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TOWARDS MODELING HUMAN INFORMATION IROCESS1NG
AND CONTROL IN ECONOMIC SYSTEMS: AN APPROACH BASED

ON MANNED VEHICLE SYSTEMS ANALYSIS*

H DAVID L. KLEINMANt

Recent successes in modeling human performance in manned i-thick svsrtins are examined to assess

whether the modeling techniques mat Iind application to study hwnan decision ?ntik!ng fl all ecoflo nt'trie

context. The opt jowl control model of man- rehicle peiforinwice is discussed, and seicrol rem Its art'
presented. The important features of the model, that twkl potential for studymg economic system control,

are discussed, speciji..alIt, the concept of an ''internal'' ,nodel. The simihirit u's and dijIere'nces bet wt'en

nitin-tehicle control nd nian-econiinietric Systemn control cire discussed in rermmis of the milan ,noh'l structure.

Requirement.s for extending the exisrir.g man model to economic systems are presented.

I - INTRODUCTION

An econometric system evolves in time largely under the control of humans. 'The

man as a central element is required to correlate and process information arriving

from several sources. When this information is combined with human experience
and judgement, there ensues the basis for man's control decisions. Depending on

the specific context these decisions may range from adjusting the price of a commod-

ity to regulating a natural money supply. 1-lowever, all situations that we study
are assumed to have a common feature: The human's information processing-
control cycle is dynamic. i.e. the man is acting in a feedback control mode to
regulate the system about some desired condition) To he sure, an understanding

of human control in an econometric context is a difficult challenge. But it is a

necessary step if one's methodology is first to model a system, and then to use
the model to help improve overall system effectiveness.

The analysis of man's behavior a an information processor and control
element in a dynamic system extends beyond econometric contexts. Humans

function as controllers in literally hundreds of sttuations. It is therefore prudent

to explore the state-of-the-art of other fields to determine whether tools and
techniques exist for human analysis that may have application to economics

systems. One modeling area that has enjoyed considerable attention over the past
several years is the manual control of transport vehicles. Recent efforts in human

response theory have been aimed at developing models of the human operator
that could be systematically and easily used to predict human behavior and
system performance in complex vehicle control tasks.

One of the most general, and most versatile models of human response that
has been developed in a manvehicle context is the optimal control model of
Kleinman. Baron and Levison [1-3]. This modeling approach is rooted in modern

* Presented at the NBER Workshop on Stochastic C'ontrol and Economic Systems. University
of Chicago, June 7--9. 1973.

t Presently with the Dept. of Elec. Engrg.. University of Conn.. Storrs. Conn.

We confine our attention to the behavior ofa single human. asopposed 10 'team" control.
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estimation and control sy'tem theory. It is based on tht. assumption that the well.
trained. well-motivated human operator behaves in an Opti ma! manner suhjt
his inherent limitations and constraints, and his task req uirements.

This paper examines the potential for extending the Optimal control
model

for human information processing and control behavior as developed Ill il manned,
vehicle context, to study human control in an econometric context. The

Optimal
control model is reviewed, the similarities and difTe nees between man-vehicle
and human-economic system modeling are noted, and the model features

that
have analogue in economic systems are discussed.

2. HUMAN OPERATOR MODIiS

The basic problem that we consider is characteristic of most dynamically
evolving systems that contain a man in the loop. The generalized loop structur
is shown in Figure I. The human makes observations, Y, on the system and Ofl the
basis of these observations generates control Inputs. u. The human's task s to
choose his control inputs so that the resulting system outputs, Y(t), remain "close"
to some desired values, Y*(t), as time evolves. Generally there will exist external
random and/or bias inputs, w and z, that disturb the system from its desired or
nominal operating point. These unwanted deviations must be countered by the
human's control inputs. The basic quest ion is then, how does man, with his inherent
limitations on the rate and volume of information processing, perform in a stochastic
and dynamic environment?
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2.1 .SVS!CPH Dynamics

The types of manned-vehicle problems that have been studied to-date are
those in which the controlled element dynamics are vell-defined in terms of a
physical model. This includes aircraft, automobiles, and laboratory systems among
others. Thus, the optimal control model assumes that the system (i.e. vehicle) to be

controlled, which may include sensor and manipulator dynamics. can be described

by a set of linearized equations

Ax(t) + Bu(t) + Ew(1) + z(1).

