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EFFICIENT ESTIMATION OF NONLINEAR
SIMULTANEOUS EQUATIONS WITH ADDITIVE DISTURBANCES

BY DALE W. JORGENSON AND JEAN-JACQUES LAFFONT

This paper decelops a theory of CUAN estimation for systems of nonlinear simultanecus equations with
additive disturbances. We first derive the Cramer-Rac lower bound for the variance of a CUAN estimator.
The method of maximum likeiihood can be used to generate an estimator that attains this bound. We show
that minimum distance and instrumenial variables estimators cannot generally attain the Cramer-Rao
bound.

1. INTRODUCTION

The statistical theory of estimation for systems of linear simultaneous equations is
based on the construction of consistent, uniformly asymptotically nermal (CUAN)
estimators.’ Within this class it is natural to select estimators that are, in addition,
efficient; we refer to such estimators as best consistent uniformly asymptoticaily
normal (Best CUAN) estimators.? The purpose of this paper is to develop a theory
of CUAN estimation for systems of nonlinear simultaneous equations with additive
disturbances.?

The theory of CUAN estimation for systems of linear simultaneous equations
can be summarized as follows: estimators can be constructed that attain the
Cramer-Rao lower bound for the variance of 2 CUAN estimator.* The ordinary
least squares estimator for the reduced form is CUAN, but not generally Best
CUAN. Best CUAN estimators can be constructed by the method of maximum
likelihood, the minimum distance method, and the method of efficient instrumental
variables.’

Malinvaud has developed a theory of CUAN estimation for systems of
noniinear simultaneous equations with an explicit reduced form having additive
disturbances.® For this class of nonlinear systems the ordinary least squares
estimator for the reduced form is CUAN, but not generally Best CUAN ; Malinvaud
shows that Best CUAN estimators can be constructed by the method of maximum
likelihood and the minimum distance method. Hausman has shown that a Best
CUAN estimator can be constructed for a closely related class of models by the
method of efficient instrumenta! variables.”

Our first step in developing a theory of CUAN estimation for systems of
nonlinear simultaneous equations with additive disturbances is to derive the

! The statistical theory of CUAN estimation is discussed by Rao (1973), pp. 344-351.

2 Best CUAN estimators are discussed by Rao (1973), pp. 350-351.

3 This specification for simuitaneous equations models is considered by Eisenpress and Greenstadt
(1966}

“ A complete review of the theory of CUAN estimation for systems of linear simultaneous equations
models is presented by Malinvaud (1970), pp. 348-366, and Rethenberg (1374}

3 See Malinvaud (1970), pp. 675-678, for a discussion of maximum likelihood and minimum
distance estimators, and Brundy and Jorgenson (1971) for a discussion of efficient instrumental variables
estimators.

6 See Malinvaud (1970), pp. 348-366.

7 See Hausman (1974).
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Cramer-Rao lower bound to the variance of a CUAN estimator. The method of
maximum likelihood can be used to generate a Best CUAN estimator. As for
lincar systems, the burden associated with the conventional approach to compu-
tation of the maximum likelihood estimator, based on the Newton-Raphson
method or the method of scoring, is very substantial ®

We can distinguish two alternative lines of attack on the problem of reducing
the computational burden for Best CUAN estimation of systems of nonlincar
simultanecus equations. First, the computation of the maximum likelihood
estimator can be simplified. Rothenberg and Lecnders have shown that the first
step of the Newton-Raphson method is Best CUAN, provided that the initial
parameter value is a consistent estimator.” Although Rothenberg and Leenders
apply this result only to systems of linear simultaneous equations. the proposition
holds for nonlinear systems as well.

In this paper we concentrate on a second line of attack, namely, construction
of estimators by methods. such as minimum distance or instrumental variables,
that are easier to compute. Amemiya has proposed a minimum distance estimator
for a single equation in a system of nonlinear simultaneous equations.’ ® We extend
his method of estimation to systems of nonlinear simultaneous equations and
his proof that the resulting estimator is CUAN. However, we show by means
of an example that the minimum distance estimator is nct generally Best CUAN.

We also develop an instrumental variables estimator for a system of nonlinear
simultaneous equations, extending the efficient instrumental variables estimator
for linear systems developed by Brundy and Jorgenson.'' We show that the result-
ing estimator is CUAN and, in fact, asymptotically equivalent to our minimum
distance estimator. Again, the efficient instrumental variables estimator is not
Best CUAN.

We conclude that minimum distance and instrumental variables estimators
can be constructed that are CUAN, but that these estimators are not generally
Best CUAN. Further rescarch on Best CUAN estitnation for systems of nonlinear
simultaneous equations should be focused on simplifying the computation of the
maximum likelihood estimator.'?

2. THE MoDEL

We consider the following system of simultaneous equations:
(1 Vi = filzi, B) + uy,
.vPl:fP(zPl-ﬂ)“,““p, t = IT

or in vector form:

y=fz.p) +uy, t=1...T

® The Newton-Raphson method is described by Eisenpress and Greenstadt (1966).

¥ See Rothenberg and Leenders (1964).

1% See Amemiya (I974)._Minimum distance estimators for a single equation in a system of simui-
tancous equations are also discussed by Edgerton {1972). Kelejian (1972). and Zeliner. Huang and Chau
(1965).

