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Al/lll1ls o/FC/II/o/llic alll! Social MUlSllrnllt·/II. 3'3. 197-t

OPTlMAL RESPONSI:: SUIU·ACI:: L>l:Sh.iN IN MONTE CARLO

SAMPLING EXPERIMENTS*

By JOHN CO~LlSK

Tile rheon' of oprimal experimellt desigll is (lpplied 10 IIII' d<'sigll (if MOllie Carlo samplillg experimellts.
II is 511011'11 elWI prel'ailillg praclice ill MOllie Carlo slimplillg C'xperimell/aciollmay lead CO illeffieiem 1/.\1'

II!COmplIll'r lime. III parlicl/lar.lllc praelice of gerleracillg IIII' smile IIl/mber ,,' scullplesli!r eadllllUlwrical
speciliC'C/lioll "fllle largelmodel is crilicizecl. A/lema/ire prcceclllres arc' sllggeslc'J,

I. INTRODUCTION

As Summers (1965) has pointed out, the increasing availability of computers
argues for greater use of the "capital intensive" Monte Carlo approach to dis­
covering small sample properties of estimators. I Of course, the capitll should be
used efficiently. Toward this end, Haitovsky and Jacobs (1972) presented in the
initial issue of the Annals a general purpose program for efficient generation of
Monte Carlo sampling data. Given such a program, further efficiency questions
concern the number of Montc Carlo samples to generate, the sample size for each,
the numerical specification of target model parameters, and related questions.
These further efficiency questions may be linked with the statistical literature on
optimal experiment design. This paper shows that efficient design of certain aspects
of a Monte Carlo study may be viewed as a regression design problem. Application
of regression design techniques suggests that some prevailing practices in Monte
Carlo sampling experimentation use computer time inefficiently.

A recent Monte Carlo study by Orcutt and Winokur.(l%9) makes a lIseful
illustration. Though it will be argued that the authors used computer time ineffi­
ciently, this may be no more than a trivial criticism of their study. Since their model
was very simple, computer cost may have been a minor consideration. It is the
simplicity and elegance of their model which makes it a convenient iliustration.
Nonetheless, computer COSl is a serious consideration in many Monte Carlo
sampling studies; and the points made carryover. Orcult and Winokur were
concerned with the autoregressive model

(l) y, = 'J. Y, _I + r,. v:here (!, is NID(O, I).

Here Y, and t', are scalar random variables, and t indexes time. As the authors note,
no generality is lost by normalizing the intercept of (1) to zero and the variance of
(:', to one.

Orcutt and Winokur wished to know the small sample properties of alternate
estimators and test statistics associated with the model (l), especially the first two

* This research was supported by the National Science Foundation under grant GS·3201. Thanks
are due to the editor and referees of the AllIlllr~ for helpful commcnts on an carlier version of the paper.

I Monte Carlo methods arc treated in the statistical literature at a more ha~ic level than in most
econometric applications. See references in the Naylor 1'1 Cl/. survey (1967).
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moments of these statistics. For example. they were interested in the fUl1ctiom

(2) EiCi*l = J-h, N) and /11.\('(1*) = C(Ci, tv)

Here /IIw(.) denotes mean square elTor, and 1* denotes the ordinary least sqU<Hes
estimate of 1 based on an N -observation sample ( Y" .. " }\). Since the functions
F and Gcould not bederived analytically, the authors estimated them empirically
that is, performed a Monte Carlo experiment. Their procedure can be described in
terms ofequation estimation (though the 'JUthors did not so describe the procedure).

Corresponding to the functions (2) to be estimated arc two estimation
equations:

(3) '"1; = F('Y." N,) + "r, and (Ci~ -- 'Y.,)2 = G('Y.,. N,l + lI(i"

for r = 1, ... , II. Here the II'S arc aror tcrm5: they mllst have zero means in view of
(2). The subscript r indexes observations. "Obs{~rvdion" needs explaining. The r-th
observation was generated by the authors in three steps. (i) They specified values
for '1, and N,. {ii) They genera ted by computer a sample time series for }~ of size
N, using the autoregressive model with 1. = 'Y.,.liii) They calculated an observation
'Y.: on the estimator 1.* (along >.\lith observations on all other estimators and test
statistics under consideration). These three steps yield a value for the triplet
(11.:, 'Y." N,): repeating the procedure I/timesyields a sample of size II for estimating
equations (3).

