has been found to
be an important technique for building single and mul-
tipe series forecasting models. (See Granger and
Newbold [8].) However, such topics are too far away
from the main theme to be. discussed in this paper.

EFFECTS OF ADJUSTMENT IN PRACTICE

It would be inappropriate to try to survey all of the
work on the evaluation of actual methods of adjust-
meat, but since spectral methods have been emphasized
in the previous section, a brief review of three papers
using this approach will be given. Nerlove [12] used an
adjustment method, devised by the Bureau of Labor
Statistics (BLS), on a variety of economic series and
compared the spectra of the raw and the adjusted
series. It was found that the spectrum of the adjusted
series frequently contained dips at the seasonal fre-
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quency bands so that., in a sense, the method was tak-
ing too much out of the raw series at these frequencies.
In a later paper, Rosenblatt [15] presented spectral evi-
dence that more recent methods of adjustment devised
by the BLS and the Census Bureau had overcome this
problem. Nevertheless, there. do appear to be some occa-
sions even now when thc spectral seasonal dips 1M'ob-
lem arises, as it is sometimes noted when Box-Jenkins
model building, that the twelfth autocorrelation co-
efficient of an adjusted series is signficantly nonzero
and negative.

Property 3 was tested by Godfrey and Karreman [3]
by adding a constant or time-varying seasonal term to
an autoregressive series to form a raw series. This raw
series was then adjusted by four different methods.
Amongst ot her quantities, t lie cross-spect runi between
the autoregressive series, being the. original nonseasonal
component, and the adjusted series, the eventual esti-
mate of this component, was estimated and the coher-
ence and phase diagrams displayed in their figures
6.Om.1, rn=2, (1), 10. The spectra of the autoregressive
and the adjusted series were also compared. It was gen-
erally found that the coherence w-as near one for the
low frequencies, that is those up to the lowest seasonal
frequency. and the phase was iiear zero over this band.
For other frequencies, the coherence. was not near one
and was often rather small and the phase was generally
near zero but not consistently so. The power spectrum
of the adjusted series u-as generally of a similsi shape
but lay above that of the autoregressive series. These
results suggest that the important 'business cycle and
low-frequency component was generally little, affected
by the adjustment method, but the. higher frequency
components were greatly affected, either having au
extra high-frequency component added or part of the
original high-frequency component being lost and re-
placed by a component induced by the method of ad-
justment. Symbolically, one could illustrate these
results by

xt=yt+st
Yt = +

where h indicates a low-frequency component and H,
the remaining 'higher frequency component. Then
and (x7) are virtually identical, but and are

only imperfectly correlated, and has a higher
variance than Thus, the methods tested by Godfrey
and Karreman do not have property 3, except at low
frequencies. It seems that little would have been lost
by just applying a low-band pass filter to and using
that as the adjusted series, particularly since the actual
adjusted series are effectively just the original low-
frequency component plus an added nonoriginal hash
tern-i. The test. of property 3 has proved to be both a

stringent one and also to point, out important failings
with adjustment methods.

The zero phase observation, which corresponds to a
zero lag, arises partly, because the adjustment used was
on historical dat-a, and no attempt was made to adjust
to the present.

Both Nerlove- and Rosenblatt -present the cross-
spectra between x1 and It has been argued in the
previous section that., with limited amounts of data,
these figures are difficult to interpret. but the estimates
shown do agree. in form with the suggested interpreta-
tion of the Godfrey and Karreinan results.

RELATING PAIRS OF ADJUSTED SERIES

Suppose that two stationary series. tue each
made up of two components

11t = TJt + SI

= 72t +

where do not have property 8, and are
stochastic. strongly seasonal series. There are numerous
possible interrelationships between the two X series,
foi example, may be causing but 'S2t are
interrelated in a feedback (two-way causal) manner.
The effect of seasonal adjustment on the analysis of
such relationships have not been studied thoroughly,
although both Sims [16] and Wallis [17] have recently
considered in some detail the case where causes
and are possibly interrelated.

