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Annals of E(iw,amfr and Social Measurement 4/3, 975

QUALITATIVE RESPONSE MODELS

BY TAKESHI AMEMIYA*

This article gives a systematic discussion of various qualitative response models, with a special emphasis
on multi.response and multirariate models. While some new models (notably, multi var iate polytomous
probi, models) are defined, old models are given new interpretations. The article discusses the relative
merits of tno basicall differing ways to formulate multivariate models: the one that specifies marinol
probabilities first and the one that specifies conditional probabilities first.

I. INTRODUCTION

In this paper I will consider various ways to define qualitative response models.
Qualitative response models may be defined generically as models that involve
one or more discrete random variables whose conditional probability distribution
given the values of the independent variables is specified up to a finite number of
unknown parameters. These models have been extensively discussed in the bio-
metric literature. See, for example, Cox [1970] or Finney [1971] for a survey and
references. However, since most of the papers have been concerned with theunivarjate dichotomous case, I believe a systematic account of polytomous and
multivariate models attempted here will serve a useful purpose.

I take for granted the merits of the normal or logistic transformation when
I extend univariate dichotomous models to either polytomous or multivariate
ones. Hence, all of the models discussed in this paper fall into the general category
of normal or logistic models. Ideally, one should specify a model on the basis of
realistic behavior assumptions about the respondent. The difficulty of this approach
is, however, that it often leads to an estimation problem which is computationallyintractable. In the univariate dichotomous case, probit and logit models have
proved useful in explaining real data in addition to being computationally manage-
able. Whether or not the same holds true for some of the polytomous and multi-
variate models defined in this paper remains to be seen.

While I define a number of new models, I also discuss models that have been
proposed by others giving them new interçretations and illuminating their
differences. The univariate dichotomous model i well-known, but I outline it at
the outset to provide a background for the subsequtt development. The problem
of estimation is mentioned only briefly, as I have disctssed it fully in the context
of the most general model (Amemiya [1974a and b]).

2. UNIVARIATE CASE

Models for a dichotomous and a trichotomous variable are prt,sented irturn The n&ysi of tctu; arab iiexssitares the adoption of one
This work was supported by National Science Foundation Grant GS-39906 at the Institutefor Mathematjj Studies in the Social Sciences, Stanford University. I am grateful to Fred Nold forimproving the style of the paper The earlier version of the paper, entitled A Noteon the RegressionAnalysis of Polychotomous Dependent Variables," was reported at the NSF-NBER Conference onDecision Rules and Uncertainty on March 23, 1974 at the University of California, Berkeley.
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of several types of models and raises many interesting problems. I wilt not discuss
a general polytomous model because all thc rcsults for a trichotonious variable
can be easily extended to the polytomous case and no new problems enierge.

A. Dichotomous Variable

The dichotomous random variable v,. t = 1. 2 T, takes the values 0 and I
with the probabilities determined by

(2.1) P(y, = I) = F(/3x)

where x is a vector of known constants and fi is a vector of unknown parameters.
The most commonly used forms of function F are

(2.2) Normal l(fl'x,)

where 1 is the standard normal distribution function and

(2.3) Logistic L(fl'x1)

where L(x) = [1 + exp ( x)] '. These two distributions have been successfully'
used in many empirical applications. For theoretical and empirical reasons for
using These functions and their relative merits, see Berkson [1951], Cox [1966],
and Finney [1971]. The logistic is a good approximation to the normal distribu-
tion, and the estimates of ji obtained by using the two distributions are often very
close except for a multiplicative factor. A full discussion of the properties of the
logistic distribution can be found in Johnson and K0t7 [1970].

The linear function F(fi'x) = fl'x has also been frequently used, especially
in economic applications. Its major deficiency is that its range, unlike the normal
or logistic transformation, is not constrained to lie between 0 and 1. This and
other difficulties encountered when using the linear probability model are pointed
out by Goldberger [1964] and Nerlove and Press [1973]. In this paper I will
confine my attention to the normal and logistic models.