Viewing the authors' procedure in this way is useful in establishing a link with
the experiment design literalLlre. The authors h,ld control over the independent
variables J., and N, in the estimation equations (3). Their design problem was how
to choose the 1/ independeTlt variable observa tions (0: 1 , N i), ... , ('Y.n , N n)' Such a
choice problem is roughiy speaking what the design literature is all '.Ibout. Since II

was a very large number (in the tens of thous~lI1d;;), the authors followed a standard
design procedure by sele<:ling a much smaller number, say Ill, of admissible values
for a pair (('(" N,i: and they then took repeated observations at each of these
admissible pairs. Thus, the problem ofchoosingall21/llumbers ('Y.!, N I)' ... , (:X n , N.,)
reduced to the more tractable problem ofchoosing only III numbers--the numbers
of observations at each of III admissible pairs. Cdlthese numbers of observations
11 1 , ... ,11", : they sum to 11.

Some widely used terminology is useful. The variables which an experimenter
controls (Cl: and N in the Orcull-Winokur context) arc ealled desigl1 zariable.\.
Their space is called the desigll space. The /II admissible sets of values for the design
variables are called treatmellts or desigl1 poil/ts. The numbers of observations per
treatment ". , ... , I/m are called treatme/lt sample sizes; and a set of values for the II;

is called a t!esigl/. The functions to be estimated (like F and G from (2)) arc called
respollse jllllctiollS. The object of a Monte Carlo sampling experiment is accurate
estimation of the response funuions; and the design question is how to choose a
design which best serves this object. The most common design l!sed in Monte Carlo
sampling studies, including the Orcull-Winokur study, is the equal treatment size
design defined by II, = " . '" 11m , (Few exceptions to the equal treatment size design
were found in the literature: and these had nc, apparent optimal design rationaliza­
tion.) It will be argued here that such a design uses computer time inefliciently. 1I
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will be argued tha t l he II; usually should be made systcmat ically unequal, according
to guidelines suggested below.

An answer tu lhe JI:~ig\l ljL1c~1 ion depends heavii)' on the fUl1dional form of
response functions. Implicit in most Montc Carlo sampling studies is a disregard
for the continuity of a response function. Orcutt and Winokur, for example,
estimated the height of F(cx" N,} over eaclt treatment point as the sample mean of
the a: observed at that point. Thus. iu estimating the height, they made no formal
use of available information about heights over adjacent treatments, as if F had no
continuity. The spirit of this approach is captured by the step function specification

(4) I
If I if (a" N,) falls at treatment I,

#2 if (cx" N,) falls at treatment 2,
F(Ct." N,) =I

~Jm if (ex" N,i falls at treatment 111.

In truth, a function like F is typically continuous; possibly F cOllld be well approxi­
mated by the quadratic

The two functional forms (4) and (5) will be used in the illustrative calculations
below.

i N

• • ~ 70 • •

• • j~ • •

• • r 30 • •

• • t 10 • •
1 ~'1

-1.0 -- .5 0 5 1.0

Figure I

Orcutt and Winokur ran several experiments, lIsing up to 48 treatments. For
simplicity. illustrative calculations here will use III = 20 treatments, as described
by the points on the design space of Figure I. These treatments cover the range of
stationarity (-1 < fJ. < 1) for the autoregressive model and a range of sample
sizes (10 S N S 70) commonly faced in time series studies.
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II. THE MONTE CARLO MODEL

A source of confusion in this contt.:xt is the presence of two statistical models;
they will be l:alkJ thl: /argl'l mudel <Iud the MOl/tt' Carlo //lodd. The target model is
the model of ultimate concern--the autoregressive model in the Orcutt-Winokur
study. The Monte Carlo model is the estimation model- composed of equations
like (3)--used to transiate computer runs into inferences about the distributions of
the target model estimators and test statistics. This section formally specifies tht.:
Monte Carlo model. Since each of the two models has its own parameters,
estimators, and other components, one must continually delineate which model
words like "parameter," "estimator," and "observalion" refer to. Furtunately,
the Monte Carlo model for the general case can be specified without specifying
the target model for the general case.

