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Abstract

This paper considers an economy using a product that adds to a stock of pollution. Examples that come

to mind are SO Z emissions from buming coal accumulating in the soil and C02 emissions from fossil

energy use which are retained in the atmosphere. The stock of pollutants is subject to natural decay,

albeit not necessarily of the simple often assumed linear type. [n addition, a clean or so-called backstop

technology is available that requires costly investments but is characterised by low variable costs (e.g.,

solar energy or wind power). The costly investments lead to a slow build-up of the capacity of the

backstop. On the modelling side, tlns is an essential extension of most of the literature that considers

the unrealistic case that a backstop is instantaneously available. ~e second extension the present paper

makes is to consider not only the planning problem but also competitive outcomes. One of the

interesting results is that stable limit cycles may characterise the socially optimal long run outcome as

well as the competitive equilibrium. In a competitive equilibrium pollution control policy is not

necessarily optimal in the sense of corresponding with the social optimum. Although cycling can occur

in a competitive equilibrium, just as in the social optimum, rela~cation of the control inereases the set of

parameter values for which complex and unstable behaviour arises.

1. Introduction

This paper considers an economy using a product that causes pollution emissions that accumulate (e.g.,

SOz accumulates in the soil, COz in the atmosphere). The pollution stock is subject to natural decay,

albeit not necessarily of the simple lineaz type. In addition, a clean or so-called backstop technology is

available that n~uires costly investment but can be exploited at low variable costs (say solar energy,

wind power, etc.). The costly investments lead to slow build-up of the capacity of the backstop. On the

modelling side, this offers an essential extension of most of the literature that considers the unrealistic

case that a backstop is instantaneously available. Indeed, the obvious fact that all conceivable backstop

technologies (say nuclear, solar, renewables) can impossibly overtake from one day to another such

lazge markets as the world energy market, is somewhat overlooked in the literature on backstops (for an

exception see Wirl (1991)). This paper provides a theoretical analysis of the introduction of such a

backstop including a complete stability analysis for the social optimum and a competitive equilibrium.

One of the interesting results of this framework is that stable limit cycles may characterise the socially

optimal long run outwme. In addition, the paper investigates a competitive equilibrium if the

externalities of the dirty good are not or not optimally internalised.
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2. The model.

The following model is a straightforward amendment of the model studied by Withagen and Toman

(1996) to allow for a sluggish build-up of backstop capacities. Environmental pollution ( P) or

degradation of nature increases by the amount of pollution emitted to the environment, which is

assumed to be proportional to the consumption of the dirty product x, minus natural decay, A(P) :

(1) P(I) - x(t) - A(P(t)), P(~) - Po , given

The stock of pollution is modelled as in Withagen and Toman ( 1996), except for choosing a decay

function that covers both cases, decay increasing or decreasing with increasing stock ( A'~ 0 and

A' ~ 0)[n fact we assume that decay is inverted U-shaped and concave, A" ~ 0 . See Figure l for a

graphical illustration of the decay function. The familiar logistic function provides an arithmetical

example. A familiar and plausible motivation of this specification is that the pollutant has to be

`digested' by the natural environment. NaNral decay is low at low levels of pollution because the low

levels of pollution rarely interact w~th a corresponding, say, bacteria, as well as at high levels of

pollution because of the extensive load of pollution hindering decay.

Figure 1. The decay function
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We consider a partial equilibrium framework where consumers have utility U from consumption and
aze indifferent with respect to the origin of the consumer good: the dirty good x or the backstop

product B. It is assumed that the instantaneous utility function U is strictly concave and strictly

increasing. The Inada conditions, U' (0) - oo and U' (ao) - 0, are assumed to hold. They will ensure

an interior solution. The marginal willingness to pay, U', describes the inverse demand function, i.e.,

the market clearing price given aggregate supplies. Existing pollution has social cost D that is strictly

increasing and convex. We do not treat the environment as providing raw materials or anything like

that. The costs of producing the dirty good, C(x,P), are assumed to be increasing and convex in

