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RESTRICTIONS ON THE CONTROL VECTOR IN
ECONOMIC OPTIMIZATION PROBLEMS

By RoGrr CrRAINEY

This paper compares exact and “stochastic”™ smoathing restrictions oa the control vector. i
shows that resericting the X+ 13U e diflerence of the control vector 1o sero iy equivalent
1o restricting the contred 1o a 'k degree pelvnoniial functior of time, aitd that the smoothing
restriction can be relexed by making the k- 13 difference siochasiiz. The resirictions are
tested on a twelve-quartzr opuntization problem witit the M PS model as a constraint. Solutions
asing exact resirictions are cheaper 1o compute, but are more senitive to numeree probicon..

INTRODUCTION

Restrictions on the control vector are a natural part of the problem speci-
fication in many cconomic apphcations, ¢.g.. in macrocconomics a solu-
tion which yields it smooth instiument path is more politically deceptable
than a policy with erratic changes. Restrictions should. and usually do.
reduce the computations regitired to obtain a solution. McCarthy and
Palash have shown that restricting the control path to a polynomial func-
tion of time reduces the dimensionality of a control problem the same way
that restricting distributed lag weights te a poltynomial reduces the dimen-
stonality in an estimation problem. This paper extends their work in two
directions: (1) 1 show that restricting the control vector to a k degree
polynomiul in time is equivalent to restricting the & + 1M time difference
of the control vector to zero  this provides an casicr and somewhat more
intuitive way to impose cxact polynomial restrictions: and (2) 1 alfow the
restriction on the k + 1% dilterence to be “stochastic™" which only forces
the solution to lic in & band about the restriction.

Section | presents the two exict restriction procedures and shows
that they are equivalent. Section 1 develops the stochastic restricions
and a measure of the marginal cost of the restriction. Section T reports
some test results from applving the restrictions using the MPS model as
a constraint.

*] wish to thark James Berry and Momuea Fnar ol the Board of Goscernors ol the
Federal Reserve System for thar nelp in computing these solutions, and the referees tor
iherr comments.

FThis is equizalent to Shiller's distributed Tag estimator.

493

REE LAY

N R




N

Tramava e 7 0%

I. EQUIVALENCE OF POLYNOMIAL AND Dikrrresey
RESTRICTIONS ON THE CONTROI

The technique McCarthy and Palash suggest is 1o restrior the time
path of the control,’ u(r) 1o the A degree polynoniial,
L

() u(t) = ): at’, L= 00 A
7-0

where 7 is the (™ time period in the control horizon and the a, are the
parameters of the polynomial. When the degree of the polynomial, 4. is
Jess than the length of the control horizon 7. onlyv &k 4 | parameters (the
a;) are needed to determine the 77 + 1 controls. In essence the controls
are the a; and the u(r) are simply another endogenous variable in he
model. As a result the dimensions in the control problem gre reduced
from7 + ltok + lorby 7 - k.

An alterrative way to impose the same restriction js to force the
k + 1* difference of the control to be zero. lFor example. the 4 4 ¢ dif-
ference of the control 1s:

k+1 I\ " l
) A =Z< j )(‘—l)’il(l - i)
<o\

Substituting the £™ degree polvnamial for u(t — j)gives:

i+ 1\ + 1 k
3) Ay = Z( ' )‘-l)’ 2 air - =0

j=0 Y =0

That is, restricting the & + 1* time-difference of the control path to zero
is equivalent to constraining the control path 10 lie on a & degree poly-
nomial function of time. Setling equation (2) equal to zero and rearrang-
ing gives the entire control path as a function of the & + 1 initial con-
ditions.

Z k + 1 Ny N '
4 wn) = {4 ( o EWe =gy = ke 1
u(1) L= 0.k

The control problem is again reduced to k + | dimensions. excent using
(4) the parameters which must be found are the first & + | vilues of the
control, u°(s).

The differencing procedure may have two trivial advantages over
polynomial restrictions in computing openloop solutions to nonlincar

The lt.ChanUt._ eusily generalizes 10 a vector of controly with each control resticted to
2 pelynomial which cun he of diferent degree.
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control problems using gradient techniques: (1) the “guesses’ for the im-
tial control values are likely to be closer to the iterated solution values
thin the guesses for the unituitive polynomial parameters,’ and (2) since
the difference equation is recursive in the parameters (fagged values)
while the polynomial is not  A{A + 1)/2 time periods of model simula-
tion can be saved each time a gradient is computed.