In the Orcutt-Winokur illustration, there is a pair of design variables (11. N).
For each Monte Carlo observation, the pair is assigned one of m admissible values.
In the general case, let the target model have D - I parameters, which together
with N, make D design variables. Further, let the //I admissible values for the
D-tuple of design variables be written as (I, D) row vectors Z I' ... ,2m ; SO the Zj are
the treatments.

The Monte Carlo experimenter's goal is to estimate a set of response functions
using estimation equations like (3). For now, it is assumed that these equations
satisfy the linearity and other assumptions of the following standard multi-equation
regression model. The restrictiveness of this assumption, and how to relax it, are
discussed in the next section.

(6)

y= XfJ + V,

E(U)=O. var(V,.)= V@Q,

Q = diag (ui ,... ,ui :... ;u~, ... , a~).
~ ----....--.._...,,1

111 times nm times

This is the Monte Carlo model. Here Y is an (n, p) matrix of observations on
dependent variables, where p is the number of response functions, or regressions.
The columns of Y correspond to different response functions and the rows to
different Monte Carlo observations. In the Orcutt-Winokur context, for example,
two of the columns of Yare [a!, ... ,11:]' and [(IX! - ad2, ... ,(a: - C'ln)2)', which
are the dependent variable observations for equations (3).

The dependent variable matrix Y is composed of a systematic component X fJ
and an error component U. In the assumptions (6) on the (n, p) error matrix U,
var( . )denotes' variance matrix of," @ denotes Kronecker multiplication, and V,.
denotes the (np, 1) vector gotten by stacking the columns of U (first column on top,
second column next, and so on). The assumptions on V say that U has zero mean,
that its rows (observations) are uncorrelated, and that all rows ha ve the same
variance matrix V up to a scalar multiple which may vary by treatment. This
variance multiple for the i-th treatment is uf; the u; allow a limited form of
heteroskedasticity. As is apparent from (6), observations are assumed to be ordered
by treatment from first treatment to last.

466



In the systematic component X IJ of Y = X fJ + U. the matrix X is an (/I, k)
regressor matrix, wh{:re k is the number of regressors; and fi is a (k. p) matrix of
regression coetncients. The clemenls of X arc functions of the design variables and
are thus subject to experimental control. Ihe II rows of X COl respond to the II

Monte Carlo observations. The value of a given row of X depends on which treat­
ment the observation is taken at and what the regression functional form is. A row
of X taken at treatment Zj will be given by some (I, k) row vector offunctions of :C j •

cali the functiol1f(zJ Thus. the regressor matrix X takes the form:

rf(zd ]
III times

f(zd J

j". tim"

x=(7)

l
-----
[(zm)

f(~m)
To illustrate the regression functional formJ~ the step form (4) above for the response
function F can be represented by a dummy variable regression. with the i-th of
k = mdummy regressors equal to one if the observation is at the i-th treatment (and
zero otherwise). The implied}function is

(8) J(z;) = [i-th (t, m) unit vector] (step form).

As another illustration, the quadratic form (5) above leads to the j-function

{9) f(zj) = [1, ex, N, al
, N 2

, aN] with (a, N) = z;(quadraticform).

There are no necessary relations in general among the number of design variables
D, the number of regressor variables k, the number oftreatments m, and the number
of observations n; although D < k s m < n is l.:ommon in practice.