If 82t are- important components, then it is clear
that. even if they are not strictly related, so that they do
not have any causes in common, it is virtually impos-
sible to properly analyze the. relationship between

without- using a seasonal adjustment procedure.
This is because and u-ill certainly appear to be
correlated, with the maximum correlation between
and where k is the average distance between the
seasonal peaks of the two series. Such spurious relation-
ships are- disturbing, and thus an adjustment is re-
quired. There are three ways that the seasonal can be
allow-ed for, either by using auto-adjustments on both
observed series Xjt and or by using individual
causal-adjustments on each of these. series or by build-
ing a bivariate model interrelating the X'8 but includ-
ing in the model relevant- seasonal-causal series. The
third of these procedures is probably preferable and
the use. of seasonal dummy variables in a model is an
inefficient attempt to use this approach. The. method
that is almost- invariantly used is the first, involving
auto-adjustment. this can lead to diffi-
culties in finding the correct relationship between the
F series, as Wallis [17] and Sin-is [16] show, particu-
larly if an insufficiently sophisticated met-hod of analy-
sis is used, such as a simple distributed lag.
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One aspect not apparently previously emphasized is
that spurious relations may be found if autoadjust-
xnent is used in the case where the Y series are unre-
lated, but the S series are related. Suppose that the
economically important components are Y11 and
but, in fact, these. series are independent. The economic
analyst would presumably want the. adjusted series to
be unrelated in any analysis that he performs. How-
ever, in theory, this will not occur if 5n, are corre-
iated, and an autoadjustment is used. This is easily
seen in spectral ternis by noting that the coherence
function is the correct one to measure relatedness be-
tween a pair of series, that the coherence between X11
and will be the same as that between and 52t,
which is assumed to be nonzero, that all autoadjust-
ment techniques correspond exactly or approximately
to a linear filter, and that the coheience function is un-
altered by using different linear filters on the pair of
series involved.

Although this proof is completely general, it is inter-
esting to illustrate t'his result., using a particular Box-
Jenkins modelling approach. Suppose that are
independent white-noise series, denoted by

JTieeit,
and that Sn are generated by

SjtaSj,t_22+ Ot

SIt = + qt

where monthly data is considered, and are zero-
mean white-noise series with

It follows that

k=O

=0

(1—aB't)Xit=
and from consideration of the autocovariance sequence
of the lefthand side, this becomes

(1 —aB'2)X11= (1

where e' is a white-noise. series and a' is given by

a' — a

1+(a')2 (1+a2)

where a2 = variance. (es,). Thus, applying the filter
(1 —aB1t)/(1 a'B") to results in a series w-ithout
property 8, in fact, to a white-noise series. There is a
similar filter which reduces 121 to the white-noise series

-It
A little further algebra shows that

cv
E[e' e'It = if •k b

1—a'/3'

SECTION 1

the cross-correlogram between the series with seasonal
removed, by a Box-Jenkins modelling approach, is not
zero but is seasonal in nature due to the relationship
between tile original coiiiponents. In fact, a feedback
relationship is indicated.

It should be cleat- that autoadjustment of series can
lead to results that are not interpretable in terms of the
usual view of a decomposition of a series into seasonal
and nonseasonal, with the first part being removed by
the adjustment Plocethire.

CONCLUSIONS

By considering the. Cat tsat.ion of seasonal components,
one reaches tile conclusions that it is incorrect to believe
that the seasonal component is deterministic, that a
complete decomposition into seasonal and nonseasonal
components is possible by analyzing only the past of
the series and that autoadjustment. methods do remove
the seasonal pait, and this can lead to relationships
being found between series that arc in some sense spuri-
ous. Because of these conclusions, most autoadj ustment
methods cannot be. completely evaluated when applied
to actual data. i'ather than to simulated or constructed
data. An alternate technique is to identify seasonal
causal series and to build a structural model using
these series so that theseasonal component of the series
to be. adjusted is estimated from tile past of this series
mid past and present terms of the causal series. Poten-
tial advantages of this approach are that the same
method of adjusting is used on historical data and also
tip to the most. recently available piece of data, tile sea-
sonal might. be. totally removed so the relationship be-
tween a of adjusted series is mole easily analyzed.
and the. (litestioll of how to deal with outliers becomes
of much less importance. In a complete causal
analysis is not. easy to peifoi'm, and the inherent costs
may not allow- this approach to be used very frequently.
It is also not comiipletelv clear how a causal anaiysis
w-ould be conducted, although possibilities include de-
mo(lnlat ion techniques. band-pass spectral analysis,' or
the causal filtering niethoci suggested by Box and
.Je.nkins [2], used, and generalized by Granger and
Xew-bold [8]. In this latter approach, a filter is found
which reduces the causal white noise, the same filter is
then applied to the. series being adjusted. and this fil-
tered series regressed on the causal white-noise series,
both lagged and unlagged. Some of these approaches
will be investigated at a later time.