Here, x(t) is a vector that describes the vehicle state, i.e. the deviation of the system

motion from some desired trajectory X*(t): u(r) are the human-generated corrective

control inputs. The terms w(t) and z(t) represent the external disturbances. Without

loss of generality w(t) can be assumed to be a zero-mean white noise with covariancc

E{w(t)w(t)} = V(r)ó(t - r).

The component z(t) represents non-random or bias input disturbances. Finally,

the matrices A and B in equation (1) may be time-varying in cases where the system

dynamics change with time.
Several system outputs

y(t) = Cx(t) + Du(t)

may be of concern to the human, and it is assumed that they are presented con-
tinuously to the man via some visual display. The quantities y(t) are the deviations

of system variables from their desired output values Y*(t). In the manvehicle
control context, it is assumed that if a quantity y(t) is presented to the human, he
implicitly derives the rate-of-change p1(t), but no higher derivative information.

The total observations of y(t), including the variable rates, represents the informa-

tion base from which the human must generate his control action.2

2.2. Hwnan Limitations

Any reasonable mathematical model of the human operator must include

within its framework, the various psychophysical limitations inherent in the
human. The optimal control model contains time-delay, human randomness.
small signal threshold phenomenon, among others as shown in Figure 1. Possible

discontinuous, or pulsatile control behavior is not considered. The description of

the human's limitations, and his resulting compensation or equalization is the

essence of the optimal control model.
2.2.1. Time-delay. The various internal human time-delays associated with

visual, central processing and neuromotor pathways are combined in the optimal

control model. They are modeled conveniently by a single lumped. "equivalent"

perceptual time-delay. t.
2.2.2. Randomness. It is assumed that the various sources of inherent human

randomness are manifested as errors in observing displayed quantities and in
executing intending control movements. Thus, "observation" noise and "motor"

2 Note that an obvious design problem is to maximi2e the nformation" content of y(t).
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noise are lumped representations of controller central
processing and sensor'randomness. These noises represent the combined eflects 01 random pt'rturb.tiin human response characteristics, time variations in respofise parameters tndrandom errors in observing system outputs and generating System inputs fhesenoises are also associated with the level of training of a human, i.e. the' are relatedtothedegreeto which thehuman "knows"thc8ystefl1 dYnarnics(lJheitgci1j

Thus, a well-trained person can he expected to he less "random" than a novkIn the optimal control model an equivalent "observation" noiSe Vector isadded to y(t). A single noise uO) is associated with each dispIa' variable t'1(i) Thenoises i' are assumed to he independent, Gaussian white-noise processes withcovariances

= :() ó( - r).
Furthermore, it has been found from experiment [4 that the covarianee tç scaleswith the magnitude of the signal to which it is associated

(t) p Ev(i).
Thus, in a very reasonable manner, the human's errors in perceiving a givenquantity depend on the magnit tide of that quantity. The noisesignal ratiosdepend on the relevant features of the display, the external environnient and thelevel of human training, among numerous other factors.

2.2.3. Scanning and inlerfi'rence. When there is more than one display indi-cator, the human must allocate his attention among the various displays Let usassume that there are K sources of information and let ?/ denote the human'sattentional allocation to indicator K. Thus, neglecting switching time,

=1 O?JA<l
In the optimal control model, if displayed variable '(() is obtained from indicatorh, the effect of attention sharing is to modify the noise signal ratio i according to
6)

=
where p is the noise/signal ratio that corresponds to full attention on indicator k.The human is assumed to Choose then to "optimize" his information base vis--visthe control requirernen5 Methods for determining "optimal" /k ithin the humanmodeling context are discussed in Refs. [2 3]. In some cases a simple assumption ofequal division of human attention among the primary display channek, i.e. q =I/K, suffices for model applications.

2.2.4, Small signal effi'c,s. If a particular signal '1 is very small in magnitude,a human may not be capable of detecting its non-zero value (visual threshold).Alternatively, he may choose not to react to such small perturbations (indifferencethreshold) Ihese threshold phenomena represent human nonlinear characteristicsfor small signals, Specifically, if a signal V is displayed, the human will react to asignal y' given by

= I (v)
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where a 'o
/ (i') = 0 --a <v < a

v + a y a
and a is the threshold level assocated with j.