The best linear unbiased estimate H of pand its variance matrix are given by

(0)

Here H" is the (kp, 1) vector gotten by stacking the columns of B. Derivations can
be found for example in Goldberger (1964, pp. 201-12), though they must be
modified slightly to allow for heteroskedasticity. In view of(6) and (7), var (B,) may
be rewritten

(11)

III. THE DESIGN MODEL

The Monte Carlo experimenter's goal may now be viewed as accurate
estimation of the matrix pof Monte Carlo model parameters. He wishes to choose
a design r,\, ... , II", which facilitates this estimation. The general experiment design
literature suggests a choice procedure, called the design model here. The specific
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formulation is that of Watts and Conlisk (19691. which huilds on the work of man)'
alit hOI s [sec Fedorov (1972) and refercnccs therefor a gOllllL'!ltry to the literature].
There arc t.wo major components to the design model the choice set and the
choice criterion.

Tile choice set. It is assumed here that the scopc of the Monte Carlo sampling
experiment is limited by a hudget constrainl Li(";Il i ~ C. where c; is the cost of one
Monte Carlo observation at the i-th treatment and C is the avtlilahle budget. Thc
choice set is then the set of all non-nega tive Ill-tuples (/II' ...• I/m ) which satisfy the
budget constraint.

The choice criteriol/. The matrix var (B,.) is a matrix measure of the experi­
menter's error in estimating the MonteCarlo model coefficients IJ by B. It is natural
to specify a scalar error measure defined on var (Br ) as the experimente~"s objective
function to minimize. Some conventional specil!cations are the dcierminant
(generalized variance), maximum eigenvalue, amI weighted trace of var (B,.) [sec
Fedorav (1972,52 3) on these and other ohjective functions]. The discussion and
iilustrations here will usc a weighted trace criterion, though one of the othel
standard criteria could easily be substituted.

The experimellter is interested in estimating 11. More specifically. assume ;lC

is interested in estimating the height uf each of the p response functIOns over a
representative sprinkling of points in the design space: and assume he specifics
the treatment points 2 1"", 2m as these representative points. The best lin!:ar
unbiased estimate of these points is X 08. where X 0 is the (/II, k) matrix of rows
[(ZI)... · J(zm)· The (i,j)th e1emen! of X oB is the estimated height of the ;-th
response function over the i-th treatment point. The experimenter is assumed to
select as all overall measure of estimation error a weighted sum of variances of the
elements of XoB--specifically, LiLj\\';! j var [IX OB)iJ Here \\'1, . " , \\'m are weights
associated with treatments and t I' ... , Ip arc weights associated with response
functions. The relative sizes of the \\'i and I j renect the relative importances to the
experimenter of the treatments and response functions. In view of (II), this estima­
tion error measure may be manipulated as follows, where VI -= diag (\\'1"'" \I'm)'

T = diag (r l' ... , IpI, and a subscript t: denotes the vector '~otten by stacking the
columns of the matrix on which the r appears.

= tr {IT@ W)(l 09 X 0) var (B.. )(I @ Xo)}

(12)

This weighted trace function is assumed to be the experimenter's choice criterion.
Using it, he can rank alternative designs in the choice set.
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(\3)

The design I/Iodel. In words, the experimentcr wishes to minimize the choice
criterion (12) over the choice set. In symbols the design model is tili~:

• • " ' "I \,., ,,, \' T\ 'III - 2 f" 7 'f"( 7 )1-- I I
l111nImLt: tr ,.1. 0 H . uc ...... i IIl/T; _ (-i) -' -i J I

":. _. . n. 1l

This is a well behaved mathematical programming problem: the objel.:livc function
is convex and the constraints linear. Strictly speaking. (13) is an integer program­
ming problem. since the IIi are treatment sample sizes. Jf the sample is large.
however, little will be lost by the conventional practice of treating the II; as con­
tinuous in solving (13) and then rounding off. The list of specifications required
of the experimenter to apply the model are as follows:

The treatment points 2 1..... 2 m ,

The corresponding variance weights (Ji ..... a~"

The corresponding costs per observ~llions l'1.· ... ('/II and the available
(14) budget C.

