This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume 6, number 5

Volume Author/Editor: NBER
Volume Publisher:
Volume URL: http://www.nber.org/books/aesm77-5
Publication Date: December 1977

Chapter Title: RESTRICTIONS ON THE CONTROL VECTOR IN ECONOMIC OPTIMIZATION PROBLEMS
Chapter Author: Roger Craine
Chapter URL: http://www.nber.org/chapters/c10539
Chapter pages in book: (p. 19-25)

RESTRICTIONS ON THE CONTROI VICTOR IN !CONOMIC OPTIMIZAIION PROBIIMS

By Rogil: Craini*

Abstract

Introdectiox

Restrictions on the control vector are a natural part of the problem specification in many ceonomic applications. e.g.. in macroeconomics a solation which yields a smooth institment path is more politically acceptable than a policy with erratic changes. Restrictions should. and usually do. reduce the computations required to obtain a sohation. Mc Carthy and Palash have shown that restricting the control path to a polyomial function of time reduces the dimensionality of a control problem the same way that restricting distributed lag weights to a polynomial reduces the dimensionality in an estimation problem. This paper extends their work in two directions: (1) 1 show that restricting the control vector to a k degree polynomial in time is equivalent to restricting the $k+l^{\prime \prime}$ time difference of the control vector to zero this provides an casier and somewhat more intuitive way to impose exact polynomial restrictions: and (2) ! allow the restriction on the $k+1^{\text {si }}$ difference to be "stochastic" which only forces the solution to lie in a band about the resti iction.

Section I presents the two exact restriction procedures and shows that they are equivalent. Section II develops the stochastic restrictions and a measure of the marginat cost of the restriction. Section III reports some test results from applying the restrictions using the MPS model as a constraint.
*I wish to thark James Berry and Moman friar al the Buard of (ibsemors ol the Federal Rescre Systom lor their help in comptang these soluthons, and the reteres for thear comments

1. Equivalfere of Polinombal And Dhrerexer Restrictions on the Coniroh

The technique McCarthy and Palash suggest is to restrict the time path of the control, $w(l)$ to the h degree polynomial.

$$
\begin{equation*}
u(t)=\sum_{t-0}^{\leq} a, t^{\prime} . \quad t=0 \ldots r \tag{1}
\end{equation*}
$$

where t is the $t^{\text {th }}$ time period in the control horizon and the a, are the parameters of the polynomial. When the degree of the polynomial. k. is less than the length of the control horizon T. only $k+1$ parameters (the a_{j}) are needed to determine the $T+1$ controls. In essence the controls are the a_{j} and the u(t) are simply another endogenoms variable in the model. As a result the dimensions in the control problem are reduced from $T+1$ to $k+1$ or by $T-k$.

An alternative way to impose the same restriction is to force the $k+1^{\text {st }}$ difference of the control to be zero. For example. the $k+1^{\text {st }}$ dif. ference of the control is:

$$
\begin{equation*}
\Delta^{k+1} u(t)=\sum_{j=0}^{k+1}\binom{k+1}{j}(-1)^{\prime} u(t-j) \tag{2}
\end{equation*}
$$

Substituting the $k^{\text {th }}$ degree polynomial for $u(t-j)$ gives:

$$
\begin{equation*}
J^{k+1} u(t)=\sum_{j=0}^{k+1}\binom{k+1}{j}(-1)^{\prime}\left[\sum_{t=0}^{k} a_{i}(t-j)^{t}\right]=0 \tag{3}
\end{equation*}
$$

That is, restricting the $k+1^{\text {st }}$ time-difference of the control path to zero is equivalent to constraining the control path to lie on a k degree polynomial function of time. Setting equation (2) equal to zero and rearrang. ing gives the entire control path as a function of the $k+1$ initial conditions.

$$
u(t)=\left\{\begin{align*}
-\sum_{j=1}^{k+1}\binom{k+1}{j}(-1)^{\prime} u(t-j): & t=k+1 \ldots . . T \tag{4}\\
u^{0}(t) & t=0 \ldots k
\end{align*}\right.
$$

The control problem is again reduced to $k+1$ dimensions. except using (4) the parameters which must be found are the first $k+1$ values of the control, $u^{0}(t)$.

The differencing procedure maly have two trivial advantages over polynomial restrictions in computing openloop solutions to nonlinear

[^0]control problems using gradient techniques: (1) the 'guesses' for the initial control values are likely to be closer to the iterated solution values than the guesses for the unituitive polynomial parameters, ${ }^{3}$ and (2) since the difference equation is recursive in the parameters (lagged values) while the polynomial is not $k(k+1) / 2$ time periods of model simulation call be saved each time a gradient is computed.

II. "Stochastic" Restrictions

The major advantage to writing the restriction in difference form (which was pointed out by Shiller) ${ }^{4}$ is that the restrictions can be easily transformed to a stochastic form by not forcing the restriction to hold exactly. Adding an errorterm to (4) gives

$$
\begin{equation*}
\Delta^{\lambda+1} u(t)=e_{1} . \tag{5}
\end{equation*}
$$

Shiller assumes the error is distributed with a zero mean and constant variance σ. In the deteministic control problem the error is not stochastic: instead it is the deviation from a smoothed path or an error from approximating the true minimizing control funcion with a low-order Taylor series expansion.