! See Brundy and Jorgenson (1971. 1973).

2 o
i .Important progress along these lines is reported by Berndt. Hzll. Hall, and Hausman elsewherc
in this 1ssue,
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with
Ye={yy.. Ve =[N . T
=ty .... up) s fLY=A00) S

¥yes- -+ - Vp, are the endogenous variables: for each i = 1,..., P, z,, is a Q;-vector
of endogenous and (nonrandom) exogenous variables: ff is an R-Vector of unknown
paranieters: f, is a nonlinear function with continuous sccond derivatives (R, is
the number of elements of f§5 in f). v,.t = 1...., T are random vectors such that
Ew,=0,i=1,...,P.t=1,...,T Evu, =Q of full rank and Euu, =0if t # 1.

This form of the model can be obtained from a model with different parameters
fi; in each equation. If there are constraints on these parameters, they are solved
to obtain a minimal set of parameters ;. We assume.that the constraints can be
solved uniquely at least in a neighborhood of the true value 8°. We assume further
that the parameter f is identifiable.'?

The model is now rewritten differently to use the simplifying Kronecker
notation. Let ¥, = {y;,, ...vg] i= L. ., Pand Y=[Y,..... Y,]. Let Z be the
stacked vector of variables appecaring on the right of system (!). Let F(Z, ff} =
Uiz By [z B felzps- B Telzpr- Bpl)

Us={uy,,... lp, o lpy .o Upr)
Then (1) can be rewritten
2 Y=FZ M+ UwithEUU =Q® [;.
We choose a specific notation for tie set of exogenous variables (independent of
U) which are K* in number.
[x)y Xp1 oo Xgo

Xt =

L'\'IT Xop o .\‘K‘T_.

X will be in this Section a matrix of K variablesconstructed from X* withmax; R; <
K < K*. We refer to assumptions specified in Section 2 as 4,.

3. CrRAMER-RAG BouNnD
3.1. Introduction

The comparison of different full information methods'* to estimate nonlinear
econometric systemis with additive disturbances requires an explicit form of the
Cramer-Rao bound. In this Section. we derive the Cramer-Rao bound when the
matrix of variances and covariances of errors is unknown, completely known, or
known to be diagonal.

'3 Identifiability for systems of noniinear simultaneous equations is discussed by Fisher (1966).
pp. 127-167.

4 We restrict ourselves to cases without constraints across equations to allow comparisons with
the Rothenberg-Leenders (1964) results in the linear case. but there is no substantive difficulty extending
these derivations te more general cases. We use the notation of Eisenpress-Greenstadt (1966).
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For this Section we rewrite the model more symmetrically:

(3) SV sy ¥py Xqaeeny Xgo 0,) = 14, a=1,...,P

where:

Ix,}k = 1,..., K* are predetermined variables
{yo} p = 1,..., P are endogenous variables

{6,} is a R,-vector of parametersa = 1,..., P.

We assume that the Jacobian of the system is nevervanishing {it is clearly a
strong assumption) and we assume the multinormal distribution for the errors so
that we can derive the logarithm of the likelihood function.

3.2. Unrestricted ) Matrix
The logarithm of the likelihood function is:

PT T .
(4)  L*=——-log2n + s log(det Q") + 1 log|det B} — %): 527,

ipt
where

Ju = M0 Ve Xy Xk 0]

_ |
Bim = (57,,),

and B, is the matrix of such derivatives. We concentrate the likelihood:

LY T 1
5 — == . - - o =
( ) a0 ZQpl 2;.’:1 fp( 0
N ~ 1
(6) Qpi = Ql‘p = Tzﬁl'fpl'

Substituting (6) ir (4) we obtain the nonconstant part of the concentrated likelihood.
7 T .
) L= —Elog (det Q) + Y log|det B|.
4
We want to obtain :

- 1 d%logL
] - S = ] .
ot Gy O =106 05



which will be the inverse of the Cramer-Rao bound for the parameters §.'3

oL oL Ay, L 3B,
+

16 o L 2lip
® 20, " Lao, a0, t 7B,
) oL T..
17 e = — ()P
®) A, 2Q
oL .
— = pt
(io) aBlPt B!
oL T A X 0B,
T ip °tp Bpl _ipt
(n 20, - 2 %Q a6, * Z 70,
From (6)
- Gﬁ;p i (o o
(12) 5—1—?2: (éﬁ;'fm'*fn'aga :

with the following simplifications (since f;, depends only on 8, and not on 6; with
j# )

(15) %% 0 ifizaandj+#«
" e

with the following simpiifications:

(17) By _ _Ofa

20, ~ 26,3,

(18) LAy ifi #a

15 See Koopmans and Hood {1953).

16 We adopt the following convention. The differentiation of a numerical function with respect to
a column {row) vector of parameters is a column (row) vector.