The total signal y that is pe -ceired by the human must reflect the time-delay
and observation noise limitations discussed above. Thus, the human perceives the
quantities

3',4I) = f(r1(t -. t)) + r(t -
i.e., delayed, noisy and modified replicas of the signals actually presented on the
display. As shown in Figure 1, it is the signal y that is "processed" internally by
the human (through some equalization network) to yield a commanded control,
uc.

2.2.5. Neuroniotor d vnaniics. Because oicentral processing and neuromuscular
dynamics, a human cannot effect control action instantaneously. Thus, there is
a lag between the internal "commanded" control and the actual control input
generated by the human. We model the neuromotor dynamics as a first-order
system

(9 T\U + U = U.

However, the dynamics (9) are not imposed direct! v in the human operator model
structure. We include them indirectly in perhaps a somewhat more natural manner,
by implicitly limiting the human's control rate, ü. This aspect of the model will be
discussed further in Section 2.3.

2.2.6. Motor noise. The motor noise (i) is the second component of modeled
human randomness. This noise is used to represent the effects of random errors in
executing the intended control movements (tremor), or the fact that the human
does not have perfect knowledge of the system input u(t) because of "noisy"
proprioceptive feedback channels. The motor noise is added to u(1). Thus.

TU + u = u(r) ± v(r).

The noises vjt) are assumed to be white Gaussian processes, with covariances t<
that scale with the control magnitude.

l'(t) = p . Eu(t).

2.3. Control task representation

Our basic assumption in man-modeling is that the well-trained human
behaves in an optimal manner subject to his inherent limitations. The human's
limitations have been discussed: it remains to define what is meant by "optimal."
In the optimal control model it is assumed that the control task is adequately
reflected in the human's choice of a control input that minimizes the quadratic cost
functional

Ii rT
J(u) (y'Qv + ü'G) dt

TJ0
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conditioned on the perceived information y1,( tin equation (8). The termjtjl tifl1T may approach x if we are interested solely in modeling man's steadyst.1performance.
Thecost functional (12) waschosen because of its physical appeal (the human'5task is to keep the variations y(t) small), its niatheniatjcal tractjhjlit' and theresulting analytic simplificat ions it provides. The cost functional weighting para-meters Q diag(q1) and G = diag(g1) may be either objective

(specified by theexperimenter or designer), or subjective(adopted by the human in performing andrelating to the task). Clearly, the selection of any subjective cost weightings is anontrivial matter and is tantamount to mathematically quantifying the )IW;!Q,i'control objectives. In some simple cases weighting selection can he chosen ø thebasis of task requirements. However, in complex multivarith!e situations repre-sentative values for q1 and g may have to be elicited by model-data matchingprocedures or by questionnaire.
As mentioned earlier, the neuromotor dynamics are not included directlyamong the inherent limitations of the human. However, note that included in J()is a cost on control rate. This term may represent an objective or a subjectiveweighting on control rate. (It should be noted that rapid control movements arerarely made by trained operators.)AJternatjrcly this term could account indirectlyfor the physiological limitations on the rate at which a human can effect controlaction. Including the control rate term in J(u) introduces a first-order lag in theoptimal controller. In the optimal control model, therefore, these dynamics can beassociated with the dynamics often attributed to the "neuromotor' system.

2.4. The Optimal Control Model 01 Ilu,nan Response
Within the postulated framework, the human's control characteristics aredetermined by the solution of a well-defined optimal linear regulator problemwith time-delay and observation noise. Figure 2 shows the feedback loop structureof the optimal control model. The control that minimizes J(u), conditioned on the"perceived" information y( ), is generated by the linear (separable) feedback law,

(13) Tv + U L(t) + (()
where (r) is the "human's" best estimate of the system slate x(r) based on theperception y(a), a 1. The feedback gains L are time-varying when T< x inequation (12) or when the system dynamics are nonstationary. The first-order lagsand time-constant matrix l are the consequences of weighting ü in the costfunctional The parameters i. and T are obtained from the solution of a non-linear matrix equation (Riccati equation) once values are chosen for the weightingsQandG,

The Correspondence between the control rate weightings G and the values fT allows for (indirect) adjustment of T. In this manner T can be chosen to becommensurate with human performance data concerning neuromotor lags. Thus.the neuromotor dynamics discussed earlier are included naturally in the man-modelthrough the weighting of U.