Many problems have not here been considered, in-
cluding such practical ones as how to adjust a ratio of

1 See, for example. the paper by Engle included In this work-
ing paper.
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two series that is to appear in some model—does one
take the ratio and the.n adjust, or adjust and then take
the ratio l The latter seems to be recommended, but this
would depend on the underlying theory being invoked
that suggests the use. of a ratio. A particularly im-
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portent problem that has not been discussed is how to
distinguish between additive and multiplicative season-
al effects, the use of instantaneously transformed series
and the causes of nonadditive effects. These questions
will be examined at another time.
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• COMMENTS ON "SEASONALITY: CAUSATION, INTERPRETATION, AND
IMPLICATIONS" BY CLIVE W. J. GRANGER

Christopher A. Sims
University of Minnesota

Clive Granger's paper "Seasonality: Causation, In-
terpretation, and Implications" takes up a wide range
of issues related to seasonality, ties them together in
interesting ways, and contains many stimulating ob-
servations on both technical and philosophical points.
If I were to expand on every remark in the paper,
these comments would be at least as long as the original
paper. My remarks will bear only on certain portions of
the paper, not necessarily the best or even the most
interesting parts.

In the section "Criteria, for Evaluation," Granger
provides us with his version of an old pastime. Just as
sailors may amuse themselves by comparing lists of
properties for the ideal girl, time series analysts seem
attracted to composing and discussing lists of proper-
ties for the ideal seasonal adjustment procedure. At
best, these lists are only slightly useful. When, as has
been customary in the past, the list of properties for a
seasonal adjustment procedure is prepared without
explicit attention to a model of how the seasonal is
generated or an objective function for adjustment, the
lists can be seriously misleading, even pernicious.

I think other sections of this paper already provide a
context in which we can see that the properties listed
in the section "Criteria for Evaluation" should not
be taken very seriously. Granger properly emphasizes
the wide variety of plausible mechanisms that may
generate seasonality and the importance of adapting
adjustment procedures to the nature of the likely gen-
erating mechanism. He has also emphasized the im-
portance of distinguishing the case where causal vari-
ables generating the seasonal are observable from the
case where they are not and autoadjustment is neces-
sary. There is a no useful way to prepare a list of ideal
properties for a seasonal adjustment procedure that
ignores these distinctions.

Granger's list and its ordering appear to be gen-
erated by a consideration of how an adjustment pro-
cedure would behave if it succeeded perfectly in
separating a seasonal from a nonseasonal component.
When comparing two adjustment procedures, we know
to be imperfect, however, it can easily happen that the
better procedure is, in some senses, less similar to an
ideal error-free procedure than is the poorer procedure.

A similar problem arises in evaluating forecasts. It is
by now, I hope, well understood that forecasts that are
optimal, in the sense of giving the minimum variance
of forecast error given available information, neces-
sarily have smaller variance than the true values that
they are meant to be forecasting. It is, therefore, a mis-
take. to pay attention to the closeness of the match of
forecast variance to variance of the true values in
evaluating forecasts. But properties 2 and '2' in Gran-
gem's list embody just this sort of fallacy. Of course, if
adjustment succeeded perfectly, and the y, in Granger's
notation, we wish to estimate does not have peaks or
dips at seasonals in its spectral density, then the ad-
justed series x° not have peaks or dips at seasonals
in its spectral density. But, it is, in fact, generally true
that the best imperfect adjustment procedures will sys-
teniatically produce. large dips in the spectral density,
for the same reason that the best forecasting procedures
systematically give, forecasts with lower variance than
the actual values.