H. “STOCHASTIC RESTRICTIONS

The major advantage to writing the restriction in difference form
(whick was pointed out by Shiller)® is that the restrictions can be easily
transformed to a stochastic form by not forcing the restriction to hold
exactly. Adding an error term to (4) gives

(5) A () = e,

Shiller assumes the error is distributed with a zero mean and constant
variance o. In the deterministic control problem the error is not stochas-
tic: instead it is the deviation from a smoothed path or an error from
approximating the true minimizing control function with a low-order
Taylor series expansion.
The stochastic restriction can be added to the original loss function
L(u) as:
r
(6) LF = Loy + w ) (3w
=0
The restricted loss function forces the k& + | difference of the controls
to lic in a band around zero: the larger the penalty weight. w. the smaller
the band width. Each element of the control vector is still independent.
however, since the restriction only concentrates the loss in the & + |
parameter space of the difference equation but docs not reduce it to
exactly & -+ 1 dimensions.
The marginal cost of the constraint.

(M

.
dif [JL dit) ko)t 4 o 300 du(l)] 50
t=0

dw du(t) dw du(t) dw

- - . . —
shows the slope of the loss surface evaluated at @ given weight #.° The
3Schiller argues alse that our priors are better aboul the desired smoothness of the
process than they are ahout the degree of the polynomial restriction.
4Shiller proposed this technique to estimate distrihuted Iag weights.
5The marginal cost of the constraint can be approximaied numerically by

{min I.R(W + Aw) — min LR(W'))/'AW.
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t should not be large uniess there is an economie justilic.ltiun

nrarginal cos :
tor not relaxing the constraunt,

[11. ComparRiSON OF RESUTI1S

This section preseats the results front test runs wsing exac difler-
ence or stochastic restrictions. . | |

The restrictions were tested using o quadratic loss function that
penalizes positive devintions in unemplovment (1) from the “nataral
rate of 4.8 pereent and deviations in tfm inflation rate (p - the ryge of
change of the GNP deftator)y from 2.5 pereent over the twelve-quarter
horizon 691 T1IV.

niv
) L= 2> 487 +(p— 25

=631
The MPS (1970 version} quarterly cconometric model was used as a ¢op.
straint. The exogenous vartables were set at their historical values® exeept
for the control vartable. the jog of MT which was chosen 10 minimize the
loss funiction (8) subject to the exact or stochastic restrictions. We used
a conjugate gradient algorithm’ to determine the dircction and 4 linear
scarch to find the best step-size at cach iteration in the optimization.

Table | shows the solution times® and iterations. Table 2 shows the

TABLE |
CPLi Time foss

Restriction lterations Min. See. [rget Control
LM = history 11377
ALMIE =0 16 2 56 90.10
A3LMIE =0 12 N 03+ 105.61
wlA2LM )2 LML
w = 100K i2 4 54 9338 243
w = 73K i} 4 20 CURR 474
w = SOK 12 5 )2 CANN] 053
w o= 23K 6 2 Rl 39 46 3
w=|K 24 1) 16 7H10 0.67
wo= 100 13 3 39 7026 0.2]
w(AIL M2 ASLMI
w = 15K 25 to J3xs Y283 0.61
w = 30K ] 4 12 Yl1.37 7.01

w =0 16 6 RO 7014

* . . ! . -

‘Sl.mgd from smoothed leg M1 path: sl others started from Mistorical M1 path.
L e . T . 1 N ¥ N

: Sr.n..llkr masimum step-size and perturbation for deriy atis e caleulaton,
**5tarted from solution path of run w = 100,

N0 residuais were used.
- coye < :
Forexample. see Kowalik ang Oshorne.
All ealeutstions were done onan EBM 370 model fo8
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TABLE 2
Growil Rate or Ml