The stochastic restriction can be added to the original loss function $L(u) \mathrm{as}:$

$$
\begin{equation*}
L^{R}=L(t u)+w \sum_{t=0}^{\Gamma}\left(\Delta^{k+1} u(t)\right)^{2} \tag{6}
\end{equation*}
$$

The restricted loss function forces the $k+1^{\text {st }}$ difference of the controls to lie in a band around zero: the larger the penalty weight. w. the smaller the band width. Each element of the control vector is still independent. however, since the restriction only concentrates the loss in the $k+1$ parameter space of the difference equation but docs not reduce it to exactly $k+1$ dimensions.

The marginal cost of the constraint.
(7)

$$
\frac{d l^{R}}{d w}=\sum_{t=0}^{T}\left[\frac{\partial L}{\partial u(t)} \frac{d u(t)}{d w}+\left(J^{t+1} u(t)\right)^{2}+2 w \frac{\partial \Delta u(t)}{\partial u(t)} \frac{d u(t)}{d w}\right] \geq 0
$$

shows the slope of the loss surface evaluated at a given weight w^{-5}. The
${ }^{3}$ Schitler argues alse that our priors are better about the desired smoothness of the process than thes afte ahout the degree of the polyomal restriction.
${ }^{4}$ Shiller proposed this technigue to cstimate distrihuted lag weights.
${ }^{5}$ The marginal cost of the consiraint can be approximated numerically by

$$
\left(\min L^{R}(\bar{w}+J w)-\min I^{R}(\bar{w}) / \Delta u .\right.
$$

marginal cost should not be large unless there is an comomic justificition for not relaxing the constraint.

III. (onpratisos of Restils

This section present; the resulte from tes! rems using cati differ ance or stochastic restrictions.

The restrictions were tested using a quadratic loss function that penalizes positive deviations in unemploment (tu) from the "nataral" rate of 4.8 pereent and deviations in the inflation rate (p) the rate of change of the GNP deflator) from 2.5 pereent over the twelve-quarter horizon 6917 IIV.

$$
\begin{equation*}
L=\sum_{i=n 91}^{1115} 2(11 \geq 4.8)_{i}^{2}+(\dot{p}-2.5)_{i}^{2} \tag{8}
\end{equation*}
$$

The MPS (1970 version) (puarterly cconometric model was used as a con. straint. The exogenous variables were set at their historical values ${ }^{6}$ exepp for the control variable. the iog of M1 which was chosen to minimize the loss furiction (8) subject to the exact or stochastic: restrictions. We used a conjugate gradient algorithm' to determine the direction and a linear seareh to tind the best step-size at cach itcration in the optimization

Table 1 shows the solution times ${ }^{8}$ and itcrations. Table 2 shows the
Tibil: 1

Kestriction	Iterations	CPt Time		100	
		Min.	Sec.	Farget	Control
LMI = histoiy				113.77	
$د^{2} 1 \mathrm{ML}=0$	16	2	50	90.10	
$د^{3} \mathrm{INI}=0$	12	$:$	(1)*	10501	
$w\left(3^{2} \mathrm{~L} M 1\right)^{2}$				-9.6\|	$3^{2} \mathrm{LMO}$
$4=100 \mathrm{~K}$	12	4	54	93.58	2.45
$w=7.5 \mathrm{~K}$	10	4	? 0	90.134	4.7
$u=50 \mathrm{~K}$	12	5	02	4280	0.83
$u=25 k$ $w=1 \mathrm{k}$	6	2	30	89.46	58
$w=1 K$ $w=100$	24	10	16	71.10	0.67
$w=100$ $w\left(J^{j} 1 . M 1\right)^{2}$	13	5	39	710.20	0.11
$k=75 \mathrm{~K})^{2}$	25				$د^{3} \mathrm{LMI}$
is $=50 \mathrm{~K}$	10	10	43**	92.8.3	0.61
$\cdots=0$	16	4	12	91.37	701
		6	49***	711.14	

[^1]- No residuatis were used.

For example. sec Kowalik and Oshorne
*Alt ealculations were done on an IBM 370 motit $1 / 68$

TABLI. 2
(inowill Rall on Ml

Restiction	$3^{2} 1 \mathrm{Ml}=0$	75K(土) ${ }^{2}$ (111) ${ }^{2}$	50K(S^{2} L.M1) ${ }^{\text {a }}$	none
Fime				
691	-2.34	-4.18	- 2.49	- 20.67
6911	7.74	8.85	7.93	3+.65
69111		8.60	7.53	32.17
6919	.	$8.5 \times$	715	13.92
701	.	6.93	6.27	5.96
7011		5.38	$\therefore 29$	2.03
70111		4.17	4.93	8.65
7015		3.81	5.24	7.79
711		5.11	5.64	1.88
7111		6.53	6.14	4.65
71111		7.38	6.53	0.32
7115	7.74	7.81	6.15	3.14

control path for the growth rate of MI. The exact restrictions are that the second or third difference of \log of M1 ($\left.د^{2} \mathrm{LML} . \mathrm{J}^{3} \mathrm{LMO}\right)$ is tero which imples al constant money growth rate or a constant rate of change of the money growth rate. The stochastic restrictions consist of a weight (w) on the second or third difference of $\log (\mathrm{M} 1)$ which penalizes derivaltions from a constant money growth rate or a constant rate of change in the money growth rate.