Consider Grether and Nerlove's framework, iii which
we assume = + St in Granger's notation and we at-
tempt to adjust using only observations on in
order to minimize E[(y,— The projection of
on the x process, which gives the ideal linear is
g*x(t), where g is defined in the frequency domain by

g = S is orthogonal to y, = 5,. With this
choice for x°, it is then easy to compute the spectral

density of the adjusted series, Tak-
ing the logarithm, we see that log Sze=2 log S,=log

Obviously, if 5,, has no peaks or dips at seesonal
frequencies, log has dips at the seasonal frequen-
cies of exactly the same height and shape as the peaks
in the original log Si,.

This result is not dependent narrowly on the
Grether-Nerlove framework. It is robust and intuitive
after some reflection. By transformation into the, fre-
quency domain, we convert the adjustment problem to
a separate prediction problem at each frequency. It is
well-known that if a = b + c, with c independent of b,

1 2., 2,, 2,. are, respectively, spectral densities of w and y
and the cross-spectral density.
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and we wish to predict b from observations on a, then
the coefficient on a in our prediction will be less than
one and closer to 0, the larger is variance in c, relative
to variance in b. 'When the signal-to-noise ratio in a
gets very low, we are very cautious in using a to pre-
dict b. In the seasonal adjustment problem the signal-
to-noise ratio is by assumption especially low in the
neighborhood of seasonal frequencies, and this accounts
for the reasonableness of dips in Xa. In fact, since the
low signal-to-noise ratio at seasonals appears to be a
generic characteristic of seasonal adjustment problems,
I would guess that nearly any explicit formulation of
the problem, with or w-ithout observability of causal
variables, will imply that when we fail to have x°=y,
we should expect to have dips at seasonal
frequencies.

Granger's property 3" is idempotency, (Xa)a = Xe.

This is another property that., while clearly satisfied by
a perfect adjustment procedure, may be a bad criterion
for ranking imperfect procedures. Grether-Nerlove op-
timal adjustment certainly leads to nonidempotant lin-
ear filters. One might attempt to i'ationalize idempto-
tency by defining the adjustment procedure as begin-
ning with the estimation of and to determine g.
However, since Xe will, in general, have dips in its
spectral density at seasonais, it is probably unreason-
able to require that any procedure for estimating S,, on
the assumption that gives sensible results
when presented with as input.

Property '4 is presented by Granger as desirable only
when we have good reason to suppose S and y uncor-
related. However, eveii in this case, it will seldom be
reasonable to test for lack of correlation between Xe and

In the case where. we know S is a linear dis-
tributed lag on ce.i'tain observable variables (rainfall,
date, holiday dummies, etc.), the seasonal adjustment
problem, under the, assumption that S and y are or-
thothogonal, becomes a time series regression problem,
and the estimated S and y, x — Xe and Xe, are likely, by
construction, to emerge as uneorrela.ted. Of course, if
the form of the relation of S to observable variables is
subjected to a priori restriction, then it is possible for
the observable variables determining S to be correlated
with x°, and tests for lagged correlations between a — a°
and a° are one type of test for a relation between a°
and the observable determinants of S. Perhaps, it is
needless to say that, in executing such tests, it is im-
portant to use a multivariate regression framework and
not to treat sample correlations of the regression residu-
als Xe, with the observable determinants of 8, as if they
were sample correlations of y itself with those observ-
able determinants of S.

In the opposite extreme case where only a itself is
observable, we know some natural models and adjust-
ment criteria, including the Grether-Nerlove setup,
lead to linear filters as optimal procedures. But, the pro-
cedure Granger recommends for checking property 4 is

SECTION 1

asymptotically valid only as a test for no relation or
zero coherence, at all frequencies, between Xe and a — Xe.

This is perhaps the most extreme example of this see-
tion's shopping list of properties leading us in a direc-
tion contradictory to the spirit of the rest of the paper.
Granger's section "Decomposition" has already pointed
out that autoadjustment makes it virtually impossible
to have Xe and a — a° independent, and the section "Re-
lating Pairs of Adjusted Series" points out that linear
filters c.annot affect coherence. Any autoadjustment
procedure that is a linear filter automatically produces
Xe and a — Xe with a coherence of 1.0 at all frequencies,
by construction, though the estimation difficulties that
Granger emphasizes have sometimes led researchers,
mistakenly, to estimate coherencies between such series
of much less than 1.0. While nonlinear methods of auto-
adjustment might produce coherencies of less than 1.0,
it is not reasonable. to hope that they will pass a care-
ful test, like the one Granger proposes, of orthogonality
between Xe and'x_xo.