'7 We use the following result. If 4 = {q;] is 2 nonsingular matrix with inverse A~ ! = [4"], then
dlog [det A|/da;; = o
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Then:
‘!2"

L= 1x P2 7(_”»_11
“9) ( - ZO (Z fa ‘:()) ZBI {*,()1(1-1,,,

: suatives- 18
We can now obtain the second derivatives:

(:ZL nQu A (1 (j (’Zj
- Qm ‘/;" Jat it at
20) 0,00, Z (Zf" ) éo, (-; 00, é0; iz 40,

+ z__a_z,f_”_ .[lB{u + ¥ B ajf” _
30,3y, 0, T =70 30,300,

We use the general formuia:

w ! M
(2]) (1 o '—ZM,;, '*1 hm /‘/l—
(" 1
using (13), (14), (15}
ek ({Q Y Hik Q5
GE e - _ ih "> Shm Cyma

— _ ZQIﬁCQﬂQOz = Zﬂuh hﬂgﬂz

i

i mzx ('ff afl
- 300 ( ZJM(,”)—Z (TZf’" _ﬂ_)
The first element of the right hand side of (20) is then:

. A B 1 6
o by oo

px
(24) ai = - LB 63”"" B
fﬂ’ ma
= Z aoﬂay B
The third element of the right hand side of (20) becomes
2 2
25 z Bpﬂ 8 g ¢ fﬂr

fot B 6() 0y, 0040y,
The second term of the right hand side of {20) becomes:

N af,, of, .
(26) ~Qfry 2 2B i
T 00, 00y

18 We do not use *‘prime indices™", 50 that the sign ' must always be interpreted as a transposition.
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or

- ¢ (7f &, .
_ 1x al at .1 - zl ; —
(27) Q 200 Z Z " S0 if =«
We compute now
i 1 L
T 30,00,

The first term of the right hand side of 1/T(20) is:

HitOma 1 afau 6fﬁr ihyBa (7f,, (3f,
oy o155 (1500 + pover 1) (20 2]

irt

We assume that:

i Of, P
(29) ?21"(770—, - H, (vector)
From (28) we obtain:
(30) Y QIQmH, H,, + Y Q" H, H;y
since the estimations C/ of Q¥ are consistent. In matrix notation :
Y QU'Q™MH, \H, ) -—— - - 2 QFQ™ H, \H,,p
+ ) Q*Q''[H, H,,] + Y Q*QF'H H,p
(31 C = ~ i
\\\ ZQiPQMPH.-pH
+ ) Q"QPPH Hp
L ih J
Let
i) (3_[
32 ] lim-— Y 2. 2
(32) T PmT Z "aow =P m - 20, a0,

i=1...,P; j=1...,P; a=1,...,P.
The second term of the right hand side of (20):

afl Pfi il .|
(33 plim . a0 Q- 1][5(7‘ 0 G, 0
3 plim=| . '® A + N
p T \\afP \\ 6.[? S iP
56:; O 3-07; t 0 ZQ Gip
QUF, ----Q'F,]  [YQ'G, 0 1
= \\\ + { >\\\ =C +C,
\QPPFPP O EQIPGJ 2 2
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The third term of the right hand side of (20):

9?2 i ]
iy . 97 ( r 01 )
BP! L B*! —— pep 21t
sy (o) EE e,
\ 2
. l \ mi afm
(34) C3 = Pllm 7, \\ : tm Bl aovpaym)
2 z
fP: pP afm
Z(ZB’ ae, 6}’ HZ ao,,av |
It
3 P
“ ! ipx=1,...,
J3, = plim = ZB, 696\’p for j, p, &
Z‘I! ‘I:p Z‘Ilp Pp
(35) C, = AN
? \ Z‘Ipp Pp—,
The fourth term of the right hand side of (21):
& 1
‘,v"zp: ' 66,60’,0)'p 0
(36) phm? \ 6[
\ pp__ Pt Pt
ZLlp O
(37) C4 —_ L4 \\
O \Z LPp
P
where
(38) L, = plim— }:B 63fﬂ forj=1 P; =1 P
e * 30,000y, FE Lot P b
. 1 9L
(39 plim — T 2000
(L H By ===~ DO H )]

+ ZQ"'Q“(H H}))

ih
-
-
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r IR WA
QG
Q“Fn_‘“ !lPFlr ‘.L: ll“‘\\ O A‘
+ S~ + -

- QPPFPP O Z QxPG”’

:g “""'ZJP Jl FZL!;’ 0
- 0 \.\\Z L'Pp
L P

\Z JP JP

= _‘Cl 4‘C‘z +-C12—C3"‘C4

For the special case of the reduced form considered by Malinvaud (1970)

O

08,
is nonrandom as well as

0

06,06,
If all the derivatives are bounded in the sample space forall i« = 1,... P
O
Zf"ae so that C, 5 0
1 oY,

[
Eﬁ'ﬁ@ﬁ@ -0 sothat C; 50,

Since there is no endogenous variable on the right hand side

aZf‘"-—O o = | P, p=1 P, = P that C, = 0
60,631,,_ =1, .,P; =1...,P;, p=1,..., sothat C, =

& =0 a=1 P; p=1 P that C, = 0
69,69;6yp_ =1...,P; p=1,..., sothat C, = 0.
Finally:

9 0 A
1 8L 1|40, . a0,
(40) plim e =Cy=plim— | QO '®1 N .