output x, C~ ~ 0, CA ? 0. The cost function may include pollution as an argument. Then costs are

increasing and convex in pollution, CP ~ 0, CPP ~ O, and the cost function is convex in ( x, P) , so

that Ca CPP - C~ ~ 0. In that case we could also assume that pollution increases the marginal costs

of producing the dirty commodity, C~ ~ 0. In the sequel we assume that the costs depend on

production only. This dces not exclude the (likely) possibility that production costs increase with

pollution (e.g., requiring dams, filters and other largely fixed costs elements), because these (additive)

costs can be integrated in D, but it excludes that pollution increases the marginal costs of producing the

dirty good. The reason for this simplification is purely arithmetical because retaining the mixed

derivative complicates matters considerably, without adding further insights.

The extension we propose is to incorporate a backstop capacity that provides a clean substitute

free of variable costs and that is chazacterised by a sluggish build-up. The assumption of zero variable

costs ensures that the installed capacity of the backstop technology is always utilised and thus

consumed. Consumption from the backstop can therefore be identified with the backstop capacity B.

Of course, zero variable costs are not essential. They just have to be lower than the costs of the dirty

product and the technology itself must be economically viable. The sluggish build-up is due to the fact

that the backstop is produced from a capital stock, say fusion or wind power plants, photovoltaic cells,

etc., which cannot be implemented at once for various reasons such as adjustment costs. Indeed, the

obvious fact that all conceivable backstop technologies can impossibly overtake from one day to

another such large markets as the world energy market is somewhat overlooked in the literature on

backstops. The accumulation of the backstop capacity is described as follows:

(2) B(t) - y(t)-8B(t),B(0) - 0
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Here y is the rate of investment in the backstop and 8 is the constant rate of depreciation. The

investment y in the backstop technology has costs I that are strictly increasing and convex

In thc following we will study the intertemporal evolution of both states, backstop technology

and pollution, under two different institutional arrangements: in a social optimum and in a competitive

equilibrium.

3. Socisl optimum

We start with an analysis of the social optimum. The objective is to determine optimal production of

the dirty commodity and investments in the backstop in order to maxunise the aggregate net present

value of social welfare:

max je-" ~U(x(t) t B(t)) - D(P(t)) - C(x(t)) -1(y(t))~Ctt
1~(r~r(r)1 0

subject to (1) and (2). The discount rate is denoted by r.

Current social welfare includes the consumer surplus U, the external costs D due to existing

pollution, the investment costs 1, and the costs of producing the dirty goad C.

In order to solve the optimal control problem we define the current value Hamiltonian (omitting

the time argument t)

H(x, y, P,B) - U(x t B) - D(P) - C(x) - I(y) t~.[x - A(P)] t~e[y - SB]

Note that the Hamiltonian is jointly concave in states and controls, due to the concave objective and

given that the state P cames a negative shadow price ~.. Therefon:, the first order conditions together

with the transversality conditions are sufficient for an optimal program. The transversality conditions

are satisfied if the states and co-states converge to a finite steady state or remain bounded, as in the

case of limit cycles.

The first order conditions for an interior solution are the Hamiltonian maximising conditions,

Hx - Q U'-C'f.i - 0

HY-O: -I'tp-0
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and the intertemporal evolution of the shadow prices of the stock of pollution .i and of the backstop

capacity Ft , given by:

~ -(rtA')AtD'

ft-(rtS)ft-U'

If we assume that interior controls exist that are implicitly determined with the derivatives shown

above, then we can write x - X(B, ~,) and y- Y(lt), with X B- U"I(C"-U" ),

Xx -1l(C"-U"),Y~, -111". In the sequel it is assumed that there exist steady states where the

controls are indeed interior, e.g., due to the above mentioned [nada conditions. With regard to the points

we wish to make this is not restrictive. We shall also provide some examples where this is

straightforward to establish. Substitution of the optimal controls into state and co-state equations yields

the following canonical equation system:

P- X(B, ~.) - A(P)

B-Y(~t)-SB

~ - (r t A'(P))A t D'(P)

N-(r t S)P - U'(X(B,.i) t B)

From this system it follows that in the steady state r t A'~ 0, because the co-state of pollution is

negative.