Good criteria for selecting an adjustment procedure
are, I think, already implicit in the other sections of
Granger's paper. As he suggests, it is important that
the objectives of seasonal adjustment should be made
explicit. The. degree. of dependence of the adjustment
method on the objective also should be macis clear to
users of the adjusted data. As this paper also suggests,
there is a substantial range of possible. models for sea-
sonality. The model relating to a well-behaved adjust-
inent ptoceduie should be specified, and its robustness
against variations in that model tested ami spelled out.
A good example of this kind of analysis appears in the
paper. by Cleveland and Tiao [1], that studies the Cen-
sus X—l1 procedure from this point of view.

Granger points to the need of allowing for evolving
seasonals in most economic time series. In my own ap-
plied work, I was somewhat surprised to find that the
reverse point is also true—it is important to allow for
deterministic. seasonals. Methods of analysis assuming
that. a process has a spectral density can fail if the
process included a strictly periodic component. Many,
maybe most, economic time series behave as if they in-
clude a component that is. for practical purposes, a
strictly periodic seasonal. They may also contain an
evolving seasonal. but analysis of t.he latter component
should begin after removal, by regression, of strictly
periodic components.

Let me make it clear that I do not regard the critical
remarks that I have aimed at the section "Criteria for
Evaluation" in Granger's paper as host.ile to the main
thrust of the paper. Granger gives us good reasons,
with which I heartily agree, for approaching any sea-
sonal adjustment problem with a reconsideration of
fundamentals. What are the properties of the seasonal?
Why have we set out to adjust this series? How should
we expect the seasonal and our adjustment for it to
affect later stages of our analysis?

1.
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COMMENTS ON "SEASONALITY: CAUSATION, INTERPRETATION, AND
IMPLICATIONS" BY CLIVE W. J. GRANGER

John W. Tukey
Princeton University and Bell Laboratories

I

INTRODUCTION

After ponting at a few issues directly concerned with
Professor Granger's careful review, I will shift my
attention to broader issues of approaching seasonality,
including erratic values, nonstatistical inputs, and one-
sided fitting.

SPECIFICS

The Finite and the Infinite

While Granger has done a workmanlike job of show-
ing why the spectrum approach does not have the
whole answer, it is desirable to go further. After urg-
ing the essential character of a definition of seasonali-
ty, he defines having and apparently having property
S for a process and a (presumably finite) series, respec-
tively. These definitions depend upon whether or not
/ or f(wt) has peaks in small intervals around the
harmonics of the annual frequency. He then, wisely,
calls attention to the difficulties of stationarity and the
advantages of the pseudospectrum saying—

If this way out is taken, peaks in the pseudospectrum
at the seasonal frequency bands will indicate that the
series did have property S for at least some of the
time span considered.

While I do not believe in the essentiality of a reason-
ably precise definition of seasonality (see [3; 4] on the
importance of vague concepts), I am afraid that "he
who appeals to Caesar must go to Caesar." Note first
that whether or not a series has (as opposed to appar-
ently has) property 8, it has not been defined. ('We. will
soon see that this could not be defined.) Note next that
there has been no discussion of the connection, if any,
between a process having property S and a finite piece
of a realization appearing to have it. (We will soon see
that such a discussion is at best very difficult.) I sug-.
gest these omissions and the difficulty of filling them
illustrate how an expressed need for a reasonably pre-
cise definition can be a liability rather than an asset.

Any finite-extent function can arise, to an arbitrarily
close approximation, as a sample from a process with
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any spectrum. (A special case of this is dealt with in
this paper.) Thus, any attempt to connect our observa-
tions to a spectrum must be deeply statistical in a way
not removed by having, for instance, 1,400 years of
monthly data.. I wish I understood this connection well
enough to explain it simply and clearly to you—I re-
gret that I do not yet understand it well enough to
explain it satisfactorily to myself.