The corresponding treatment importance weights \1'1" ... 11'",.

The regression functional formf(which together with the Zj determines Xo).

It may be noted that only the relative sizes of the a; are important; a multiplicative
change ofscale would leave the solution to (13) unchanged. The same holds for the
11';: and it holds for the Ci plus C.

Computationally, solution algorithms for (13) are made easier by the fact that
there is only one constraint in addition to the non-negativity constraints. Let
H(II I • ..•• I?m) denote the objective function in (13) and Hi its i-th partial. The
foIlowing iterative solution algorithm is based on the idea of letting the relative
sizes of the H/ci determine how the IIi shift up and down from iteration to iteration:

11:+ 1 = (C/cJ[H i(II'I' '" .11~,),cjr/Ij~I [Hi"'I ... · . "~,)/('J".

Here t indexes the iteration. and (J is a positive convergence parameter to be set by
the experimenter. My experience suggests setting a = 1 at first. If the /Ii do not
bounce lip and down from iteration to iteration. a = I will do reasonably well. If
the /I; do bounce up and down. reduce a until the bouncing stops. This algorithm
has been used to solve problems with /1/ = 224 and k = 50 in less than half an hour
on a CDC 3600. For initial II; set at II? = ClIllC;, 50 iterations usually produced good
convergence. The major computational effort of a given iteration is the summation
and inversion of the cross products matrix in brackets in (13). Thus. one iteration is
roughly equivalent to the work of running one regression with III observations and
k regressors. In another context. Conlisk and Watts (1969) used a model identical
to (13) except that there was more than one constraint in addition to the non­
negativity constraints. This required a substantially more complicated solution
procedure. A gradient projection algorithm programmed by Kreuser (1968)
required about 45 minutes on a Burroughs 5500 to solve problems with //I = 54,
k = 13, and th'e constraints in addition to the non-negativity constraints.

An explicit solution formula to the design model is available whenftakes the
step function form (8); in this case. X 0 = f m and the matrix to be inverted in (13) is
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diagonal. The solution formula is

(15) (i = I, ... . m).

When the Wi' (j~. and l"i vary ovcr tre;ltmC'nts, the optimal II, wmpult.:J from (15)
will vary over treatments (except in the rare casc when ali the w/J}/C j happen to
win<:ide). As intuition would suggest. a larger treatment impor!ance weight \\'j or
variance weight al leads to a larger treatmem size IIi; and a larga treatment cost
ei leads to a lower IIi' .

Generalizillg the criterion jill/Clio/l. A convenIent feature of the criterion
function derivation (12) was that the magnitude tr(TV) fadored out ano wuld thus
be deleted from the design problem (13). Since Tand Vwere the only components in
(12) which reflected the existence of more tlian one response f\lndion, their deletion
meant that the experimenter might as well have been working with ollly one
response function to start with. The kcy assumptions in getting this simplification
were--{il thai all response functions have the same fundional formI ; (ii) that the
variance matrices ai V .... fJ;" V associated with different treatments were identical
up to a multiplicative constant; (iii) that the experimenter was interested in
estimating response surface heights ova the same design space points for every
response function; and (iv) that the weights in the criterion function LiLj\\·;t j

var[(XOB)ij] took the simple multiplicative form IV/j. More intuitively. these four
assumptions say that the experimenter treats all response functior,s symmetrically;
so there is no reason for the multiplicity of them to alter the ranking of designs.

The four assumptions are restrictive and may often be objectionable in
practice. Fortunately, easy generalizations are available. For example, suppose
asymptotic theory or other considerations lead the Monte Carlo experimenter to
believe that different response functions, such as F and Gin (2), have ~ubstantially

differen~ functional forms. He might then wish to specify a separate Monte Carlo
model like (6) for each functional form, in which case he (;Quid define a separate
sub-objective function like (12) for each functional form. Since each sub-objective
would be a weighted sum of variances, it would be natural to define as grand
objective function a weighted sum of the sub-objectives. Aside from the additional
specifications and computations required, the generalization would be straight­
forward" Subject to the same qualification, generalizations of the other three
assumptions listed would also be straightforward.

