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Abstrad
In this paper we establish necessary and suffiden[ conditions for the simultaneous

existence of an optimal income tax mechanism and an optimal vector of public goods. Moreover,
we identify a condition suff3cient to guaran[ee that the optimal mechanism is budget balanáng.
The key ingredient in our analysis is a result chazacteri7ing incentive compatible income
tax~public goods mechanisms. This result allows us to convert the tax design~public goods
problem with finanáng and incentive compatibility constraints to an equivalent design problem
without incentive compatibility constraints. Our characterization of incentive compatibility
requires only very weak assumptions concerning agents' utility functions and does not rely in
any way on the problematic first order approach. Thus, gaps and bunching are permitted.
While much of the literature restricLs optimal taxes to be in certain dasses of functions, our only
restriction on the dass of income tax functions is measurability.
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1. Introduction

Since the seminal work of Mirrlees (1971), economists have used models

of optimal income taxation for policy prescriptions as well as normative

analysis of models of government behavíor. Although it is usually necessary to

employ simulations since closed form solutions to the optimal tax problem are

often unavailable, the model seems capable of yielding important insights into

tax design since it combines government optimization with individual

behavior in the context of uncertainty about the types or wage rates of agents.

The incentive compatibility constraints on the government that arise naturally

from this uncertainty place interesting and vital limits on government

behavior. Examples of the model's usefulness include Brunner (1989), Tillman

(1989), Tuomala (1990), and Weymark (1986a and b, 1987).

The model also suffers from some notable defects. First, it is generally

difficult to give necessary (or sufficïent) conditions for an optimal income tax

other than the standard condition that the top ability individual(s) face a

marginal tax rate of zero. Further properties of an optimal income tax are

derived only from simulation. Second, it is convenient to replace the

optimization problem of agents with the associated first order conditions for

optimization (the so-called first order approach to incentive compatibility)

both for analytical tractability and for simulations. Unfortunately, as L'Ollivier

and Rochet (1983) show using an example, some optimal taxes involve

bunching (having multiple types earning the same gross income) or gaps

(having no types earning some incomes), which implies that the first order

approach is not valid in the sense that a true optimal tax might not satisfy the

first order conditions. It also implies that income taxes derived using the first

order approach are not necessarily optimal, as they might violate second order

conditions for the consumer optimization problems. Berliant and Gouveia

(1994) find conditions on primitives of the optimal income tax problem

sufficient to obtain validity of the first order approach to incentive

compatibility, but these conditions are rather stringent, as they involve

additive separability of consumer utility functions and conditions on the third

derivatives.

Further problems with the model include the restriction to one-
dimensional type descriptions (agents are differentiated only by the wage rate)
and strong assumptions concerning the properties of utility functions,
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generally including normality of one or both goods, a single crossing property,

smoothness, and quasi-concavity.
In this paper we establish necessary and sufficient conditions for the

simultaneous existence of an optimal income tax mechanism and an optimal

vector of public goods. More importantly, we identify a condition sufficient to

guarantee that an optimal tax mechanism can be chosen so to generate the e.ract

amount of revenue required to finance the optimal vector of public goods. Thus

an optimal tax mechanism can be chosen that is budget balancing.

Our analysis is carried out in a general setting, independent of the

validity of the first order approach to incentive compatibility, and requires

only very weak assumptions on consumer utility functions.t No single crossing

property is assumed, and utility functions need not even be quasi-concave or

have any normality property. Gaps and bunching are permitted. The techniques

employed are sufficiently general to allow for multidimensional (and even

infinite dimensional) agent type descriptions. Quinzii and Rochet (1985) found

the first order approach to such models to be exceedingly messy.

The model developed here, while similar to models found in the

principal-agent literature (e.g., Mirrlees (1976), Holmstrom (1979)), differs from

the standard principal-agent model in several important respects. First, rather

than there being a single agent, in our model there are uncountably many

agents. Second, in our model agents face no uncertainty once they have chosen

an action. In particular, each agent chooses a level of income rather than a

probability distribution over income. Finally, in our model there are no

voluntary participation (or individual rationality) constraints. These constraints

are replaced by a financing constraint which requires that the government

choose a tax mechanism that finances the public goods.