Example I. When the dosage x of an insecticide is given to the t-th insect, it
dies (v1 = 1) if its tolerance u, is less than x,. If one assumes that u, is distributed
as normal with mean p and variance a2, one has P(y1 = I) = b[(x --
which is model (2.2). If one assumes that u, is distributed as logistic with mean p
and variance a2, one has P(y, = I) = L[ir(x - p)/a.J], which is model (2.3).
Example 2. A coal miner develops breathlessness (y, = I) when his tolerance u
is less than an unknown constant y. If one assumes that u is distributed as normal
or logistic with mean + 1x1 and variance a2 where x, is the coal miner's
age, then (2.2;, or 2.3).

Example 3. A consumer buys a car (y = I) when his net utility a, of buying a car
exceeds 0. As one assumes that u, is distributed as normal or logistic with mean+ .x, and variance a, where x, is the consumer's income, model (2.2) or(2.3) results.
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B. Trkhotopnous Variable

The following notation is henceforth used:

P= Ply, = ft i = ft 1.2
Ordered Response

The ordered normal model is defined as

P2 =

(2.4) P2 + p1 D(fl'x +

P0 = I - t(fJx ±
where is a positive constant. Note that the subscript has been suppressed from x
in the above.

The ordered logistic model is similarly defined as

P2 = L(fl'x)

(2.5) P2 + P1 = L(fIx + )

P0 = L(--fl'x -
Example 4. (Gurland. Lee, and Dahm Ff960]). When the dosage x1 of an insecticide
is given to the t-th insect, it dies (r = 2) if its tolerance u, < x, and it becomes
moribund (y1 = 1) if u, - y < x. The assumption that u, is distributed as normal
with mean p and variance o.2 leads to model (2.4) and the assumption that u, is
distributed as logistic leads to model (2.5).

Other examples of univariate polytomous models with ordered response may
be found in Aitchison and Silvey [1957] and Ashford [1959].

2. Unordered Response

I will mention three types of models for this situation. One can obviously
think of other models.

First, assume that given any pair of responses the selection is made according
to model (2.3). Then we have

Probabilities P0. P1.
must have f33 = P1

P2 are uniquely determined from (2.6) and (2.7) so that one
P2. This leads to the unordered logistic model

P2 = D 'exp(/Jx)
(2.9) P1 = D' exp(/Tx)

where D = I + exp(fl'1x) + exp(flx). This model was suggested by Cox [1966]
and a similar model was applied to explaining the selection of highway routes in
California by McFadden [1968].

365
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The second model assumes that selection is made sequentially. That is, one
first determines wheiher y1 = 2 or 2, and then, given v 2, one determines
whether j' = 1 or 0. Using normal model (2.2) for each selection leads to the
following sequential unordered normal model

P2 = 1(fl',x)

(2.10) P1 = [1 -

P0 = [1 - I'(fix)][1 --

The sequential unordered logistic model can he similarly defined. An advantage
ofsequential models is that the likelihood function can be maximi;'ed by maximizing
the likelihood of the dichotomous case repeatedly.

Computational ease is a major consideration in defining the preceding two
models. However, one may specify a model solely on the basis of theoretical
consideration of the behavior of the respondent. For example, if the responses
are the outcome of the free choice of the respondent, it is natural to assume that
P(y, = i) = P(U1(x) > U/x),j i) where U, given a vector of exogenous variables
x, is the random utility associated with the i-tb choice. Such a model has been
proposed by Quandt [1968] and Aitchison and Bennett [1970]. The difficulty of
this approach is that if a realistic distribution of U. is assumed the estimation
problem becomes intractable, whereas if a convenient distribution is chosen for
U the model becomes as arbitrary as the preceding two models. In fact, McFadden
[1974] has shown that model (2.9) follows from the maximum utility model if
{U1} are assumed to be independent each following the double exponential
distribution.

C. Partition of a Probabilit%' Space

It is useful to associate the values taken by a polytomous variable with the
partition of a probability space. That is, one can define

(2.11) P(ç, = k) = P(Sk)

where U 5k may be taken as a subset of Euclidean space with P generated by a
set of random variables. All the models considered thus far may be interpreted
in this way.