In general, weighting u in the cost functionaI will gve rise to ij-th order d)nalnics in theresultant feedback loop

122



uCt)

w(t), 2(t)
DISTIJRRANCES

VEHICLE

DYNAMICS

x(t) v(t) = Cx(t) + Du( )
D I SPLAY

I
INrORMATIGN PROCESSOR

PRe)ICTOR KALMAN
LI_il u (f (t) (t) TIME + __j

(TNs+1) {).-
EST I

I

g DEAY
fv(t

MOTOR EQIJALIZATION OBSEVATIC

L___L__--- NOISE J
HUMAN OPERATOR MODEL

Figure 2 Optimal control model of human response

The best estimate of x(t) is generated by the cascade combination of a Kalman
filter and a least mean-squared-error predictor. The Kalman filter compensates
optimally for the human's observation noise to generate a best estimate of the
delayed state

p(t) - tit) = E x(t - t)IY(o). J

according to

t) = Ap(t) + B(t - t) + K{y(t) - CpU) - D(t -- r)]

where ü is the human's best estimate of the actual control input, u. The filter gains K
are determined from a matrix differential equation.

The predictor compensates optimally for the human's inherent time-delay r,
generating an estimate of x(t) by predicting p(t) ahead by T seconds. The estimate
(i) is generated by

(t) = A(t) ± B(t) -- (t, t - r)K[y(t) - CpU) - Dü(, - t)]

where D(. ) is the state transition matrix associated with A. Thus, the human's
equalization, as portrayed in Figure 1, is modeled as consisting of an optimal
filter-predictor combination (information processor) that first estimates the state,
followed by a set of optimal gains. The feedback process is sequential, i.e. first
estimation and then control using the estimated signals.

3. APPLICATION OF THE OPTIMAL CONTROL MODEL IN MANVEHICLE SYSTEMS

In order to use the human operator model to predict closed-loop system
performance, it is necessary to prespecify various system/human parameters. It is
assumed that the quantities A. B, E. C, D that specify the input-output characteristics

123
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of the controller system-display are known. The statistics of the input disturhtjces
w(f) and z(fl must also he assumed known. The control task must he

translated
into mathematical terms via the selection of the cost functional weighting5

Q. Thespecification of any human sub/ectire weightings may he a nontrivial matter '
noted earlier. Finally, it is necessary to choose values for the human response
parameters r, T, i p and thresholds a. Reasonable approxintaIjoiic to

these
quantities are available from various data iii the manual control field. For

example
the effective time delay' r = 0.2 ± 0.05 sec. Human performance data

COncerning
neuromuscular lags indicates that (Ti11 0. 1 SeC. and the control rate weightings
6 are adjusted accordingly. Experience with the optimal control model, and inde-
pendent experiments, have shown that

0.Olit (-20dB noise'sigrial ratio)

0003t ( 25 d B noise signal ratio).

The thresholds a depend on man's physiological limitations. Typically', u
visual arc for position and 005°. sec visual arc for rate observation for most high-
resolution, well-designed displays, the thresholds can he neglected.

We illustrate the wide spectrum of man -vehicle problems that have been
studied using the optimal control model by' discussing briefly some applications

3.1 .S iinplt' Error Regulation [2. 3]

These laboratory experiments consisted of single-input single-output vehicle
dynamics in the transfer function form

c(s) k k=k.-,
u(s) s s

The task was to regulate mean-squared error V2(1) when the system was subjected
to a random noise disturbance. This is a steady-state error minimization task, i.e.
T r in thecost functionaLSince thevehicledynamicsarestatjoiry the human's
feedback control strategy becomes time-invariant (after an initial learning period)
and may' be described in the frequency domain by a transfer function

u(sl = li(s)v(s.

The transfer function li(s) can he measured experimentally and can also be predicted
by' the model. A comparison of both results serves as a model v: dati.n. Figure 3
shows the data-model comparisons of the magnitudr :.id phase of h(s), 'ver the
pertinent frequency rang. fork s2 dynamics, The 'greemnent is excellent and Jioss
that the model can desc.ibe man's input -o'aptmt behavior in this simple. Lit
important, class of prohlcn1

3.2. Pilot-A ircrq/, Studie.'

12.1. VTOL /lOi'ering task [2, 3]. The model's application to study the
human's precisioncontrol ofa hovering VTOL-type vehicle representsanextension
of the error regulatioji tasks described above to more complex dynamics. The
effects of changes in aircraft stability derivations on mis hovering performance
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Figure 3 Model predictions and experimental human transfer functions. K/s dynamics (average of
three subjects)

were computed using the model. The results were compared with experimental
flight simulator data, and showed excellent correlation.