IV. OPTIMAL DESIGN ILLUSTRATION

The Orcutt-Winokur context was dt:scribed in the opening section: and
treatments ZI"'" Z20 were specified (Figure 1). To apply the design model.
specifications are needed for the al, the Ci • C, and the Wi' There is reason to specify
unequal variance weights c? The major depeftdent variables to a Monte Carlo
experimenter will typically be estimators; and, in contexts where alulvtical results
are available, estimators often have variances inversely proportional"(roughly) to
the target model sample size N. For this reason, the a; were set equalto the inverses
of the corresponding N-values in the illustration. For the budget constraint
magnitudes Cj and C, it was noted that a given Monte Carlo observation involves
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generation and pro(;essing of a target model sample of size N. With this in mind.
the cost Cj for one Monte Carlo observation at the i-th treatment was made pro­
portional to the corresponding N-value. The total budget C was set so that an
equal treatment size design with <llIlli = 1.000 would just exhaust the budget. The
design model has the property that the optimal ratios among the III arc invariant
to the size of C: so C is not an important specification for the following discussion.
The treatment importance weights Wi should reflect the experimenters' interests.
The weights specified are presented on the first row of Table 1: they assume greater
interest iI! positive !X-values (positive serial correlation in the target model) than
negative, and equal interest in alternate N-values.

TABLE I

OPTIMAl. /Ii FOR ORCUTI-WINOKUR IlI.lJSTRATlON

.1-Value

N -1.0 -0.5 0 0.5 1.0

Specification of Wi AIiN 0.5 0.5 0.7 1.0 0.7
~~------

Optimal Design for 10 3,460 3.460 4.094 4.893 4.094
Step! 30 1,153 1.153 1,365 1.631 1.365

50 692 692 819 979 8!9
70 494 494 5S5 699 585

Optimal Design for 10 7.185 0 8.524 0 8.824
Quadratir./ 30 1.402 0 2.036 0 1.718

50 674 0 1.555 0 864
70 1.066 0 1.138 0 1.300

It only remains to specify the regression functional form I Optimal designs
are presented on Table I for twofspecifications, the step form (8) and the quadratic
form (9). The optimal step function design departs greatly from the equal treatment
size design common in Monte Carlo studies; the reasons are apparent from the
step function solution formula (15). The optimal quadratIC function design departs
even further from the equal treatment size design: the reason is continuity. Since
the quadratic function is continuous, inferences about response function heights
over all treatments can be made even if there are no observations at some treat­
ments: so the model is free to put all stress on cheap or geometrically well placed
treatments. The classic example of this phenomenon would occur if the response
functional form was simple linear and the C j were equal: then the optimal design
would allocate all observations to the corner treatments, for much the same reason
that a table on a shaky floor will be stablest if the legs are at the corners.

If Orcutt and Winokur felt confident that the functional flexibility of a
quadratic was auequate to their context (and if they accepted the other illustrative
specifications), the quadratic design would be appropriate. If they thought a
quadratic was too restrictive, but still wished to exploit prior beliefs about con­
tinuity, they might compute a design for a more flexible, but still continuous,}: If
they felt uncomfortable with the restrictiveness of any continuity assumption, the
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step functien design would be appropriate. After the fact. it is possible: to see from
Orcutt and Winokur's results that a quadratic f would ha\'e been reasonable for
the response fllnction~ they were estimating. 1 Of course, Orcutt and Winoklll
could not know this prior to their study.

The question of how to specify lis typically a knotty one [~ee Conlisk 11(73)].
However, the important point here is that no assumption ahoutfis likely to kad
to an equal treatment size design. Since the criterion function of the design model
is <i variance magnitude, the relative efficiency of two designs in the usual variance
sense can be measured by the ratio of the two criterion fllnction values. When the
step f is specified, the efficiency of the equal treatment size design !"clat ive to the
optimum design is only 0.59, indicating that the equal treatment size design loses
41 percent on thedollarof computer time. When the quadraticform forfis specified.
this efficiency is 0.58. Simililr low eflkiencies for the equal treatment size design
hold under other specifications oft.