)P T 2996 TPRT 0 \‘\if'_’l[ ] 0 ~Ir

265 | 20, |

Malinvaud (1970) shows that the maximum likelihood estimator reaches this
Cramer-Rao bound. Similarly, the bound is attained by a minimum distance
estimator weighted by a matrix S which converge to Q. When the model is linear

in parameters
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C, is only a function of variables.
I L

- _(\] + Cz + C_‘
T 2060°

(41) plim —

3.3. Restricted Q Matrix

The logarithm of the likelihood is :

—~NT T
42y L= —— log (2m) + 3 log (det Q7") + Y log |det B} — y f,Q"’fp,

Apl

We first consider the case where Q is known so that we have only to differentiate
with respect to 6.

a i ) izg a al
(43) 0. Y LQF, = Z[Z e, + 29'7&];3% x=1.....P
: tLp i ,

ipt

%,
px at
(44) 70, Zlog |det B} = ZZB- o
o # f:
&L 1 of., o, a7, 5Bp
—_— = - =8 Bay St T pl -

) 00,00, 2 .Z(Q 9 30, 00, Z Z 0,0y,

Z Qzﬂ ajal afﬁl Z Z 2 anﬂ

' 60 aoﬂ t p 69 a 60;
Ifax=pf

QI! at X ‘" ka :’
z z B, 69 090y,

46) -2 _
4 doge,= 2%, a0 LZae oy,

in P
T2 L e 00,

Using (24) and (26) we obtain the matrix form :

L L =C c,-C C
—T(‘)BFG—;— 2+ 27 Ly T Ly

using our previous notation. Asymptotically, the gain represented by the knowledge
of  corresponds to —C,.
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Next, we consider the case where 2 is known to be diagonal. The nonconstant
part of the concentrated likelihoed function is then:

<P
L =Y logldet B — % ¥ log,,

x=1
s,
- T,Zfﬂfu

C, and C, wil! remain as in the general case. We have to compute

—logQ, =¢ Hf#*a

s Ofa o
ao aa' (Zﬁf,% zj"“o ao)

Erree

S s, 0% |
T (Z;b‘ v, Zf“'ae ae’
- 4(2“ vTS)'M( 2];,) ( mer a[‘.ﬂ)

ECE WA SES W 0

Ct=plim| T TTTEmee—
Py 1 afp A 1 af}’lr
1 Bl i mp ¢ P
O TfPtao”%:Q Tfnuaall
o, [_%
ot o phm—]- 0, \ 0 QL0 o1 ao'l\\ 0
2 T 0 \\éf_’: O \QPP [O \\\gf.
06, 065
11 !
R 0
3y = plimi N
O PPZf ofPl
#5056,
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So that using our notation we obtain:

02 anllH“ZQm\lﬁ;}\ O

* - T .
(46%) plim = 7 a0 = 0 20 H,, § O H,,
. .

+—.Q“F“\_ . O .\ [-Q“G“\\\\ 0
P P

0 QPPrP l_ 0 QPPGP
DTS W

P

" P P
Z JPpJPp
P

3.4. Conclusion

The general form of the Cramer-Rao bound can be decomposed in five parts:
-C,+C,+C,-Cy—-C,

where C, would be the Cramer-Rao bound if there were no endogenous variables
on the right, C,, C}, C, represent the modification due to the existence of endog-
enous variables on the right when Q is known, and — C, represents the additional
change due to the necessity of estimating Q.

It is not difficult to specialize the results to the linear case considered by
Rothenberg and Leenders. When there is no constraint on £, it is possible in the
linear case to obtain the Cramer-Rao bound from the bound if there were no
endogenous variables on the right, by simply replacing the “‘endogenous variables”
by the systematic part of the reduced form associated with them. In the nonlinear
case, the derivation is much more complicated.

4. MINIMuM DISTANCE

' We next consider a family of minimum distance estimators of the parameter
in the system of nonlinear equations (2). We obtain the minimum distance esti-
mator by minimizing

J(B) = (Y — F(Z,piyS[Y — F(Z,B)]
where
=(I®XNA® X'X]"'U ® X))
626



with X defined above, Q a consistent estimator of order (T ~ ¥/2) of Q.

Al. The parameter space is compact and the matrix X'X is of full rank with
probability one.

Proposition i. Under A,, 4;, 2 minimum distance estimator exists.

A2 u,t=1,..., Tare identical independently distributed random vectors.
Al lim lX’X exists and is equal to the nonsingular matrix M.
T—w
H,
1, af . . Ll df
. X _—==H ] . X == =
Ad. plim T~ 35 ;uniformly in §. Then phmTX i H of rank
LHe
R uniformly in B, with the notation:
[ of; of, ]
—a_BT(Z“7ﬁ)s ] .a—é‘r(zi'l‘vﬁ)
ay_a_ |
pj  p
q 9
aﬂﬂ I!’ﬁ)’ sty ag‘;((zﬂ’B)

Proposition 2. Under A0, A2to A4 a minimum distance estimator is consistent.
Proof.

CA
ap’
@) FZP-FZp)=| " |(B-B  withp between f§ and p°.

6fp
v p

Note that F(Z, ) = Y — U. Multiplying each member of (47) by
(ﬁ@Xﬂ-mr®X)

gives:
N XX\ [I®X QR XX\"'"?I®X
Y e T M
o,
5 of
_[aexXx\""le X)) - o
_(._T__) {T) B- )
e
9p']
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!