One can characterize the ordered models simply as the case where the basic
probability space is the real line. If one uses an ordered model when the true model
is unordered, one could get into serious trouble, whereas the loss in using an
unordered model in the ordered situation is only in efficiency since consistent
estimates are still obtained.

.5. MULTIVARIATE CASE

There are two essentially different ways to specify multivariate models:
First specify marginal distributions and then specify joint distributions;

Specify conditional distributions.
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A. Marginal Distribution

Following the discussion of Section 2C, let tis assume that random variables
Vli and Y21 are distributed according to

(3]) P(v11 = k) = P(S), i = 1, 2.

Then one can define

(3.2) = Ii) = P(S ® S)
where the probability on the product space should be appropriately chosen.
Note that (3.1) does not uniquely determine the probability on the product space.
One can find a natural way to extend marginal probabilities to a joint probability
if each marginal probability is generated by a multivariate normal distribution,
but the extension is in general difficult with other distributions. In the univariate
case logistic and normal models give similar results and therefore logistic models
may be preferred because they require simpler computation. However, in the
multivariate case normal models have an advantage because the multivariate
normal distribution has nice properties, whereas there is no simple bivariate
logistic distribution with a correlation coefficient which can freely vary. (See
Gumbel [1961].)

l'he dichotomous normal model (2.2) or the ordered normal model (2.4) can
be easily extended to the multivariate case in the way indicated by (3.2).

Example 5. (Ashford and Sowden [1970].) Let v, he as defined in Example 2 with
u, normally distributed. Similarly assume that a coal miner develops whee?e
(z, = 1) when his tolerance v, against wheeze is less than a constant ô where V1 is
distributed normally with mean f + fl1x1 and a constant variance. Then one
can naturally specify the joint probabilities of y and z by assuming that u and t'
have a bivariate normal distribution with correlation p.

The sequential unordered normal model (2.10) may be extended to the
bivariate case as follows. For each i = 1.2, rewrite (2.10) as

P(y1 2) P(u <Ji2x)
(3.3) P(1 1) = P(u1 > fl2x,v < x)

= 0) = P(u1 > 132x, v1 > x)

where I have suppressed subscript t and assumed that for each 1, u, and v are
mutually independent and distributed as standard normal. One simple way to
extend this to the bivariate case is to assume Eu1,i2 = p and Et'1v2 p1 where

and p are parameters to be estimated.
The log likelihood function of this model is given by

(3.4) log L = ii',, lo F.. + (L'S. .4_ I T)i1?';_Y) -

(;'!2 + Y02) log {F(fJ22x) - F]

+(y1 ... + y01 + Yoo) log [1 - (fl12.) - I(fl,x) ± F]
+y1, log F1,
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+ ' log [1 - (l(fl' x) - (fl'2 1x) + F,,] + 112 log 4(fl'1 1x)

)o2 log [1 - D(J3' 1x)] + Y2 log D(fJ2 1x)

+v20 log [I -

where F = F(fl'12x, JJ'x.p), F being the bivariate standard normal distribution
function, F,. = F(fJ'1 1x, fl'2 1x, p,), and

Ykh = I if v1 k and )2 =

= 0 otherwise.

Thus we know that so far as fl12' P22 and p are concerned, the maximization of
log L above is identical with the maximum likelihood estimation of the bivarjate
dichotomous normal model (see Example 5). But for the estimation of $ and
fl21, the last four terms constitute the additional terms that contain information
and must be taken into account if fully efficient estimates are to be obtained.
In the minimum chi-square approach (Amemiya [1972]), the last four terms can
be taken into account by estimating P('1 1) with

t(Y12 + 'I'ji + Yio)

L (Y12 + Yi + Yio l'- + V f Yoo)

and a similar equation for P(y2 = I).