Proposition l: Suppose that in the stationary state A'~ 0. Then the optimal steady state is

asymptotically locally stable.

The result follows from applying standard sufficiency criteria ( such as developed by Brock,

Scheinkmann and others). The formal proof is relegated to Appendix A, where however other more

direct techniques are employed. The economic consequence of the result is that sufficient environmental

concem, implying that pollution is below what `nature' could digest, P such that A' (P) ~ 0, dces not

only lower stationary pollution but ensures stability as well. However, other cases might occur as well.
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Proposition 2:Ij stationary pollution is 'large' so that A'~ 0, then this steady state may be

asymptotically locally stable but it may also be unstable and, in particular, there may exist stable

limit cycles.

The existence of limit cycles means that the build-up of the backstop capacity in order to reduce

pollution and thus to lower the pressure on the environment, is followed by an increased consumption

of the dirty product as the backstop capacity depreciates. Yet at higher pollution levels, the backstop is

again pushed back into the market, and so on forever. The reason for the existence of limit cycles is

that the framework described by the differential equations ( 1) -(2) includes one of the routes to limit

cycles in strictly concave models addressed in Wírl ( 1996). More precisely, Wirl (1996) shows that

growth, in the case at hand amounting to r ~ aP I aP --A'(P) ~ Q is a necessary condition for

Hopf bifurcation, which ensures the existence of stable ( and generic) limit cycles. However, the

restriction to steady states satisfying r t A' ~ 0 is not necessary, because accumulating pollution

beyond the point where r t A'- 0, which defines the optimal long run stock absent any pollution

externality, is suboptimal given the damage. Furthermore it is worth noting that while `growth' is

destabilising, the second dynamics r~ c~l cB --S ~ 0 is stabilising. Hence S~ 0 restricts the

domain of complexities even for A' ~ 0 up to the point of ensuring overall stability if the rate of

depreciation is sufficiently large. Or, the other way around, long lasting backstop (i.e., small

S)capacities are suitable to yield complex solutions including limit cycles. However, this restriction

imposed by S is implicit rather than explicit for the social optimum. It is discussed in detail in

appendix B.

The Hopf bifurcation theorem requires that three properties hold:

i) there exists a pair of purely imaginary eigenvalues for a proper choice of the parameter that is

varied ( called the critical value or bifurcation point).

ii) the derivative of the real part with respect to the parameter is different from zero so that the

critical value of the parameter separates the domains where the linearised system is stable

(possibly restricted to a`stable' manifold) from the domain of locally unstable spirals.

iii) a negative coefficient of a quadratic term of the so-called nomial fonn (i.e., the system remains

stable at the critical value).

The first two conditions are sufficient for the existence of a limit cycle. Yet if condition ( iii) is violated

the cycle is unstable. That is, such a cycle repels all motions starting arbitrarily close to the cycle (and

within the stable manifold): motions starting inside the cycle converge to the steady states, those

starting outside the cyc(e either diverge or converge to another steady state ( if existing). The geometric

intuition of the theorem is straightforward: at the point of the bifurcation, the steady state of the
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linearised system becomes a centre, but the non-linear system remains stable because of the negative

quadratic terms. Now for parameter values slightly beyond the critical value, there are two opposing

forces. First the negative quadratic term addressed in (iii) dominates the linear terms, at least

sufficiently offthe equilibrium. Second, close to the equilibrium this quadratic term is irrelevant so that

the linear terms, with positive real parts, lead to locally `exploding' spirals near the equilibrium. The

limit cycle arises from balancing these two forces and wnstitutes the attractor of this system. If on the

other hand the quadratic term is positive, a cycle requires that the linear terms provide the stabilising

elements so that the steady state is locally stable and the cycle becomes repelling. For further details

see Guckenheimer-Holmes ( 1983). In the following we will concentrate on condition (i). We will verify

the other conditions numerically.