3.2.2. Aircraft display eta!ualion [5]. A piloted approach-to-landing task of a
light aircraft was studied using the model. The effects of different display formats
and display symbology were predicted in cases where the aircraft was subjected to
turbulence and/or constant updrafts. The ability of the pilot to estimate these
external disturbances, and take the appropriate corrective action to minimize
glide path errors was analyzed. Predictions of system performance were compared
with data obtained in independent experimental investigations. The model-data
agreements were remarkable and demonstrated the model's ability to predict the
time-varying adaptability of a pilot to bias (updraft) disturbances.

3.2.3. STOL landing [6]. In a recent effort, the optimal control model was
applied to predict pilot performance during the flare and touchdown phase of
STOL aircraft landing. This was an ambitious modeling effort since the vehicle
dynamics were highly complex, ground effects and turbulence affected the motion
of 'hc aircraft, and the pilot was required to land within a short touchdown area.
In mo&ling the pilot, it was assumed that the human generates a nominal flare
path, anc then tries to correct for deviations about this path caused by his own
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LI]
inherent randomness and the external disturbances. Thus, the model gives predic-
tions of flare path and touchdown dispersions, as well as of liltilierous other per-
forniance measures. Figure 4 compares predictions of flare path dispersion (dotted
lines) with the flight path data from ten simulation runs (scatter points). Theagree-
ment is quite good, for this complex task.

3.3. Anti-A irerafi Tracking [7]

In this modeling effort, the human's task was to track an aircraft target in both
azimuth and elevation using a visual gunsight. The dynamics of the sight and
associated gun mount varied with time, making the tracking task very difficult. In
addition, the target motion could be quite arbitrary (although not stochastic) and
was unknown a priori by the gunner.

The model outputs for this study consisted of the ensemble statistics of the
tracking error waveforms in both axes. The mean, or average, error is the result
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Figure 4 Flighi path dispersions, during stol 'anding
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one would expect to find by averaging the results of many experimental paths. The
standard deviation about the mean is the run-to-run variability due to human
and/or external system randomness. Figure 5 is a comparison of model vs. human
ensemble statistics for the azimuth axis tracking error, as a function of time, for a
typical aircraft trajectory. Although the experimental data is the average of only
10 sample paths, the results are in good qualitative and quantitative agreement.

3.4. Summary

By way of a brief overview of several case studies, we have shown the flexibility
of the optimal control mode! to predict human response across a spectrum of
manual control tasks. We have seen that modern control and estimation theory,
coupled with human response theory, provides a unified framework for the analysis
of manual control systems. Within a single optimality context, a model was
developed for the human's inherent limitations and for his compensating informa-
tion processing and control behavior. Indeed, the methods for representing these
limitations, and the resulting compensating elements are the unique and crucial
features of the model.

Although it has not been pointed out explicitly, the various input parameters,
r, 7, p,etc. associated with the human's limitations are assumed to be independ-
ent of the vehicle dynamics and control task. This is a reasonable assumption when
the effects of the external environment (light, heat, stress, etc.) do not change in
large measure. Therefore. if these parameters are independent of the control task,
then complex control situations may be analyzed using the same parameters that
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/1 arc applicable to simple tasks. Indeed, experience to dale indicates that such an
approach is possible. For example, all of the modeling case SttI(liCS described

above
were performed with the same numerical values for the human response limitation
parameters i, T, p, p. The differences in human strategy from case to case arise
in response to changes in the system dynamics and associated task requirern in
this respect the model may be considered "adaptive."

4. POTENTIAL FOR EcoNo1w Sysrii MODFUN(;

The preceeding sect ions have described a validated model for the human in a
manned-vehicle control context. Modern control theory supplied a generaljze
framework in arriving at a conceptual model ofthe hunian's information Processing
and control behavior. The state-space techniques are ideally suited to the analysis
ofeomplex multi-variable systems. The generality of modern control theory admits
a highly flexible modelonc capable of a modular "growth" as more complex
facets of human behavior are considered and understood.

In this section we examine, albeit superficially without the benefit oFexampic
the potential for extending the conceptual framework of theoptimal control model
to study human control in an economic context.