The existence of such a difficult connection between
observables and infinite-duration processes is, for me, a
good reason to doubt the adequacy of a logical structure
focussed on infinite-duration processes to guide the
analysis of data.

Suppose, to go beyond the feasible, that we know not
just a single a1, a,.. ., for some T definitely <oo, but
that we completely know the joint distribution of
(a1, a,, - . ., a,.). We need not then know the spec-
trum of tile process. If the joint distribution is Gaussi-
an, for example. so that the values of the lag covari-
ances

complete time description of the finite-length process,
then only a finite number of expressions

j cos[(t—s)w]dS(w)

are known, where S(u) is the cumulative spectrum, amid
the spectrum can be. seriously modified without chang-
ing the finite-length process. We cannot know precisely
w'hat. the spectrum is if we know only tile finite-length
process, even exactly. Our fate in the real world is
w'orse. of course. since we. cannot know even tile finite-
length process exactly.

A Lemma

Let us mie.xt show that any function defined over a
finite length can be realized by a spectrum concentrated
as close to tile annual cycle as we wish. Since either

Prepared, in part, in connection with research at
Princeton University, supported by ERDA.
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or sin(t/2ir) (or both) is bounded away from
zero in any short interval, if P,(t) and P2(t) are arbi-
trary polynomials, we can approximate any given f(t)
uniformly over a given finite interval by

P1(t)cos(ot) +P2(t)sin(wt)
If we can show that we can approximate, over this
same interval, this latter function, by a function with
an obviously concentrated spectrum, our lemma will be
proved. (Note that restricting P2(t) to even powers of
t does not matter, since t =0 can be shifted outside the
region of approximation.)

Let be defined as operating on functions
f(t, co,...) of t, and perhaps other parameters by

.) =f(t, .. .) —f(t, w—e,. .

where the other parameters are left unchanged. Then,
if A and B may involve t or these other parameters.
but not

cos cut) —2A sin ct sin cot

sin cot) = +2A sin €t cos cot

and since —2A sin d) and 2A cos €t are also A's, we
have

cos cut) = ± (2 sin ct)"A cot

sin cot) = ± (2 sin s&c cot

(where s&c is sin or cos according as k is even or odd)
showing that a linear combination of (cos cot), for

which consists of a superposition of cos
iCc) t8 with can product any

/ sin €t \
PKç )cos cot

which, for tends to the corresponding

PK(t)cos cot
The corresponding sine series has its PK(t) even, but,
as noted above, this need not bother us.

As for K fixed, the frequencies co + k€ all come
as close as we like to cu. To obtain the specific result an-
nounced, we need only take w=2,r/12, in (months) —'.

The Desire for No Dips

(Jranger suggests, as one of three highly desirable
properties, that the seasonally adjusted series should
not have dips at seasonal frequencies. It is too easy to
accept such a property without a clear understanding
of its parallels.

Suppose we are to adjust a series by subtracting a
linear trend in time. The property of the adjusted
series would be that it fails to have an absence of
tilt, in the sense that corresponding to no dips,

is not zero. Most fitters of lines, I believe, would be
hesitant to accept, 'as a desirable property, that the line
has not been fitted as well as one can easily do.

I find it very hard to understand why I should like
to fit a line or polynomial as well as I can and be care-
ful not to fit a sum of sines and cosines as well as I can.
Can anyone offer good reasons to feel otherwise?

0.348 and 0.333

One of the papers cited by Granger [2] points out
the difficulties associated with the alias of weekly cycles
(in monthly data) at 0.348 cycles/year and the close-
tiess of this to 0.333 cycles per year (it takes about 60
years for one. cycle of the resulting beat). I am sur-
prised that more was not made of this in the review,
especially since (1) the harmonics of t.he weekly cycle
alias as follows:

2(0.348) =0.696 aliases to 0.304 cycles/year
3(0.348) = 1.044 aliases to 0.044 cycles/year
4(0.348) = 1.392 aliases to 0.392 cycles/year

and (2) the working days per month correction, which
is emphasized, is a combination of correction for ir-
regular holidays with a very specific weekly cycle
where Monday and Friday are presumed to be exactly
as good as Tuesday, Wednesday, and Thursday, con-
trary to our general experience.