V. CONCLUSION

Though Monte Carlo sampling experimenters seldom usc optimal design
analysis, the application is straightforward once the goals ofa Monte Carlo experi­
ment are formulated in terms of estimating response functions (whose dependent
variables arc usually the first two moments of target model estimators and test
statistics). More specifically. if the response functions arc treated as regression
equations. regression design theory leads to optimal designs determined by the
well behaved programming problem 03). In specifying the inputs (14} to the pro­
gramming problem. the experimenter tailors the optimal design to his Monte
Carlo context

A distinctive feature of Monte Carlo (and other computer simulation)
contexts is the presence of multiple response functions [sec Naylor e( al. (1967).
section 7.4]. Orcutt and Winokur, for example. table results for 16 functionally
independent mean and mean square error response functions. As discussed in
section III, the multiple response case collapses to the single response case under
certain simplifying assumptions. Since the simplifying assumptions may oftcn be
objectionable, the generalization of the objective function discussed in section III
may be needed.

One often hears the comment that Monte Carlo resl!lts arc no substitllle for
general analytical results, because Monte Carlo results apply only to the limited
target model specifications chosen by the experimenter. The inappropriatencss of
this criticism is apparent once a Monte Carlo experimenter's goal is seen as
estimation of response functions like the mean function F(a. N) and mean sqllare
error function G(ct, N) from (2). If allalytical results were available, all they could
give us would be functions like F(rx., N)and G(a, N). Bllt this is cX<H.:tly what a Montc
Carlo study can give us (subject to controllable approximat ion error). The fact that
Montc Carlo observations on a function like F(a. N) can be generated for only a

1 For example. their Tablc V presents the (approximate) contours of six response fun•.'tionsrnean
and mean square error functions [like F(=x. tV) and Gb. N) in (2) above] for thriX estimators of ;x. Thc
table presents the. heights of each response function over a 15 point grid of (7. N) combinations. least
squares fits of the quadraticffor each of the six functions yield six p2'S nmging from 0.97 to 0.99.
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limited number of (a. N) combinations docs not prevt.:nt LIS from exploiting
continuity to estimate the whole fUnl.;tion Fla, N).

The Orcutt iind Winokur illustration (and others not reported) suggcsi that
potential eftkiency gains from optimal designing arc sizable reiative to the equal
treatment design typically used in Monte Carlo studies. Four reasons for the
inefficiency of the equal treatment size design l.:an be listed. First, the costs per
treatment l"i will vary among treatMents with varying target model sample sizes
(N-values) and may vary for other reasons (as when a design variable being zero
simplifies computations). Unequal l"i promote unequal II,. Secolld, the varianl.;e
weights a; arc likely to vary by treatment, since the response function dependent
variables are likely to have variances which decline with target model sample size.
Unequal (Jf also promote unequaill j . Third, the treatment importance weights Wi

are likely to vary by treatment, since a Monte Carlo experimenter will typically
have greater interest in some ranges of target model parameters than others: this
also promotes unequal IIi. Fourrh, continuity of the regression functional formf
promotes unequal IIi. Even if the Ci' a;, and II'i were equal across treatments. a
continuous fwould promote unequal II;, since the model would seek outlying and
other geomet rically well placed t rcalments, often to the l.:omplete exclusion of some
treatments (IIi = 0 for some i).

All of this should be qualified by consideration of the cost of implementing the
design model. Solution to the programming probiem (13) can be costly. If this
solution cost is important, the experimenter might wish to use the optima! design
for the step form off, since the explicit solution formula (15) makes computational
cost trivial in this case. Though the stepj-form does not exploit continuity, it is a
definite improvement over the equal treatment size design.
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