TX'U ,
5z e X :

From A3, plim »\[\ = M and ‘ 07 )l = which goes to zero

Fu

[
XU

in probability when T — x, by Chebychev’s theorem (A2--A3). Let

Q®XX "21®X . .

Let

\’ IR X
5 (S e

By definition of . Jiff) < J(f°). Then, 0 < oyx, < ay,. Since a; 5 0 oja, 50,
therefore oo, 5 0 and 2, 5 0.
The left hand side of (48) converges to C in probability when T — 0. Also

EAREEA
o T" ap
] . .
] 1M1= .
71 ® X1] :
(f” lx'_ai"
Lopd  LT” op

which by Ad converges to the full rank matrix H when T - co. Consequently, we
see on (48) that § 5 £ QE.D.

12f
AS li —X —t Gl i il | = j =
p;m,r ol =G wuniformlyinf, i=1,...,P j=1..., R
XU ,
A6 ’"‘7‘7;13’ AT0,Q @ M)
v
XU,
LV T]

Proposition 3. Under A0 to A6. /T(f — 8% 2 +(0,(H(Q ® M)~ 'H)" 1]
Proof.

i, (7J a2
A A ’B(/? )
with 8 between f8° and j3. Then:
= ! I aJ'
(49 Tho = = | = || @ 0
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JP) =Y - FZ, Py @ X1[Q '@ (X'X) "I @ XI[Y — F(Z. )

Fﬁ{'l“
B
(50) %‘[T’” _ 22t g e X0t e X @ XY — F(Z )
oy
Lop ]
Fof [of,
5/{ ﬁ)ﬁ @
Eypy | A o A
5W_ HXIQ'2X'X) "I®X] ) =D
fp fp ap
L ép ] L cp ]
with
[
opic
a, =Y -FZMIS X' X X) I ®X]| -
&fp
[opiaf:

To obtain the asymptotic distribution of § we will first derive the asymptotic
distribution of the pseudoestimator B obtained by replacing Q by Q. [J - J]. By
assumptionQ = Q + A, with A, ~ (T~ "% so

a

Q=0 QAR+ .. =Q - A, withA, ~ 0T
or
Qi=QY -5

For B, a; becomes:

with 3, ~ (T Y2) i=1....P. j=1,... P

ij

! °_f]
I% . X\~ T" epioy
51) l[l@X][Q_l@)(X'X) ] péj T

T T i » &, |
T opiep
As already shown, the first member of (51) converges in probability to zero as

T — o, the second member to the matrix @~ ' ® M~ ! by A3, and the third mem-
ber to the matrix

K
- | sothat (49) & 0as T .
o

J

629



Now,

i 1 l-/ —1 6[1H
—_— — X' ==
T & T" of
1 A - [ X’X]“‘ :
- plim — ———— = plim . Q@ —
2phmT6/}6[)” B =y _ T .
1 o 1 ifp
Y _x e
T LT a5

J which lies between  and 8° converges to p° when T — =0 because of the consis-
tency of §. Then:'®

AT o2
im— ——if = plim — ————
phm 535 |7~ B T 3pap | 5,
But:
L1 o »
DimL 220 m@e M) 4.
FDlim 7 o, = @O M
From (50}
r Apr 7 r 7
Loy L xu,
T op JT
i o oxx1
LA 0® }
2\/7‘ op . T
1y vy
—Zry Y
LT éf " va”f P_

Using A2, A3, A6, we can derive:

Var plim 1 1o
. ¢
Cl%| T2 /T o8

Finally from (49) Var plim \/’_I‘([f —~ % = (H(Q ® M)~ 'H)™} so that from A6
JTB = Bo) 3 4 0.(H(Q x M) 'H)™']

Let us now consider f§:

/30] —HEQ®M) .

-

. ' ~ i
a -6—f—'X(X’X)" XU, ......... QIPL’X(X'X)“X’UP

& o 2 op -l o

B \\\\\“\QPPaf;’X(X’X)“X’L’
] 6/3 ! PJ
r~ , a , ~prr
ot -—f—’X(X'X)“X’U, — t‘jll%,\’(X’X)“X'Ul + .

5 op S~ op
- ar \\\\ 6'fl
Qe JP VAN 5. 2 F 'yy Ly’

] aB,\'(,\',\') X'Up— pp 6/}X(XX) XUy

! Amemiya (1972), p. 10, Lemma 4: let f,{e, §) be a measurable function on a measurable space Q
and for each w in £ a continuous function for & in a compact set H. If fi{w. 0) converges to f(0) ae.
eniformly fer all @ in H and if 0, {w) converges to 0, a.e., then fr{w, 8:{w)) converges 1o f(0,) a.¢.
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Let us consider an element «;.

oy,
apiofy
a;=UQ '@ XX'X)'X]| -
*p
| Ip'ap ]
KEN [ & 7
oPiop! b]zmp*
- . i
= [Z Muxxexy x|l | S OYUX (X X)X - J
k=1 k=1 B
e e
Lepiap | LepiapR ]