Here is a place, I believe, where spectrum thinking
could aid us in doing good seasonal adjustment.

An anecdote about 20 years old might be apposite
here. I held off from serious spectrum analysis of eco-
nomic series until I could work with a competent econo-
mist. In 1957—58, Milton Friedman and I were at the
Center for Advanced Study in the Behavioral Sciences.
In the spring, we tried simple and cross-spectrum anal-
ysis of some of Milton's monetary series. Two phenome-
na stuck out. One was traced rather easily to the fixed
4—5 month interval between liberty or war bond drives.
The other turned out to be the 0.348 cycles/year effect,
and Milton took these series back to NBER for better
adjustment for the relation of weeks to the month.

Even in series already so adjusted—with tender a.nd
loving care—the 0.348 cycles/year effect can be large.
Seasonal adjustments that do not recognize this, overt-
ly or implicitly, seem, to me. likely to be in trouble.

GENERALITIES

Realism and the Bounds of Statistics

A. few years ago, a foreign visitor—a statistician
from a culture far more rigid than that of Princeton—
sat in one of my classes in Princeton while I discussed
pooling in complex analyses of variance. After class, lie
made it quite clear that he would not discuss such dirty
matters in class at home, but that he would, of course,
do it himself in his office with the door shut. I often
wonder about the culture of modern econometrics. Is
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there a comparably great difference between what good
econometricians do in their offices and what they write
papers about—or is there little difference?

If there is little difference, then my econometric
friends may deserve sympathy—but surely not praise.

The world is not a simple place. Models that are
simple enough to be completely treated analytically are
not usually good guides when pressed to their extremes.
Not so many years ago, my statistical colleagues, es-
pecially those who were glad to be called mathematical
statisticians, were in a similar plight. (Today, recovery
is moderately widespread and moderately rapid.)

The paradigm
optimize

simple model —* procedure

is quite dangerous. Both safety and strength from the
iterative paradigm

euggeet
simple model

seizet
procedureS procedure(s)

exarni5e
more general model

especially if we plan to use more and more general
models as a basis for examination. Even a physicist,
when pressed to the wall, will admit that all the laws
of physics are wrong, but most are devilishly good ap.
proximations. This is as true today as it was before
Einstein or Newton. In most other fields, the approxi-
mations are not nearly as good.

My unhappiness about econometrics contains an
added strain—uncertain, conceivably unfounded, but
for all that, constant and depressing. This is the idea
that the data should be able to provide all the answers
—probably through some form of multiple regression.
(The in the price of oil. should, pne would think,
through its consequences for models in which oil price
was not a variable, to have educated most of us. After
all, before Arab action, judgment offered a much bet-
ter basis for assessing the coefficients related to oil
prices than did all the world's time series.)

It is my impression that rather generally, not just in
econometrics, it is considered decent to use judgment in
choosing a functional form but indecent to use judg-
ment in choosing a coefficient. If judgment about im-
portant things is proper, why should it not be used for
less ones as well? Perhaps the real purpose
of Bayesian techniques is to let us do the indecent thing
while modestly concealed behind a formal apparatus.
If so, this would not be a precedent. When Fisher in-
troduced the formalities of the analysis of variance in
the early 1920's, its most important function was to
conceal the fact that the data was being adjusted for
block means, an important step forward which, if
openly visible, would have been considered by too many
wiseacres of the time to be cooking the data. If so, let

us hope the day will soon come when the role of decent
concealment can be freely admitteed.

Such questions are relevant to seasonal adjustment.
The reasons for seasonality in some series are both well-
known and measured. The coefficient may be better esti-
mated from one source. or from another, or, even best,
estimated by economic judgment.

it seems to me a breach of the statistician's trust not
to use judgment when that appears to be enough better
than using data.

Some will think this a counsel of perfection, some of
imperfection—may they and all others, at least, think
about what should be done about when judgment
should be used.

Incomplete Use of Causal Variates

What has just been discussed will no doubt be called
uithelpful criticism by some. Too bad!