In the context of our model the growth condition mentioned requires that A' ~ 0 meaning a

relatively large socially optimal pollution stock. Given this condition, very simple examples, with high

discount rates andlor highly convex investment costs, allow for a Hopf bifurcation and hence for stable

limit cycles. We consider an example with linear external costs D(P) - dP, linear production costs

C(x) - cx , quadratic consumer surplus U(z) - 1- yzZ , so that demand is lineaz with a maximal

willingness to pay of 1S and maximum demand of 1 unit, lineartluadratic investment costs

I(y) - ay t ~byZ , and logistic decay A(P) - P(1- P) . For the parameter values we choose

a- 0.1, c- 0.2, d- 0.3, D- 0.05 and r - 1.8. Thus the average lifetime of a backstop plant is 20

years. We use the parameter b, which detemtines the convexity of the investment costs, as our

bifurcation parameter. This approach leads to a pair of purely imaginary eigenvalues of the Jacobian at

b- b~` - 6.56596..., where the derivative of the real part does not vanish and the bifurcation is

supercritical, i.e. the quadratic tertn of the normal form is negative so that the cycle is stable and not

repelling. This can be verified numerically using LOCBIF (see Khibnik et al. (1992)). The

corresponding Lyapunov number turns out to be -2.02042, so that limit cycles characterise the optimal

policy in a local, one-sided surrounding of b~ 6.56596... In Figure 2, we vary the adjustment cost

parameter b as indicated for the reported Hopf bifurcation that leads to the interesting result, that

`intermediate' and }tigh values induce limit cycles or instability, but low and very high values for b

imply stability. Of course, this instability results only upon entering the domain

P~ y- arg max A(P) so that A' ~ 0.
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Figurc 2. Stcady statcs versus the convexiry of investment costs, stability propemcs and Hopf
bifurcations

Figure 3 uscs thc discount rate as the bifurcation parameter, all other parameters as above and

h at the critical value for r- 1.8 . This leads to stable Hopf bifurcation too and it highlights at the

samc time the non-monotonic dependence of the steady states on the parametcr and the associated

stability properties

o.

oa

ai

a o. P

Figurc 3. Stationan~ solutions and stabiliry properties for different values of r.

limit cycles
or unstable

stable ác monotonic stable oscillations all eigenvalues
two e~gcmalues have havepcisitive

two negauve real eigenvalues , negeiwe real parts, real parts
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Remark: Setting 8- 0 and assuming !(0) - 0 implies the same steady state as reported in Withagen

and Toman (1996). The inclusion of adjustment costs can fundamentally alter the stability properties.

More precisely, the adjustment costs can destabilise an otherwise stable equilibrium, but cannot

stabilize an otherwise unstable equilibrium, see Feichtinger, Novak and Wirl (1994).

4. Competitive equilibris

In this section, we study the perfect foresight competitive equilibrium where the extemality is not at all

or not optimally intemalised by govemmental environmental policy. The representative firm faces the

following problem:

~~max}je "[P(~)Ix(f)tB(t))]-C(x(i))-r(t)x(t)-I(y(~))]dr

subject to

B-y-6B,B(0)-0.

That is, the firm decides at each point of time how much to pollute and how much to expand the

backstop capacities, taking the market price p and the pollution stock as given. [n the objective

function r denotes the tax rate on the production of the dirty commodity, which is exogenous to the

firm.. Each individual firm neglects the damage function D and pollution does not enter the private

cost function either. Firm-specific feedback of pollution by means of the tax rate is now essential in

contrast to the social optimum where such feedbacks were included in D. Absent such a feedback, the

tragedy of the commons arises, ultimately destroying the environment's inherent abatement capabilities.

The consequences of such irreversibilities are analysed by Tahvonen and Withagen (1996) in the

context of a planning problem. The irreversibility creates a non-concavity for the plaruung problem that

would be irrelevant in our competitive setting, because we are working in a decentralised economy.