Because public goods are financed from current consumption via the

income tax, the government in choosing a vector of public goods and a tax

function must be concerned with the incentives for subsequent income

generation their choices create. In analyzing the government's tax

design~public goods problem we explicitly take into account these incentives.

Thus we formally examine the trade-off between the welfare enhancing effects

of public goods versus the adverse incentives effects of taxation.

tlJsing variauonal techniques, Brito and Oakland (1977) give necessary conditions We optimal quantity of

public goods will satisCy if financed by an optimal income tau. Besides carrying out our analysis in a more

general setUng, our focus here is upon We simultaneous existence of an optimal tax mechanism and an

optimal quantity of public goods.
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Much of the tax literature simply restricts optimal taxes to be in certain

classes of functions (e.g., a class of equicontinuous functions) to obtain the

existence of an optimum. Of course once this reslricHon is made, it is possible

that an income tax function not in this class dominates the optimum in this

class. For instance, if an optímal income tax is found in the class of

differentiable functions, it is possible that an income tax in the class of

continuous functions dominates it. If an optimal tax is found in the class of

continuous functions, it is possible that an income tax in the class of piecewise

continuous functions dominates it, and so forth. In the analysis below no

substantial restrictions are placed upon the class of income tax functions

considered. Thus, the optimal income tax function is determined by economic

considerations rather than exogenous technical restrictions.

In the work presented here, we find necessary and sufficient conditions

for the simultaneous existence of an optimal income tax mechanism and an

optimal vector of public goods. The modeling assumptions required for these

conditions to be valid are surprisingly weak - the most critical assumption

being the existence of a direct tax function and a vector of public goods

satisfying the financing constraint (i.e., the requirement that the income tax

function generate enough revenue to finance the vector of public goods). This

assumption is similar to the Slater condition in the context of mathematical

programming and can be quite easily checked in many problems.

The existence question centers on whether or not the constrained

mathematical programming problem describing the tax design~public goods

problem has a solution. Because there can be uncountably many consumer

types (i.e., wage rates), the tax design problem can have uncountably many

incentive compatibility constraints. This, of course, greatly complicates the

existence problem. The key ingredient in our analysis is a result characterizing

(multi-dimensional and even infinite dimensional) incentive compatibility that

allows us to convert the tnx design~public goods problent wit{t finnncing and incentive

compntibility consiraints to an equivnlent desigrt problern without incentive compatibility

constrnints. The existence of an optimal income tax mechanism and an optimal

vector of public goods can then be established within a very general class of

models using only classical results (e.g., a continuous function on a compact set

achieves a maximum).

Before proceeding with thP analysis, two remarks are in order. First,
while we focus on existence, we believe that the techniques developed here will
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be useful in analyzing the properties of optimal tax mechanisms and optimal

levels of public goods. Second, Kaneko (1981) proves existence of an optimal

tax in a different but related model.

In Section 2 we present the basic ingredients of the model, state the

mechanism design problem corresponding to the optimal tax~public goods

problem, and discuss efficiency. In Section 3 we discuss income~tax menus,

financing requirements, and incentive compatibility. Moreover, in Section 3 we

present our characterization of incentive compatible public sector mechanisms.

In Section 4 we establish necessary and sufficient conditions for the

simultaneous existence of an optimal income tax mechanism and an optimal

vector of public goods. Finally, in Section 5 we identify a condition sufficient to

guarantee the existence of an optimal tax mechanism that generates the exact

amount of revenue required to finance the optimal vector of public goods.
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2. The Framework

Bnsic Ingredients
Let Y and T denote two closed bounded intervals of Rf( the nonnegative

real numbers) such that Y-T. In particular, let Y- T- [O,m] for some large
posiHve real number m. Consider the set

K-{(y,i)EYxT:y?i]. (1)

K is the set of all fensible income and tax liability pairs in Y x T. Equipped with
the standard Euclidean metric, de( ,.), K is compact.