4.1. Ek',nenis br Decision Making and Learning

It is reasonable to expect that a human's role in an economic system will
involve decision making and learning as well as control. Therefore, a model of
human behavior in an econometric context must have the ability to treat man's
decision making and control processes. The primary attribute of the optimal
control model for studying human decision making lies in the characteristics
associated with the Kalman filter-predictor submodels. The combination of these
elements provides the framework for modeling the information processing behavior
of the man, and consequently, his decision abilities. Several features of the informa-
tion processing submodel are discussed.

4.1.1. State estimate. The Output of the Kalman filter/predictor, (t) is the
model's best (linearized) estimate of the system state x(:), generated on the basis of
the perceived y(t). This "internal" estimate of system status is updated continu-
ously and provides a mechanism for studying decision1'detection phenomena that
are wholly dependent on the vehicle state. Examples of such problems are de-
cisions based on whether or not certain variables tic within desired limits at a
given time. Thus, deciding to land or to go-around during aircraft approach is
such a case.

A continuous time, monitoring and decision model using the generated slate
estimate (t) has been suggested by I.cvison [8]. His basic assumption was that
a human'sdecision involving x(1)is made on the basis o1(t)and itserrorcovariance
(or uncertainty) matrix. The model was partially validated by an experiment in
which subjects decided whether a signal was within given bounds on the basis of
observing signal-plusnoise

The modeling of a human's continuous-time state detection process is an
important application of the optimal control model. However, this model needs
considerable modification before it can be applied in an economic context, where

I 28



an decisions might be whether or not to raise taxes depending on whether certain
key indicators are above given Jimtts.4 Concepts of utility theory will prove

rise
necessary in the modeling endeavor in determining the "cost" for a wrong decision

In
vs. a correct decision. The familiar trade-off of false alarm vs. non-action will be
encountered when setting thresholds on the state detection process. Despite the

difficult modeling issues, it is reasonable to expect that the internal estitnate
(t) will be of paramount importance for decision and control in any human

econometric model that has a similarity to the optimal control model.
in a 4.1.2. Internal ,nodel. It is important to note that in the description of the

zed Kalman filter (15) and predictor (16) that comprise the information processer.

ing there is an explicit model of the system dynamics (1) and (2) via the parameter
ysis matrices A, B and C. Put another way, the filter includes an internal mode! of

its the environment. This concept is important and appealing. In broad terms, an

lex internal model characterizes the human's knowledge of the controlled vehicle

dynamics, a process arrived at and refined through past perceptions, training and

pie, experience. The use oF internal models in the description of human response is

dcl not new [9, 10]. Virtually all attempts to model human fault detection in manual
control have postulated an internai model. Indeed, the concept of expected vs.
unexpected response associated with detection implies some type of internal
model of the controlled element dynamics. Within the context of internal models,

one can view the phenomenon of human learning as the process by which man
improves his internal model of his environment.

In the optimal control model, the human's entire infot-niation processing and
an s control behavior is conditioned on the specific internal model. Generally, it has
mal been assumed that the internal model is the same as the system being controlled.
tics This assumption was reasonable as long as the system dynamics were simple,
ese linear and the human was well-trained. However, the equivalence of system and

vior internal models is not a necessary prerequisite in our modeling approach. What
ma- is necessary is that the internal model be a good (linearized)5 "approximation" to

the true system. Thus, in both the STOL landing and antiaircraft modeling efforts
the described in Section 3, the system dynamics were nonlinear yet internal models

is of were chosen that well-approximated the true dynamics. This approach is reason-
IflU able in situations where the system dynamics have a well-defined structure.

that En a more general, and potentially more complex case, where the system

de- being controller was nonlinear, high-order. stochastic, and not well-understood,

at a discovering the form of an internal model would not be an easy task. This problem

h is may arise in human modeling within an econometric system, where the system
model itself is not well-understood, not to mention the form of any internal

tate human model. However, the concept of an internal model is still a validindeed,

that a necessary--ingredient in modeling human behavior in an econometric system.

nce Future research efforts should concentrate on defining the process through which

in man develops his internal model from observed data, and the model's relationship

s of to the actual system. Control theoretic results on learning and self-organizing
systems will be of potential benefit in these endeavors.

s an 4 How much to raise taxes is the ensuing control problem.
eeds Although admitting simplicity, linearization is not necessary. Extended Kain an filtering or

here nonlinear filtering schemes could be used in the information processor.
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4. 1.3. intiouwunis pro's Consider the method by which the Kalman filter

15) updates the estimate p(t) = (t r) as a function of time. The driving term

(19) r(t) = '1,(t) - C(t - r) D(i - r)
represents the difference between the humans perceived ink)rmation y and
the Illier's internal estimate of '(t). Thus, r(t) is the dit1rence between actual and
expected observations, and is called the residual or innovations process. Basically,
rU) is the new information that is brought to the filter by y,,(t).