B. Conditional Distribution

In the univariate case there was no essential difference between Example 2
of a coal miner developing breathlessness and Example 3 ofa consumer buying
a car. However, a bivariate model of a consumer buying a car and a house cannot
be specified in the same way as Example 5 ofa coal miner developing breathlessness
and wheeze. The reason is that the probability of buying a car depends on whether
or not the consumer buys a house because the latter decision changes the level of
the independent variable "income," whereas breathlessness or wheeze does not
directly affect each other as neither affects the independent variable "age".
Therefore, in the former case it is better to specify conditional probabilities and
in the latter case marginal probabilities.

Example 6. Let v1 = 1 ii a consumer buys a car and Yz = 1 if he buys a house.
We assume that the conditional probabilities are given by
(3.5) P(v1 = 11v2) = L(fl'1x + fl12y2)
and

(3.6) P(y2 11v1) = L(fl'2x + /121y1)

"!'.erc ai 1zcar iuncjjons ot the consumer's income. Define

P13 = P(1 = , Y = i).
Then, from (3.5) we have

(3.7) P11 = exp(fl'1x + fl12)P01
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(3.8) P10 = cxp(fix)P00

and from (3.6) we have

(39) P11 = exp(fix + fi21)P10

(3.10) P0 = exp(fi' x)P00.

We can evaluate P11/P00 either from (3.7) and (3.10) or from (3.8) and (3.9).
Therefore, we must have fi fl21.t Thus, we can write the joint probability as

(3.11) P(y1, )'2) D ' exp(fl'xy1 + fJxt'2 + fit 2Y1Y2)

where

D = 1 + exp(Jfx) + exp(flx) + exp(fJ',x + /3'2x + fl2).

Example 6 can be generalized to the case of three dichotomous variables
as follows. We have

P(y1 = 1IY2Y3) = L(flx + ph2;'2 + fl3y3 + fl123Y2Y3)

(3.12) P(v2 = 11v1, v3) = L(fl'x + fl21;'1 + fl23v3 + fl2y1v3)

P(y3 ilyl, Y) = L(fl'3x + fl3 1y1 + P32Y2 + P3 12Y1Y2).

Putting each of y's equal toO in turn in the above and using the results of Example 6
we have

(3.13) P12 = I13fl3t, P23-fl32.

Define P = P(y1 = , Y2 = J, y3 = h). Then we have

(314)
P111 'P011 PlO! 'ltI h!O

"011 °000 - °tot oo0 - tto1000
where each of the six probability ratios can be written as an exponential function
using (3.12). But, because of (3.13), the three terms in (3.14) dilrer only in the fi
coefficient with three subscripts. Therefore (3.14) implies

(3.15) 13123 13213 = fi312.

Now, it is easy to show that the joint probability

(3.16) P(y1 'Y2,Y3) = D exp(fl'1xy1 + fl'2xv2 + fl'3xy3 + 131 2y1v2 + fl13.v1Y3

_LP , ,, L /2112i.'1/2.'iI,

where D is chosen so as to make the sum of probabilities to add up to I, implies
the conditional probability (3.12) with the constraints (3.13) and (3.15). But, since

'After this paper was written, I was made aware of a paper by Schmidt and Strauss [1974] which
notes this equality.
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the conditional probabi!ities determine at most one set of joint probabilities,2
(3.12) implies (3.16).

The generalization to the case ofi diehotomotts variables each taking valties 0
and 1 can be easily inferred from above. Thus, the conditional probabilities

(3.17) P(i' lftsi/)L(flx+ fc+ ijhj
+flJ.......j- 1.1+ I..JYI Y1- iY+

imply the joint probabilities

(3.18) P(v1 , ,...,v) = D 'exp [ ;x;.j + +

/1j' + + fit 2 ..J I J2 .....j.

where D is chosen so as to make the sum of the probabilities equal to I.
The further generalization to the case of J polytornous variables is simple as

one can describe an n-response variable by n - 1 dichotomous variables. Let
be the i-th polytomous variable taking values 1, 2.....n and define the dichoto-
mous variable y, j = 1, 2.......- 1, by y = I if v' = j and 0 otherwise. Then,
the result of the preceding paragraph holds by treating v as one of the v's as
long as we add the restriction that (3.17) and (3.18) hold only when only one of
y is equal to I for every i.