The Hamiltonian of the system reads

H(x,Y, B, v) - P~x t B] - C(x) - zx - I(1') f ~y -~]

Assuming an interior solution we find as a first set of necessary conditions, again the

Hamiltonian ma~cimising conditions
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H~-p-C~-z-0

Hy - -1't v - 0

Another necessary condition describes the evolution of the single adjoint variable of the representative

firm's backstop capacity, denoted by v, to differentiate from the socially optimal solution where wc

used it:

v-(rt8)v-p

Market clearing at any instant of time requires:

P(t) - U'(x(1) t B(t))

The optimal controls, i.e. the production of the dirty product and the investment in the

backstop interior controls are now implicitly defined by x` - X`(B;z) and y` - Y`(v), with

XB --U"I(U"-C"), Xr - 1I (U"-C") and Y` - 111". Moreover, equation l describing the

evolution of the stock of pollution must hold. Although the competitive firms have no control over the

stock of pollution, they anticipate the evolution of pollution perfectly (rational expectations). Therefore,

the competitive equilibrium is described by the following system of differential equations:

B - Y`(v) - 8B

v-(r t8)v - U'(X`(B; z) t B)

P - X`(B;r)-A(P)

Proposition 3: Suppose the tax rate is set such that it solves z --.ï, where ~i is the co-srate of the

polfution stock in the socia! optlmum, and satisfies ~ï -(r t A')~ t D' and a transversality

condition. Then the competitive equilibrium is identical to the socia! optimum.

Proof: Addition of this differential equation for ~, to the competitive equilibrium and replacing z by

-.ï yields the same system as in section 3 except for a different labelling of v instead of ft .

This proposition identifies the interrelationship between a competitive equilibrium and the

social optimum. It leads immediately to the corollary that competitive equilibria allow for limit cycles
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too. Nevertheless we study in the following also competitive equilibrium where internalisation is

possibly sub-optimal, so that the tax rate is not equal to the negative of the shadow price of pollution.

Proposition 4: Suppose that the steady state is in the domain of A'~ 0. Then the steady state is

asymptotically locally stable.

This proposition is completely analogous to proposition 1. The next two propositions

mvestigate the domain A' ~ 0.

Proposition 5: Suppose that the tax rate s is constant over time. Then a steady state in the domain

oj A'~ 0 is (generically) unsrable, i.e., only one eigerrvalue is negarive so that the stability is

restricted to a one-dimensional manijold of the initial conditions in the (P, B) -plane.

The instability addressed in proposition 5 is usually associated with multiple equilibria with the

consequence that applying even the long run optimal tax is insufficient, if initial pollution is large. Note

that the instability addressed in proposition 5 can occur in all other cases considered in this paper. This

may be surprising to some of the readers given the strid and joint concavity of our model, since in the

literature most of these kinds of instabilities aze associated with (local) convexities.

An immediate consequence of proposition 5 is that we have to extend the analysis so as to

allow for a tax that is increasing in pollution, to get complex solutions. The reason is that the kind of

instability addressed in proposition 5 excludes local instabilities of the kind required for a Hopf

bifurcation, where two eigenvalues must have negative real parts. The relation t- t(P) may cover to

some extent not only the tax but also other adversities to the finn related to pollution, such as thc

increase of marginal costs of producing the dirty good. Substitution of this modification into the above

differential equation system characterises the competitive equilibrium facing a state contingent, instead

ofa constant or just time~ependent, tax rate.