In the nominal case, when the internal model in the Kalman filter adequately
represents the controlled clement dynamics, the process r(t) is a zero-mean, white
Gaussian noise with covariance matrix \1(t). In other words, y and (C. -i- Dü)
are statistically equivalent and their difference --which is tantamount to the
human's observation or central processing noise has no information content
However, when the internal model and system dynamics are not commens(irjte
the human's estimate of system behavior would deviate in a mean sense from
observed dynamic behavior. These ddIerences will produce a non-zero mean,
correlated, innovations process. This fact provides the link between the state
estimation process and the construction ofan internal model. It may be postulated
that, as a result of training, a human refines his internal model to "whiten" the
innovations process. the mismatch between model and true system being reflected
in the observation noise variance. Thus, it is more than coincidental that manual
control experiments have shown lower observation noise levels for better trained
subjects. The concept of learning, as modeled via the innovations process, may
hold an approach to the difficult problem of selecting an appropriate internal
model for complex human control tasks.

4.2. Man-I ehicle us. Econonu'tric Madding ----Similarities and Diffi'rences

The preceding sections have described a validated model of the human
operator in a wide class of manual control tasks. Several attributes of this model
that may be cornerstones for its extension to study man as a controller of an
econometric system were discussed. Below, the similarities and differences between
the man-vehicle and economic modeling contexts are discussed in more detail.

4.2,1. Stsie,n dvnwnics. Modeling human response via the optimal control
approach assumes that the system dynamics are well defined, and that the state
evolves according to physical laws. This assumption is valid for vehicular systems
that obey the laws of nature, hut is dubious for econometric systems that may or
may not obey the laws of man. There are, nevertheless, similarities between the
physical man--machine systems, and the metaphysical man-socio-economic
systems. Both are complex, multi-input, multi-output and stochastic. Input
disturbances cause system behavior to deviate from desired norms. Measurements
on these systems are generally corrupted by noise. The eventual mathematical
analysis of such systems is well-suited to modern state space techniques.

The difficulty in modeling the econometric system being controlled looms as
a major stumbling block for manualcontrolanalysis Extending the optimal control
modeling approach requires a specification of man's internal model of the environ-
ment. If the internal model is based on the true system's evolution, the modeling
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of the latter is necessary. The alternative is to postulate an internal model that i
(at least partially) divorced front the true system, representing a simple relation
between cause and effect. This may degrade seriously the applicahilit) of any
subsequent manmodel.

The majority of efforts in manual control have been with continuous time
systems, where the man continuously processes information and provides control.
Certain economic systems are basically discrete in forni, with economic indicators
and control inputs supplied periodically. e.g. monthly or quarterly. The discrete
time evolution of these systems does not present a problem for analysis via the
modern control techniques. However, whether the mode of human behavior in
systems with long sample intervals and stretched time scales is similar to that in
continuous systems, is a matter for research.

4.2.2. Concept ot control. In both manvehicle and economic systems the
human's control task is to minimize unwanted deviations in system response
from a desired goal. These deviations result from external disturbances (noise and
bias), as well as from human errors and randomness. In the vehicle control case
the minimization of a quadratic error cost functional was used to generate a
"human" control. The utility of quadratic cost functionals has been demonstrated
by many researchers in econometric control. Thus, the use of this type of cost
functional to describe a human's economic control objectives is not at odds with
present thinking in this field. The most difficult aspect of this approach will be
in determining subjective weightings, especially when they differ from the relatively
straightforward objective weightings. The difficulty is often compounded by
having different control objectives being expressed by different individuals.