The matrix X(X'X)™ ' X' 0%,/0870p" is the projection of 3°f,/¢f'0f' on X. so that
it is independent of w. Then U X(X'X) 'X'(@*f,/épief) ~ O(T'?). A current
clement of 82J/262f is then of the form

(Q“—é")afﬂ‘X(X X)X .a; Q0T — 8- ((T"?)

or:

ij af! H f) 1/2 1
. 23 XOX) XS+ OT 1+ 0T )

The matrix 2J/0f0f can then be rewritten symbolically :

- . g o of;
T yw = |0l Zixx !
Al + O ) with A 2 XXy 'x- 71{"
Then:
[AU + 0T~ V)] ' = A" =T VA ' = A7 — (T 32,
_%_
ép
oJ 0 ) 6) ryy— 1y - 172
aﬂ_B+0(T)w1thB_—2 Qe XXXy X - U B~OTYYH
&
Léfy
so that

o~ B=14"" =0T *)][B - &T°)]
= A 'B-OT Y= OT Y- (T ).
Ry Cramer's theorem {1971, p. 254) [f 4 B
B—Bo=B—po+0T")
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Since ./ /TR — B,) is normal, the asymptotic distribution of TV - /)’0) 1§ the
sameas that of \/ T(p — fiy)because the difference of these two quantities / TO(T !

has zero probability limit.  Q.F.D.

5. INSTRUMENTAL VARIABLES
To generate a family of instrumental variables estimators of the parameter f8
in the system of nonlinear equations (2), we linearize the system around the true
value, say i’

Zys /}0)“ Z /l;l ~*/)) )+”lr

1:l .
- fl’("l’l /)) )“ 3 ,P;r (/))Pj /iP; + Up, t=1..... T
with [, = &féf; s B7):
In general f; which depends on endogenous variables is correlated with

errors. Consider the estimation of (52) by the instrumental variables method.*®
We denote the set of instrumental variables

where each submatrix W}; has R; columns. (52) can be rewritten ¥ = F(ff — fi%)
with

(flll flR.l

Jar .. flRﬂ' ofy
F= - = By /}" 0
O ‘ﬁ’: T ,fPRPl 0 \ \;;’; /30

fl’lT s f!‘Rpl i

The instrumental variables estimator is then
B~B =(WFy '"W(Y-Y,)=(WF) ‘WU

so that :

Var \/?(ﬂ — Bo) = plim

1 \'W
?W‘F) -'Z(Q@l)w(--

\-_—/

If we choose :

W=XQ®XX)"'YFwithX = I®X

204 . o H 0 . : .
It is only a pseudomodel (since f° is not krown). for which we construct a pseudoesiimator.
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we find

- - | - - =
plim %(F’X’(Q ®XX)'YFR! ,}_F'X’(Q XX NI VX)) 'YF

[
\

-1

FXQ®X'X)'X'F

i~

since

YQahX=(02XMN0eN®X) =0 X'X
plim lT(F'(l RINOQOX'X)H® X))

It then appears that the mimimum distance estimator is asymptotically equivalent
te the pseudoestimator with a specific choice of instrumental variables.

If now we can find the best sct of instrumental variables W*, the best choice
of X will be X* such that:

(53) W*=X*Q® X*X*) 'X*F

at least asymptotically so that F and Q cin be repiaced by consistent estimators.
The search for a best set of instrumental variables will reveal the nature of the
difficulty.

In the linear case an efficient set of instrumental variables is :

W}j = Q""Wj

where Q% is a typical element of Q! (with { being 1 consistent estimator of Q) and
W, is a consistent estimator of the systematic part of variables in the j-th equation
independent of the errors U. So, by analogy, we can attempt to constriict consis-
tent estimators of the systematic part of derivatives éf,/¢f5;(z;,. f) which are not
correfated with the U. It is then clear that we want X to be variables independent
of U but nevertheless as closed as possible to df;/0fg,, i = 1, .... P. Since there is
no constraint on the number of X. as many powers of X as possible seem ideal.
However, after some n the powers become probably useiess. the n depending on
the degree of nonlinearity of the derivatives. Moreover, this method leads to a
huge matrix X" X which we have to invert, and leads to X which are collinear. Our
suggestion is then the following one:

1. Find a consistent estimator of § using a NL2SLS estimator for example
with a minimum sat cf.¥ (Max, By taken as a subset (eventually) of exog-
enous variables.

2. Simulate the model to obtain values of endogenous variables.

3. Use the results of | and 2 to approximate the derivatives of f;,i = 1,..., P.

Malinvaud (1970b) restricts himself to the case where a reduced form is

available and shows that a minimum distance estimator with S = Q"' or a
consistent estimator ol Q gives the best minimum distance estimator. Mcreover,
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if normality is assumed, it is asymptotically efficient. In his case the
o,
ap

are not =orrelated with the U, so that if a consistent estimator f3; of B2 is available,
it is not necessary to project them to eliminate the dependence on U.
They are the best possible auxiliary variables since they obviously maximize

asymptotically

zis BY)

4 of.
tr—% -X(X'X)"X'-;f—',l
oB; 80 Cﬁimu
But:
. of; 1o O o
= X(XXY'X | ==
[T)lthraﬁi Bo o Bilse 11 GBi |,

Malinvaud tells us that asymptotically it is not worth the trouble since X = [ does
as well.