Proposition 6: Instabilities and limit cycles can characterise a competitive equilibrium with a

stationarypollution such that A' ~ 0. However, the domain for complexities in competitive equilibria

is not restricted 6y the discount rate ojthe (representativeJ firm, i.e., r f A'~ 0 is a possible long

run outcome under competition. Yet depreciadon restricts the domain of possible complexities oj

limit cycles to sufficiently long lasting capacities,S t A'~ Q so that jor S- 0 the entire domain

A' ~ 0 permits complexities.
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The reason for this restriction is the stability inherent to the accumulation of the backstop

capacities. In contrast to the social optimum an explicit bound can be given concerning the domain of

complex solutions. An example establishing the claim of limit cycles in Proposition 6 run as follows. It

borrows from the social planning example the specifications of the surplus, U(z) - z- ~z r, and of

the investmcnt costs, I(y) - ay t' z by~ , but assumes quadratic production costs C(x) - ' Z cx 2,

decay slightly different from the logistic one, A(P) - P(1- ~) , and firm specific taueslcosts lineaz

in pollution, r(P) - sP. A theoretical discussion and details concerning this example are given in the

appendix A. Setting the parameters a- O.l,c - O.OS,r - 0.3,5 - O.OS,s - 0.1, yields a Hopf

bifurcation for variations in b at b - 3.870334 ( i.e., a pair of purely imaginary eigenvalues satisfying

the conditions about a non-zero crossing velocity and having a negative Lyapunov number -0.0332

according to the calculations performed with LOCBIF). The resulting steady state of large pollution

exceeds pollution feasible for a socially optimal programme and thus highlights that the domain of

complex policies is enlarged for competitive outcomes.

Figure 4 shows on the left hand side the evolution of the steady states and the corresponding

stability properties for the intertemporal, competitive equilibrium associated with the above mentioned

bifurcation but considering variations in the discount rate r instead of b. For the purpose of

comparison, the right-hand side shows the social optimum, which leads to comparable pollution. Tlus

is achieved by setting d- 005 , so that the tax leads to similar steady states with rather lazge pollution

due to the low damage parameter.

Comperitian Social optimum

stable oscillations

0

0

r
0.05 0.1 0.15 0.3 0.25 0.] 0.35

Figure 4. Steady states as a function of the diswunt rate and the associated stability properties.
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5. Concluding remarks

It has been shown that with sluggish build-up ofa backstop technology complex behaviour of pollution

and backstop capacity can arise, in a social optimum as well as in a wmpetitive equilibrium. A

remarkable result is that in a competitive equilibrium with nomoptimal taxation the scope for such

behaviour is larger. This fact has bcen established by means of a numerical example. Figure 5

summarises these general findings.

A( P) Stable Stable, limit cycles
or unstable

Competition
Social optimum and

Stationary pollution P

Figure 5. Comparison of the stabiliry properties of social planning and competition

The basic reason for this phenomenon of limit cycles is that the consideration of negative marginal

decay introduces `growth', which is a pathway for Hopf bifurcation and thus for limit cycles in strictly

wncave dynamic optimisation models. Local convexities substantially simplify the derivation of limit

cycles from the first order conditions, but these conditions are not sufficient anymore. Wirl (1996)

shows this for planning problems and Wirl (1997) for competitive equilibria. The reason for the

differences between the social optimum and the competitive equilibrium is that the accumulation of

pollution beyond the stock where r t A' - 0 is always socially suboptimal, but it is a feasible outcome

under competition if the extemality is insufficiently internalised.

There are two extensions of this reseazch that are worth pursuing. First it would be interesting

to investigate the effect of introducing variable costs associated with the production from the backstop

technology. Second, and more importantly, it is worthwhile to see if set-up costs for the backstop

technology would drastically alter the main results.
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AppendiY A: Stability analysis in the social optimum

The Jacobian of the system of differential equations discussed in section 3 is:

J-

aP aP a~ aP
áP áa á~ áu
a8 a8 a8 aá
áP áa á~. á,~
a~. a~, a~ a~.
áP áa á~ áu
a;~ au au aw
áP áa á~. á,~

All the elements this matrix are evaluated at the steady state. The stability properties of this canonical

equations system may be studied applying the global asymptotic stability criteria developed in the

seventies by Brock, Malliaris, Rockefeller, Scheinkman and others, which are well summarised in the

book of Brock and Malliaris ( 1989). However, we opt for a local stability analysis following Dockner