Restiiction AZLMIE =0 TSR(AZLAM 2 SOK(ALAMT)? none
e
691 -2 S48 2249 - 20.67
69l 7.74 543 7.93 34,65
69511 . 8.60 7.53 3217
691V . 8.58 715 1192
701 . 6.93 6.27 5.96
701 5.3 3.9 203
70111 417 1.93 8.63
701V 3181 S.4 7.79
711 511 3.604 1.8%
711 6.53 6.14 1.65
711 7.38 6.33 0.32

AT AY 7.74 781 615 REE

control path for the growth rate of M1, The exact restrictions are that
the sccond or third difference of fog of M1 (ALMI. ALM1) is sero
which implics a constant money growth rate or a constant rate of change
of the money growth rate. The stochastic restrictions consist of a weight
(w) on the second or third difference of log(M1) which penalizes deriva-
tions from a constant money growth rate or a constant rate of change in
the money growth rate.

The results are close to what was anticipated. On average the exact
restrictions took less CPU time since the computation of the gradient at
each iteration took less time.” The lower dimension of the gradient did
not reduce the number of iterations, however, as it would have in a lincar-
quadratic problem wherc the maximum iterations is given by the dimen-
sion of the control vector."

Relaxing the constraint by lowering the weight (w) generatly reduced
the loss: furthermore. the marginal cost of the constraint was very fow
across a wide range of weights - weights between 100K and 25K gave
very similar solutions- as fong as the constrant was binding. This is
encouraging because within this range the solution scems reasonable.
Removing the constraint produces a large drop in the loss, but a politi-
cally unacceptable solution (column 4. table 2) and a solution which
probably drives the mode! into an unrehable region.

The tables do not indicate dominance by cither technque. in fact,
there are 4 number of inconsistencics which again show that one must be
carcful when applying gradient techniques to large nonlincar (and non-

9There a fived set-up time for cach gradient calculation and since the problem is non-
lincar the convergence is not uniform so that the CPU times varies between iterations.
W0See Kowalik and Osborne. p. 40,
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convex) problems. The algorithms may converge r;_lpidl_y, hu.[ to a local
minimum (¢.g. w = S0K) or they may l.md a direction in w!n-ch the loss
function is very sieep and converge rapidly to the proper minimum (e__g_
w = 25K, w = 100). Consequently average performances are a better jp.
dicator than any singie run. _

The inconsistencies also peint to some numencql_problcms. Relux-
ing the constraint by increasing the degree gf the dlﬂcljchC restrictior
(from two to three) resulted in an increase in thc loss in two of three
cases.'' For the stochastic restrictions the_ solutions were very close to
the comparable second difference runs. Since the marginal cost of -the
restriction is low for weights in this region (25Kto 100K) not much im.
provement--but, not a decrease in performance- —shoulq have been ex.
pected. In the case of the exact iestriction the increuse in the loss wals
substantially larger, and we only found a convergent solution after con.
siderable experimentation'? which is an indication of numerical problems.

The numerical accuracy of solutions were tested using a zero func-
tion."” We chose the solution paths from the exact second-order difference
restriction {constant money growth) run as a target path and tested
whether the different restricted experiments could “zero™ this loss func-
tion (theoretically they could). The stochastic restrictions and the exact
second difference restriction reached a minimum of 0.02 while the loss
from the exact third difference restriction was around 2.2, confirming our
suspicion of numerical difficulties.

IV. ConcLusions

The results presented here suggest that constraints on the control
path, either exact or stochastic, reduce the time required to compute a
control solution; and what is probably more important, they constrain
the solution to the region in which the model is a better approximation
of the true economic structure. However, the results also indicate that
neither technique can be applied mechanically with much hope of obtain-
ing reasonable results. The exact restrictions appear (o be more sensitive
to numeric probiems, but cheaper to compute.

University of California, Berkeley

"Since the ariginal runs we tried a Davidon. Fletcher. Powell algarithm with the hope
thatinformation in the Hessian would eliminate some of the irconsistencies. Unfortunately
the results essentially parailel the results in tabie }. -

2To find a solution we smoothed the starting path and successively reduced the maxi-
mum step-size and perturhations size for the gratient culculation until the algonithm con-
verged, and still it vonverged to the relatively poor minimum. Cutting the step-size and
perturbations further also gave explosive solutions.

HSee Ando. Norman_ and Palash for more detail.
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