6. EFFICIENCY
6.1. Introduction

We have developed an explicit form for the Cramer-Rao lower bound for the
variance of a CUAN estimator of the parameter § in the system of nonlinear
simultaneous equations (2). This bound is attained by the full information maxi-
mum likelihood estimator. We have shown that the minimum distance and efficient
instrumental variables estimators are asymptotically equivalent. We next consider
the relative efficiency of the minimum distance estimator for a system of nonlinear
simultaneous equations and for a single equation in such a system.

6.2. Minimum Distance Versus Maximum Likelihood

We show with an example that the minimum distance estimator of Section 4
does not generally attain the Cramer-Rao bound. It is sufficient to prove that one
element in the inverse of the matrix of variances and covariances of the minimum
distance estimator is different from the corresponding element in the inverse of
the corresponding matrix for the Cramer-Rao bound. We consider the system of
nonlinear simultaneous equations:

Y1 +“1Y%+ﬁ1x1 = U, U,
u=
V2 + Faxy = u, u,
Q, 0
Ev'u = withQ,,Q,, = |

0 Q] (Therefore @' = Q,,and Q22 = Q, )
Element (I, 1) in the inverse of the Cramer-Rao bound:
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a) From (46*) we have: 2Q'"-Q''H | H|, + 2Q'"'Q*'H | H;,

: )
0_]“ Lo .};1 0
= lim 3 —Ilm— uy, =
i)

Then:

Ci(,h)=0
b) From {46*) we have: Q''F|,

Oy G g [V | le e
m Lo i - m??[/ R S

- hm ZuZI 42“3!/32-\721 + 62“%,[%)(%, - 42: uZxﬁ;x;l + Zﬂ‘;x;
t t H t
=0} + 6B3Z3] + B3E3,
with
1 ] ]
o} =lim—-Y u} 4, =lim=Y x?, 222 = lim =Y x3 3
2 TZ 2t 22 T; 21 2 T; 21M2,
Cy(1. 1) = Q"' [a} + 683233 + B313,]

Clearly C, =CQand C, = 0.
¢) From (46*) we have: J}, - J}, + Ji,-J1,

Here:
[3“, Blz,] [I 20, ¥, ]_[B“ B”:l -2, ‘2,]
B,, Byl L0 | [lB? B?
P! H
t .

1 &, 2y
Jz - - 21 1 2t — 0
= bm ) B gy, ; [ ]

Then: Cy(1, 1) = 0.
Finally, we obtain the element (I, 1) of the inverse of the Cramer-Rao matrix :

Qo5 + 6p2Z22 + pize)

1 &%,
JY =lim Y B} A o
o= M) B e,

Element (1.1) of the inverse of the asymptotic matrix of variances and covariances
of the minimum distance estimator is:

I Gxy XX [ 2
2 X
i Q [ :l[ o 2][ NpXy NX2 -"IZJDZ !

| 1
. H 2 .. — 1 o2
. —hm—,l;sz,x“ 0,, —-hm?l‘uz,.\,,
t

t

Let
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1
bay = dim = Y xdx,  O,, =lim: Vu,,\,,
L,,; = lim TZ\”\’
The element (1. 1) 1s then:
s Tl .2 O TYP IR D % PP W) NS NP NEY
LX) — X, l
+ 2630, 25,2 5, + 00X 2y — 0521085, - O,2,2,,))
+ 03,%,, + 03,%,, -20,,0,,%,]

which differs from the corresponding element of the Cramer-Rao bound.

6.3. Limited Information YVersus Full Information

We can also consider the relative asymptotic efficienicy of the minimum dis-
tance estimater for a system of nonlinear simultaneous equations proposed in
Section 4 with the corresponding estimator for a single equation developed by
Amemiya (1974). We consider only the case without restrictions across equations.
A minimum distance estimator is obtained for each equation i = ..., P by
minimizing

D = Sz B XXOX) T X vy = iz, B

for a given choice of X. To each choice of X corresponds also a minimum distance
estimator as defined in Section 4. We will show that the corresponding estimator
for a system of nonlinear simultaneous cquations is always asymptotically better
(or as good) as the estimator for a single equation,

The asymptotic matrix of variances and covariances of the single equation
estimator, given by Amemiya (1974). is

[Q,‘,’H’,M"H,‘ 0 ]*

L 0 Q;pHWM ™ 'H,

[ 1l S
sn« !”X(/Y/\) \(/"

=plim T

-1
0 1
T IR A
0 a5 et iyl A

Bolp, e ]
The asymptotic matrix of variances and covariances of the estimator for a system
of equations, given above, is:
[Q“H',M“H, QZ2H\M"'H, -1
(HQOM) 'H)Y ' = 1Q* " H,M~'H, QH,M"'H,
U QMHLMTH,
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-1

i A
Qi X(X'X)"'x ,’f»r‘,l o Q“’ff»“ X(X’ ,x)"xr‘-!lf
- piin] T (l;l Bo /;1 /j-n (;l;l Bo (lfl’ HBo
7 of, | ol 3
Q“;f—‘"»l XxX'xy SN Q”—L;l—r’fl' X(X'_X)-'X'f-’{l
Belpy Bl Bply, "/‘le.