The joint probabilities of the form of (3.18) without the x variable were
considered by Goodman in a series of papers. For example, see Goodman [1970].
Mantel [1966] and Cox [ 1972] provide pedagogical discussions of the same subject.
Nerlove and Press [1973] were the first to consider the inclusion of the x variable
in the probabilities. These authors have shown that (3.18) implies (3.17) with the
constraint corresponding to (3.13) and (3.15). I have indicated in this paper that
(3.17) implies the constraint and hence (3.18). Equation (3.18) contains as many
fi parameters (counting flx as one) as the number of probabilities minus I. One
may wish to put certain of these parameters equal to 0 a priori to obtain more
efficient estimators of the remaining parameters.

In case (A) the maximization of each marginal probability will give consistent
estimators of the regression parameters which are computationally simpler than
the full maximum likelihood estimators. Similarly, in case (B) the maximization
of each conditional probability will give computationally simpler consistent
estimates. I will give a heuristic proof of this below.

2Let v I = I 2 1 h.. _i..__ -.. i,,.., t. Suppose meconditional probability P(yy1 ,..,v1_ , ..........y,) is given for every j and is positive. Then thereis at most one set of joint probabilities consistent with the given conditional probabilities. This canbe proved as follows: Let J = 2 and define P1, = P(y1 = 1, y2 = j). Then, given P1 i, conditionalprobabiliti at most uniquely determine P,, = But there is only one value of P. which satisfiesZP1 = 1. Next, suppose the proposition is true for J - I. Define the composite random variable 'which takes fl; N1 number of values with probabilities determined by the joint probabilities ofy1,y2,..., y,... Then, by the assumption, P(yly,) and P(l) are at most uniquely determined.Hence the desired result, using the result for J = 2.
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For simplicity consider the bivariate dichotomous case. Suppose one
maximizes

(3.19) L [y1 log P + (I - 1) log (1 - P)]

with respect to 0 where P depends on 0 and v2. Write L = L0 + L1 where

L0 = log P0 + (1 i'1)log(1 - P0)]

L1 = [y log P1 + (1 - v1)Iog(1 - P1)]

where subscripts 0 and 1 indicate whether Y2 is 0 or 1. Therefore,

(3.20) plimL = plimL0 + plimL

= P*(y2 = 0)[PlogP0 + (1 - P)log(1 - P0)]
1)[P' log P1 + (1 - Pfllog(1 - P1)}

where superscript * indicates that the probability is evaluated at the true value
0* of 0. Thus, clearly the above is maximized at 0 o, implying the consistency
of the estimator. Its asymptotic variance-covariance matrix is given by

I F 1 arapl)-'
(3.21)

t-
EE[J,1

- P) DO

where the expectation is taken with respect to v2.

4. CONCLUSIONS

In this paper I have attempted to give a systematic discussion of various
qualitative response models, with a special emphasis on multivariate models.
I have defined some new models (notably, multivariate polytomous probit models)
and give new interpretations on old models. I have contrasted two basically
differing ways to formulate multivariate models: the one that specifies marginal
probabilities first and the one that specifies conditional probabilities first. Depend-
ing upon the nature of the problem at hand, one model is more appropriate than
the other. An interesting topic of research seems to be to investigate how good
one model performs when the other is the true model. For each model one can
define a simplified maximum likelihood estimator maximizing a marginal prob-
ability or a conditional probability as the case may be. Thus, another interesting
problem is to compare the efficiency of the simDlified estimator with the full
maximum likelihood estimator in each model. One needs also to investigate the
computational feasibility of the maximum likelihood estimator in multivariate
probit models when the number of dependent variables exceeds 2. If muljivariate
logistic distributions with convenient properties cannot be found, one may have
to search for another useful approximation to the multivariate normal distribution.
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It is possible that the Nerlove and Press modeL setting aside its intrinsic merits,

is useful even when it is merely regarded as a substitute for the niultivariate probit

model.
Stanford Universjtt'
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