Now let G be a compact subset of Rt, and let z-(z~,...,zk) denote a

typical element in G. Each vector z is a vector of public goods. For each vector z
of public goods, let c(z) denote the (nonnegative) cost of providing public

goods z. In the model we develop here, the cost public goods will be financed
from consumption via the tax mechanism.

Denote by W the set of agent types, usually catled ability or wage rates
in the literature, and equip W with a a- field E and a probability measure P(.)
defined on E. For E e E, P(E) is the fraction of the total number of agents that
are of type w e E.

Finally, for each agent type w E W, let u(w,.,.,.) : K x G-~ R denote the

agent's utility function defined over 3-tuples of income, tax liability, and public
goods, (y,2,z) e K xG. We will assume the following concerning agents' utility

functions:

[A-1]: (1) For each w e W, u(w,.,.,.) is continuous on K xG, and for

each (y,ti,z)EKxG, u(.,y,T,z) is E-measurable.

(2) For each (w,y,z) e W x Y x G, u(w, y,.,z) is strictly decreasing

on K(y) -{t :(y, T) e K] (i.e., íf T and t' are in K(y) and t ~ T',

then u(w,y,t',z)~u(w,y,t,z)).

EXAMPLE 1:
Suppose agents have preferences defined over nonnegative values for
consumption c, labor V, and public goods z represented by a continuous uHlity
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function, v(P,c,z) which is strictly increasing in consumption. Suppose also that

agents differ by an ability parameter, w, strictly positive which can be

interpreted as a wage rate or productivity. In particular, let W-[L, H] c Rtt

denote the set of all possible ability parameters and equip W with the Borel a-

field. Finally, suppose that for each income and tax liability pair (y,t)eK,

labor is given by P- Y, and consumption by c- y- 2. The utility function
w

u(.,.,.,.) given by u(w,y,2,z)-v(W,y-t,z) satisfies [A-1](7) and (2).

We will also assume the following concerning the cost of providing

public goods:

[A-2] The cost function c(.) : G~ Rf is lower semicontinuous.2

The Tax Design Problem with Public Goods
As in Berliant and Gouveia (7994), we assume that the government does

not know each agent's type but can observe each agent's income and thus

deduce (the resulting) tax liability.
To begin, let It(.) be a countably additive finite measure defined on the

measurable space of agent types (W,E), equivalent to the probability measure
P(-).3 The measure u(.) represents one possible welfare weighting scheme for

agent types.
Now let M(W,Y) denote the set of all (E,B(Y))-measurable functions

y(.) : W~ Y, M(Y,T) the set of all (B(Y),B(T))-measurable functions

t(.) : Y~ T, and M(W,G) the set of all (E,B(G))-measurable functions

z(.): W~ G:t The lt-tax design problem with public goods is stated as follows:

2 c(-) : G-~ Rt is lower semicontinuous if zn - a z implies lim infn c(zn )? c(z) .

3It and P aze equivalen[ if they have the same sels of ineasure zero. Thus It and P are
equivalen[ if It is absolutely continuous wi[h respect to P and P is absolutely continuous with
resped to It.
}Here, B(Y) denotes the Borel a-6eld in Y, B(T) the Borel v-field in T, and B(G) the Borel a-

field in G. A fundion y(.) : W-i Y is (i, B(Y))-measurable iff {w e W : y(w) e E} E i for

E e B(Y). ( B(Y), B(T))-measurability and (E, B(G))-measurability are defined in a similaz
manner.
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maximize Ju(w,Y(w),t(y(w)),z(w))dli(w) (2)
W

subject to the constraints

(y(.),t(.),z(.)) e M(W,Y) x M(Y,T) x M(W,G),

the function z(-) is everywhere constant and

equal to some z E G,

for each w e W,
u(w,y(w),t(Y(w)),z(w))? u(w,y,t(Y),z(w'))

for all y E Y and w' E W,

(3)

(4)

(5)

0 5 t(y) 5 y for all y e Y, (6)

j(t(y(w))- c(z(w)))dP(w) ? 0.