Itis then clear thatif we replace 0f;/¢fff, by the familiar Z, (the set of variables
on the right hand side of the j-th structural equation), thcjornml analogy with the
classical comparison of 3SLS and 2SLS is complete. Note that here X is not neces-
sarily the set of all exogenous variables. Therefore, the usual proof for linear systems
imphes our result.

We can also deduce that the two estimators coincide when Q is diagonal and
when

lim — ] (ﬁfil
DT i,

1s invertible fori =1, ..., P. The invertibility condition means in particular that
the matrix is square. ie.. that in each equation there are as many independent
variables X as unknowns. We have seen that A4 requires
Rank plim — i—L
T |y
If the matrix X is restricted to exogenous variables. the condition we find is
similar to the just identification in the linear case. However, in the nonlinear
case we know that it is not a necessary condition of identification (Fisher, 1966).2*
Since we do not have to restrict ourselves to exogenous variables and can use
powers of the X or fitted values, the condition

X

YZR.

1s not really a constraint so long as the mode! 1s truly nonlinear. The condition

iy
plim - =%
T cBiiyp,
impaoses a limit on the number of elements of X to use so that the two estimators
are equivalent.

We derive directly the result for the two-equations cise

X =R

yio= Al By oy
¥y = folzy. f3) + u,.
The single-equation estimator is obtained by minimizing
(v — flzi fY X (X' X)™ ! X0y — fhz By
2! This condition has been obtained also in Edgerton {1972). as a necessary condition for the
workability of 2SLS methcds suggested by Goldfeld and Quandt (1968). Note that it is not really a

constraint for the method since as many powers of the X as necessary can be introduced to satisfy it.
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and the asymptotic matrix of variances and covariances is

-1
Q,.,-[phm~—-l X(X'xy tx i ]

ﬂ[ |ﬂo (l;
X(X X)X ‘/" ]

B ige

We are led to compare

I
K =Q,, [p]lm 7 3.,

and the upper left corner of the inverse of

1

— =1 x
. Taﬂllﬂo O Q le.l X } !
plim ® ==
T 0 A_f_ X Q1 Qi T |
T ﬁ Po
rl Ufl
Xl O ]
A J
0 5ﬁ2
or
of’ , af &, ' of.
Q“ Voxxx ! Q22 x(x'x)! 2
plim aﬂ] | a a[i aﬂl ﬂo ( : Xaﬂiuﬂo
T-a Qf' , f af Of
092 yixx '\ 0222 yxxyxdz
Boly, X X 3, A R
The upper left corner we look for is then:
af"] oo O of’ a
K, = ¢plim = {Q“ X(X'X)'x 2L 2t -
{ T 0B, |ﬂ ) OB’ lg, 0/31.ﬁnX(XM Xﬁﬁzlﬂo
o ofs
Q22212 x(x'x) 'x -2
[ o, TX X)Xl ]
) of -1
QM =2 x(x'x)! t
" [552 X0 X?ﬂn ]H '
- L1 éf f o
K;' = plim { L XXX ' g[i{ -_—n
Q' g, )t ﬁﬂl + 2 X(X'X)" Xﬁﬁ,!ﬁu
o of. of"
- = XxXx)y'xZ (_2 . sz
A A A N (N R T A N
afz i/
X(X'X)"! !
A R T ]}
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because:

Q12 _ Q,,0,, _ 01, iy
Q*? 001,92, — Q1,Q,,) Q1,0 - 9,,Q1,
and:
Qi -l Q,, 1 Q1) 0

Q0,0 -0, Q, 949,-Q.9,

s e
A, A |- =

2] is a positive definite matrix:sois K,;sois K| - and
3 Aa

We inverted a matrix

h . I_Al A
where
L

K, =B+0C)"! =0,

B is definite positive and C is semidefinite positive, B! — (B + 6C)"! is semi-
definite positive. If C is definite positive and 0 > 0, the minimum distance esti-
mator is strictly better than the corresponding single-equation estimator.

If Q is diagonal the minimum distance estimator coincides with the single-
equation estimator. It is also true if C = 0.

" I afy v 2
C=2 xxx)'x 2y 24 xxyix 2k
% |, Brlp OBl Bl
ofs v 2 )—'
X X(X'X)y 'X == .
(aﬁz Bo ( aﬁz Bo
o 5 —
x 22 x(x'x)'x 2
B2 g B4

If X'(8f,/0B,)l, is invertible—i.e., square and nonsingular—then C = 0. There are
as many exogenous variables as unknowns in the second equation; this yields
just identification in the linear case.

6.4. Conclusion

We conclude that except for the case of linearity in the variables, the minimum
distance and efficient instrumental variables estimators are CUAN but not
Best CUAN. On the other hand these estimators appear to be an interesting step
in the estimation of nonlinear systems with constraints across equations, since
they provide consistent estimators that incorporate all of the constraints. A
consistent estimator can be used to initialize a one-step linearized maximum
likelihood estimator. This estimator is asymptotically equivalent to the maximum
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likelihood estimator, just as in the case of systems of lincar simultancous equations
considered by Rothenberg and Leenders.

Harvard University
and University of Montreal
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