(1985) who derives an explicit formula for the eigenvalues, E~ (i - 1,z,3,4)

E,-2- 2 Z}Z
K -4det(.n,i-1,2,3,4

r}V`r~Z-K 1 2

Here K is defined as follows ( see Dockner ( 1985), p.96).

x-
ar~ aP

t
aP aP
áa áw
a~. a~,
áa á,~

aP aa,
a~. a~
áP á~.

aa aa
áa áw
a~t au
áa áw

tz

The formufa allows for a complete characterisation of the local dynamics of the linearised system and

provides the ideal test recommended in Brock-Malliaris (1989, bottom of p. 148). For the general case

of section 3 we have:

- A' C~ ~-U~ ~ C„-U„ ~U~~ ' 1
J-

10 - 6' 0 -
I"

A"~. t D" 0 r f A' 0
U"C" U"

0 -C~,-U~~ -C~~-U~~ rt8
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Calculation of the coefficients in Dockner's fonnula yields for K

A"~ t D" C"U"K--A'[rtA']-8[rtS]- tC~~-U„ ~„[C„-U„]

All terms except for the first term - A'[r t A'] are definitely negative due to the assumed sewnd

order derivatives and due to the fact the stationary shadow price of pollution, ~--D'I(r f A'), is

negative. The determinant equals:

ójrtS][[.iA"tD"] U"[.iA"tD"tA'C"[rtA']]
det(J) - d9'[rt 8][rt A'] t

C"-U" - 1"[C"-U"]

According to the above calculatíons, low pollution i.e., A'~ 0, implies K ~ 0 and

det(J) ~ 0. In view of Dockner's formula these inegualities are sufficient for J to have two

eigenvalues, which aze either negative or have negative real parts. That implies saddtepoint stability,

albeit that damped oscillation may be optimal, since the eigenvalues of the stable manifold can be

complex (as shown in the example in the main text). This proves proposition 1.

We show next that proposition 2 holds. First, A' ~ 0 still allows for stability. This follows

directly from the above calculations because A' ~ 0 is compatible with K ~ 0 and det(J) ~ 0, which

in tum are sufficient for saddlepoint stability. The example in Figure 2 shows that even local

monotonicity is possible for A' ~ 0. The existence of limit cycles according to the Hopf bifurcation

theorem requires inter alia the existence of a pair of purely imaginary eigenvalues. In Dockner's

formula this implies

det(J)-(Kl2)Z trZKl2, K~0

which in turn requires that the determinant is positive too.

According to the above calculation, K~ 0 requires A' ~ 0. Ironically enough, this negative

derivative introduces `growth', which according to Wirl ( 1996) is a pathway for limit cycles. As

mentioned eazlier, Wirl (1996) shows that growth, i.e. r ~ o~P~o~P --A'~ 0, is a necessary condition

for Hopf bifurcation in strictly concave dynamic optimisation models and of the possible pathways

only this one is present. Although his theorem is, strictly speaking, not applicable because of its

restriction to a single control, the consequence on K~ 0 is tied to A' ~ 0. However, depreciation of the

backstop capacities adds a stabilising (i.e. negative) factor in K so that A' [r f A' ] must at least
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outweigh S[S t r]. Hence, long lasting investments aze helpful for K~ 0, a prerequisite for complex

solutions such as limit cycles.

For the example in Section 3 we obtain the optimal controls,

x' --B - c t.i,Y' - [N - a] I b. The canonical equations ( retainíng A - P[1-P] and

A' - 1- 2P as short hand) are-

f'-(-B-ct.i)-A(P)

8-[lt-a]Ib-bB

.i-[rtA']~,td

~-(rt8]Nt.ï-c

which yields

J-

-A' -1 1 0
0 -S 0 llb

- 2.i 0 r t A' 0
0 0 1 rt8

This system allows for a closed form analytical solution, of the steady states and even of the critical

value of the bifurcation parameter, at least for the parameter b. However, all these expressions are

extremely cumbersome so that we report here only the crucial coefficient K.