W

We will refer to any y(.) e M(W,Y) as a direct income function ( since it is

defined on types) and any t(.) e M(Y,T) as an indirect tax function (since it is

defined on income rather than types). We will also refer to any function
z(-)eM(W,G) as a direct public goods function. Since the consumption of

public goods must be the same for all agents, the feasible set of direct public

goods functions consists of constant functions (as specified in (4)). We will refer
to any pair of functions (y(-),t(.))eM(W,Y)xM(Y,T) as an income tax

mechanism and to any 3-tuple of functions

(y(. ), t(. ), z(. )) e M(W,Y) x M(Y, T) x M(W,G), (8)

as a public sector mechanism.
The constraints given by (5) are the incentive compatibility constraints.

Note that there can be uncountably many incentive compatibility constraints.
Denote by `Y the subset of public sector mechanisms (y(-),t(.),z(.)) satisfying

the incentive compatibility constraints ioifh z(-) a constant fernction.

The constraint given by (6) is a feasibility constraint requiring that the

indirect tax function be such that for all income levels taxes be nonnegative and
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not exceed income. Denote by T' the subset of public sector mechanisms

(y(.),t(-),z(.)) with t(.) satisfying the feasibility constraint.

The constraint given by ( 7) is the financing constraint. It requires that

any public sector mechanism (y(.),t(.),z(.)) be such that the total tax revenues

generated by the income tax mechanism (y(.),t(.)) be sufficient to cover the cost

of providing public goods z(-). Denote by I7 the subset of public sector

mechanisms (y(-),t(.),z(.)) satisfying the financing constraint.

Definition 1
We say that the public sector mechanism (y(.),t(.),z(.)) implements the indirect

tax function t(.) and finances public goods z(.) if and only if

(Y(. ), t(. ), z(. )) e`Y n I' n Il .

Efficiency
We begin with a definition.

Definition 2
We say that a public sector mechanism (y(.),t(.),z(.)) e`Y n i' n II is efficient if

and only if there does not exist another public sector mechanism

(v(.),t'(.),z'(~)) e`P n T' n iI such that

u(w,Y'(w),t'(Y"(w)),z'(w))? u(w,y(w),t(Y(w)),z(w)) a.e.[P] (9)
and

u(w,y'(w),t'(y'(w)),z'(w))?u(w,Y(w),t(Y(w)),z(w)) forall weE,
(10)

for some E E E with P(E) ~ 0.

The following Proposition gives sufficient conditions for efficiency. The

proof is straightforward.

Proposition 1
If the mechanism (y(-), t(.),z(-)) e Y' n T' n i] solves the design problem ((2)-(~)

for some finite measure u equivalent to the probability measure P, then

(y(.),t(.),z(.)) is efficient.
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3. Menus, Mechanisms, and Revenue Requirements

Menus nnd Direct Public Sector Mechnnisrns
One way to approach the public sector design problem is to view the

problem as an optimal delegation problem (e.g., see Holmstrom (1984) or Page

(1992)). Viewing the problem in this way, the government simply chooses a

menu of public goods and a menu of income and tax liability pairs from some

feasible collection of inenus and delegates the choice of public goods

consumption and the choice of an income and tax liability pair to the agents.

There are two problems that must be overcome, however, in order for the

delegation approach to the public sector design problem to be valid. First, a

feasible collection of inenus must be identified that is consistent with the

constraints in the design problem. Second, the menu design problem must be

shown to be equivalent to the mechanism design problem. In the analysis to

follow we will show that both of these difficulties can be 2asilv overcome.