There are, however, more helpful things to consider.
Suppose we are seasonally adjusting a monthly measure
of economic activity—and suppose that we have avail-
able a monthly measure of days lost by strikes (in the
relevant sector). How should we use the latter, which

likely to be occasionally and irregularly large—and
usually smalll

One way to use it is to slip it in a multiple-linear
regression with everything else. Another way is to give
up trying to fit history in the months where its value is
large, considering oniy the much more frequent undis-
turbed months. This will test our adjustment tech-
niques that may not be for data with so many
holes in them.

Another approach would be to introduce a one-sided
response in fitting to months where the strike index is
high. Instead of zeroing sums of the form

/ obs'd MINUS fit
(carrier

scale
for a fixed where the regression, if it be linear, or its
differential, if it be nonlinear, takes the form

(constant) (carrier)
we can, for e.xample, let some grow in the usual way
for positive deviations but much more slowly for nega-
tive ones. This sort of idea for minima,l-sum-of-abso-
lute-deviations fitting has been proposed by Claerbout
[ljJ; it is equally applicable to still better types of
fitting—or even to least squares.

If I were to use it, I would notice how conveniently
it could be combined with protection against erratic
values, as when

(1—a2)2u
0 else

and the scale is six to nine times the median absolute
deviation.

1
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I am as reluctant to dive, alone and unguided, into
seasonally adjusting economic series today as I was 20
years ago to thve, alone and unguided, into their spec-
trum analysis. I do believe, however, that with the tech-
niques that have grown up in the last decade—includ-
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ing the — w technology just hinted at and resistant!
robust smoothing techniques, Velleman [5], to name
but two—we have a much greater opportunity now
than we had at that time.
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RESPONSE TO DISCUSSANTS

Clive W. J. Granger
University of California, La Jolla

In my paper, I presented a number of suggested cri-
teria for a good adjustment procedure, most of which
I thought to be noncontroversial. In particular, if the
series to be adjusted, CCt was actuaily generated in a
simul'ation experiment as the sum of two parts, and

where is strongly seasonal and yt does not have
property 8, then, I suggested that the adjusted series
x't should be very close to Yt. This was expressed by
properties 2, 2', and 3 by requiring the spectrum of
to have neitber peaks or dips at seasonal frequencies
and also that the coherence between and should
be one at all frequencies. Both of my discussants, Sims
and Tukey, and also Watts (discussing a later paper),
have pointed out that these are unrealistic require-
ments. A method of adjustment that minimizes the ex-
pected square of the difference between the true non-
seasonal and the adjusted series, lit and will always
produce an adjusted series with dips in the spectrum at
seasonal frequencies. Further, any adjustment method
that uses just a filter, or can be well approximated by a
filter, will produce a cdherence with dips at the seasonal
frequencius. Although these properties have been
proved only for time-invariant linear filters and a
least-squares cost function, there is no reason to sup-
pose that they will not hold equally true in more gen-
eral situations, including causal adjustment methods.

The consequences for evaluation of adjustment meth-
ods are, I believe, profound. The criteria I suggested

have been shown to be impossible to achieve in prac-
tice, and thus, should be replaced by criteria.
However, I am at a loss to know what these criteria
should be. There seems to be no ideal process of evalu-
ating a method of adjustment, even using simulated
data, where the lit are known, and, therefore, 'the situa-
t.ion is considerably more difficult when dealing with
actual data when is not known, of course. By further
considering why seasonal adjustment is required, it is
possible that alternative criteria will arise. It seems
that it may be impossible to evaluate a single method,
and the best we can hope to do is to rank alternative
methods, as is the case when considering forecasting
procedures.

One further consequence of these results is that one
will always know that a series has been adjusted, by
looking at its spectrum. Thus, the seasonality of a
series has not been removed but merely altered in char-
acter—peaks in the have been replaced by
dips, high serial correlations at 12 months may have
been replaced by a smaller negative correlation, etc. For
many purposes, the adjusted series will be preferable to
the raw data, but for modeling purposes, both time
series and econometric, at least part of problem
remains and, possibly, in a more difficult form.

Although these results might be thought depressing,.
at least my understanding of the situation has been
greatly increased by the discussants' remarks, for
which I am very grateful.
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