K--A'[rtA']t2~.-S[rtS].

Fairly similar aze the results for the example in Section 4(albeit we could not obtain a closed

form solution anymore given the quadratic production costs):

17



I-Bt~.
P- ltc -A~P~

u-Q

7~-[rtA']1t.td

c[1- B]- ~.
~t-[rtS]lt-

ltc

This system yields the following Jacobian:

J-

The corresponding K is

A" ~. c
K--A'[rtA']-

ltc -b[ltc]-S[rtS]

Appendix B. Stability in the competitive equilibrium

b - SB

-1 1- A' 0
ltc ltc

0 -S 0 llb
lA" 0 rtA' 0

c 1
~ ltc ltc rtS

Although the following analysis allows for taxes depending on pollution we start with the case where

the tax rate is independent of pollution. Then the corresponding Jacobian equals

J-

-S
U"C"

[U. ~-C~~ ] rt8 0

- U" 0 - A'I

Again the stability properties can be obtained from calculating the eigenvalues of the Jacobian. The

eigenvalues are the roots of the characteristic polynomial:
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p(e) - e' - tr(J)e2 t k e- det(J)

where k is thc sum of the principal minors of dimension 2 of the lacobian. It plays a role similar to K
in appendix A. The calculation of the coefficients of the characteristic polynomial proceeds in several
steps.

tr(J)-r-A'

det(J)- A'8(rtó)t U"A'C'

and
~~ ~ ~U~ ~-C ~~

k - -8[rtS]-rA'- C"U"
1"[U"-C"]

Since A' ~ 0 implies det(.n ~ 0, an instability arises whenever A' ~ 0 and thus the impossibility of

limit cycles. This verifies proposition 5. For A' ~ 0 we have det(.n ~0 as well as k ~ 0, which are

sufficient for saddlepoint stability (in fact sufficient for real eigenvalues and thus for local

monotonicity). Therefore, the existence of complex competitive equilibria requires a state coMingent

effect, either as a tax or through a feedback on costs.Taking into account r- r(P) in the system derived

in section 4 and applying the chain rule yields the following lacobian:

-s ;,, o' 1J- U,~C~~
rtS

-U~~t~

U"-C"
- U" p - A't t~
U"-C" U"-C"

We now have

!r(J)-r-A't
T'

detJ A'Srt
tU"(r'tA'C")-8r'1"(rf8)

( )- ( ó~ ~~~(U~~-C~~)

and:
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1

k--8[rt8]-rA'-
U' t rs'

1"[U"-C"] U"-C"

From det(J) ~ 0 it follows that either one eigenvalue, say e~ , is positive and the other two (say ez and

e~ ) are negative, or all three are positive. Since k - e~ [e~ t e2 ] t e~eZ , k ~ 0 is only possible if both

e2 and ej aze negative (because they cannot have opposite sign due to the fact that det(J) ~ 0) .

Therefore, the properties k ~ 0 and det(J) ~ 0 are sufficient for saddlepoint stability. Similazly,

det(J) ~ 0 combined with tr(J) ~ 0 is sufficient for saddlepoint stability.

The existence of a pair of purely imaginary eigenvalues as a necessary condition for a Hopf

bifurcation requires that det(J) - tr(J)k and that all elements of this equation are positive.

Therefore, again the sum the principal minors of dimension 2 must be positive, k~ 0. Again A' ~ 0 is

helpful for a positive trace and a positive k, but can lead to a negative detemtinant, which implies an

instability, yet simultaneously excluding limit cycles. However, A' ~ 0 is not sufficient since k ~ 0

demands at the minimum S t A' ~ 0. The reason is similar to the social optimum: A' ~ 0 introduces

growth into the externality and thus helps to destabilise the system while aB I aB --S destabilises

the system. Hence instabilities of any kind require that the destabilising element must outweigh the

stabilising element S t A' ~ 0. However, in contrast to the social optimum, low diswunt rates do not

constrain the domain of feasible equilibria so that r t A' ~ 0 is feasible.
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