Ln the optimal control model, the use of a quadratic cost functional results
in a separable feedback control mode. First the human model generates a best
estimate of the system status that is independent of his eventual control desires.
Next, the estimated quantities are suitably combined into a control policy. Esti-
mation and control proceed continuously. This type of h .iman behavior seems
entirely reasonable for a man in an econometric environment. The state estimation
process is one of gathering facts, correlating information, and prediction or extra-
polation. The control input is then some function of man's best estimate. However.
unlike vehicle control, the time period for information processing is very long
relative to a human's central processing time. Thus a man model in such a context
would probably consist of long periods of information gathering and digesting.
followed by a control decision, followed by a wait-and-see period and more
information processing, etc.6

4.2.3. Human (imitations. It is unlikely that all of the human limitations
appropriate to vehicle control will find their counterparts in economic system
control. Certain limitations are similar, e.g. human nonlinear threshold phenomena
for small signals. However, other limitations may be more system-oriented than
human-oriented. For example, the time-delay in obtaining information will
probably dominate the various internal human processing delays. The neuro-
motor dynamics may not be pertinent in an explicit form: however, a subjective
limitation on the rate of control input may be appropriate in view of public

6 This type of human response is observed in controlling submarines and super tankers where
system time constants are very long, giving the human more time to "think."
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response. Observation flOiSC may not have the same interpretation as in a man
vehicle context : however, this "noise may he appropriate to i-cp esent the errors
in a human's internal model of the environment as discussed earlier.

Other inherent limitations of the man and the system may he important and
would have to he modeled. Examples include political or policy

cOIIstrtj1tts
However, the basic approach in human modeling would be to define and para-
nietrize the important human limitations, and then to determine suitable values
for the limitation parameters. Unfortunately, the "average" parameters that work
so well in man-vehicle control will probably have little relation to

CCOfomjccontrol. Thus, data analysis and parameter identification techniques will be
mandatory in the parameter selection task.

4.3. A'iwi--Lcoiio,neric Modeling-----Where to Not ?

The optimal control model for man--vehicle analysis has a flexible structure
that holds potential for its adaptation to model human control in economic
systems. The basic assumption, that the man behaves in an optimal manner
subject to his inherent (and imposed) constraints is a valid hypothesis for the
modeling work. Note that any such mode! eventually developed will be normative
i.e. we attempt to define what an experienced human should do. The fact that this
assumption has worked welt is evidence of man's adaptability and learning.

The extensions of the modeling techniques are nontrivial as noted. However
a representative problem or class of problems should be defined for a first analysis.
The specific problem to he selected for a man-system modeling effort should be
sufficiently well-defined. The system should have a mathematical representation
that requires a low number of state variables and is not overly complex suitable
descriptions of the input disturbances and data presented to the man are needed.
This will permit an internal model to be constructed in the overall man model.
The specific problem to be selected must also have sutlicient data available that
can be useful in the modeling effort. This data is mandatory for determining values
of parameters associated with human limitations, for validating the system model
and the subsequent man model, and for determining human-oriented control
goals. The type of data needed includes time histories of the information presented
to the man and the associated time histories of his control inputs.

It is quite likely that the type of data needed in developing the man-model
may not be readily available from a real-world, well-defined economic subtask.
In such a case, contrived and controlled laboratory experiments arc in order.
using experienced economists as subjects. If we can understand and model how
this class of people implement control decisions in simple tasks, then perhaps this
knowledge may have extension to more complex tasks. The ability to repeat
laboratory tasks is a powerful tool, for it allows us to study intersuhjcct differences,
the effects of different information, and provides us with a measure of variability
inherent in the human's decision processes. The successful modeling of complex
man-machine systems interactions followed the path from simple laboratory cases.

For example, the day-to.day adiusirnent of a commodit price is a more togical starring point.
than the task of managing a large firm.
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It appears likely that a similar approach will he successful in man socio-ecOnOflhic

modeling.

5. CociusioNS

An existing, validated optimal control model of human response in man-

vehicle control systems has been discussed. This model possesses a generalized

structure that provides a conceptual framework for modeling human cortrol in

an economic context. Extending this model to a man--econometric system first

requires an adequate description of the system being controlled. Necessary are

descriptions of the information base and control inputs available to the man and

his control objectives. The external irLputs that disturb the system must also he

modeled.
The successful development of a human model in such a control task depends

on characterizing the human's internal model of the environment and specifying

a suitable cost functional. Obtaining adequate data from which to determine

values for the human-oriented parameters. and for model validation is a needed

step in the development program. We are optimistic that human modeling tech-

niques, based on modern control theory, and proven by application, hold promise

for understanding man's role as a controller in dynamically evolving economic

system.
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