The results are close to what was anticipated. On average the exaet restrictions took less CPU time since the computation of the gradient at each iteration took less time." The lower dimension of the gradient did not reduce the number of iterations, however, as it would have in a linearquadratic problem where the maximum iterations is given by the dimension of the control vector. ${ }^{10}$

Retaxing the constraint by lowering the weight (w) generally reduced the loss; furthermore, the marginal cost of the constraint was very tow across a wide range of weights weights between 100 K and 25 K gave very similar solutions as long as the constrant was binding. This is encouraging because within this range the solution seems reasonable. Removing the constraint produces a large drop in the loss. but a politically unacceptable solution (column 4, table 2) and a solution which probably drives the mode! into an unreliable region.

The tables do not indicate dominanee by either technique. In fact. there are a number of inconsistencies which again show that one must be careful when applying gradient techniques to large nonlinear (and non-
${ }^{9}$ There a fived set-up time for each gradient calculation and since the problem is nonlinear the consergence is not uniform so that the (PU times varies between iterations.
${ }^{10}$ See Kowalih and Ovborne. p. 40.
convex) problems. The algorithms may converge rapidly, but to a local minimum (c.g. $w=50 \mathrm{~K}$) or they may find a direction in which the loss function is very steep and converge rapidly to the proper minimum (e.g. $w=25 \mathrm{~K}, w=100 \mathrm{j}$. Consequently average performances are a better indientor than any singie run

The inconsistencies also point to some numerical problems. Relaxing the constraint by increasing the degree of the difference restriction (from two to three) resulted in an increase in the loss in two of three cases. "For the stochastic restrictions the solutions were very close to the comparable second difference runs. Since the marginal cost of the restriction is low for weights in this region (25 K to 100 K) not much im-provement- but, not a decrease in performance should have been expected. In the case of the exact restriction the increase in the loss was substantially larger, and we only found a convergent solution after considerable experimentation ${ }^{12}$ which is an indication of numerical problems.

The numerical accuracy of solutions were tested using a zero function. ${ }^{13}$ We chose the solution paths from the exact second-order difference restriction (constant money growth) run as a target path and tested whether the difierent restricted experiments could "zero" this loss function (theoretically they could). The stochastic restrictions and the exact second difference restriction reached a minimum of 0.02 while the loss from the exact third difference restriction was around 2.2, confirming our suspicion of numerical difficulties.

IV. Conclusions

The results presented here suggest that constraints on the control path, either exact or stochastic. reduce the time required to compute a control solution; and what is probably more important, they constrain the solution to the region in which the model is a better approximation of the true economic structure. However, the results also indicate that neither technique can be applied mechanically with much hope of obtaining reasonable results. The exact restrictions appear to be more sensitive to numeric problems, but cheaper to compute.

University of Califorma, Berkeley:

[^2]
Biblogioaphy

Almon, S.. "The Distributed Lag Between Capital Appropriations and Expenditures. Etonometrica. 33. no. 1 (January 1965): 178196.
Ando. A.: Norman. A.: and Patash, C. "On the Applation of Optmet Control to late

Kolwalik. J., and Osbornc. M. Method for l'monvirailied Opuimization Prublem New York: Elsevier. 196s.
McCarthy. M.. and Palash. C. "The Use of Atmon-and Other Dummy-Variathe Procedure to Increase the Efficiency of Maximiation Agorithms in fomomic (ontrol." fhat of ficonamic and Sucial Measurement. 6/2. 1977. pp. 225229
Shiller, R. "A Distributed lat Estimator Derived irom Smoothness Priors." Biomonerrico 41. no. 4 (July 1973): 775 78K.

[^0]: ${ }^{2}$ The technique easily generalizes to a vector of control, with each conteol reatricted :o a polynomal which can be of different degrec

[^1]: *Started from smoothed ley Ml path: all others started from homorical M1 path
 **かtaler maximum step-size and perturbation for derinatise calculanon
 **Starled from solution path of aun $\because=$ lom

[^2]: "Since the original runs we tried a Davidon. Flet cher. Powell algorithm with the hope that information in the Hessian would eliminate some of the inconsistencies. Unfortunately the results cssentially parailed the results in tabie t.
 ${ }^{12}$ To find a solution we smoothed the starling path and successively reduced the maximum step-size and perturbations size for the gratient calculation until the algorithm converged, and still it converged to the relatively poor minimum. Cutirig the step-size and perturbations further also gave explosive solutions.
 ${ }^{13}$ See Ando. Nurman. and Palash for more detial.