To begin, let Pf(K) denote the collection of all nonempty closed subsets

of K(where as before, K is the set of all feasible income and tax liability pairs

in Y x T), and equip Pf(K) with the Hausdorff inetric h. To accomplish this,

define de(s',C) - infsEC dB(s',s) where s' -(y',T) and s-(y,2) are income~tax

payment pairs in K and C e Pf(K). The Hausdorff inetric h is then given by

h(A,B) - max{sups~ d~(s,B),supsEB dq(s,A)} for A, B in Pl-(K) .

Since K is a compact metric space, Pf(K) equipped with the Hausdorff inetric is

also a compact metric space ( Berge (1963)).
Convergence in (Pt-(K),h) can be characterized as follows. Let {Cn}n be a

sequence in Pf(K) and define Li(Cn) as follows: se Li(Cn) if and only if there

is a sequence {sn}n in K such that for each n sn eCn and limnsn -s. Now

define Ls(Cn ) as follows: s e Ls(Cn ) if and only if there is a subsequence (sn~ }~

in K such that for each j sn~ eCn~ and lim~sn~ - s. A subset of income~tax

liability pairs Ce Pf(K) is said to be the limit of (Cn}n if Li(Cn)-C-Ls(Cn).

Moreover, h(Cn,C) ~ 0( i.e., the sequence ( Cn}n converges to C e Pf(K) under

the Hausdorff inetric h) if and only if Li(Cn) -C - Ls(Cn).

9



Since the government cannot control or restrict the agent's income

choice, any menu C e Pf(K) chosen by the government must be such that

projl,(C)-Y, where projY(C) denotes the projection of the closed set

C c Y x T onto Y. Hence menu choice must be restricted to the set A, where

A-{C e Pf(K): projY (C) - Y}. (12)

The set A is nonempty (e.g., take the 45 degree line in the square Y x T)

and closed with respect to the Hausdorff inetric h(i.e., A is h-closed).5 Thus,
(A, h) is a compact metric space.

Now let Pf(G) denote the collection of all nonempty closed subsets of

G c R~, the feasible set of public goods vectors, and equip Pf(G) with the

Hausdorff inetric h. Since G is compact, (Pf(G),h) is also a compact metric

space. In the case of public goods consumption, the public goods consumption

choice for each agent must be the same (see expression (4) in the design

problem (2)-(~). In order to capture this constraint in the menu problem, let S

denote the collection of all singleton sets (i.e., H e S if and only if H-{z) for

some z in G). The collection of single-element menus S is an h-closed subset of

Pf(G). Thus, (S,h) too is a compact metric space.

Given a particular pair of inenus (C,H)e AxS chosen by the

government, the resulting choice problem for agents is given by

max(y 2,z)eCxH "(``''y'2,z). (13)

Since C x H c K x G is compact, for each agent type w e W, this problem has a
solution. Let

u~(w,C,I~ - max(y ,t,z)eCxH "(s",y,t,z),
and

(14)

~(w,C,H)-{(y,2,z)eCxH:u(w,y,T,z)?u~(w,C,H)}. (15)

Sln particular, it is easy to show that if {Cn }n c A converges to C E Pf(K) under the h melric,

then projY(C)-Y.
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Given menus (C,H)eAxS, u"(w,C,H) is the optimal level of utility

attainable by a type w agent, while ~(w,C,H) is the set of income, tax liability,

and public goods 3-tuples from which the type w agent must choose in order to

attain utility level u"(w,C,H). Thus, the mapping w-~d~(w,C,H) is a best

response mapping.

Proposition 2

(1) u" (w,., ) is continuous on A x S for each w e W(with respect to the

product metric) and u"(.,C,H) is E-measurable on W for each

(C,I'17EAXS.

(2) ~(w,C, H) c K x G is nonempty and compact for each
(w,C, H) E W x A x S. Moreover, ~(w,.,-) is upper semicontinuous on

A x S for each w e W(with respect to the product metric) and ~(.,.,-)

is E x B(A) x B(S)-measurable on W x A x S 5

Proposition 2 essentialty summarizes the contents of Propositions 4.1

and 4.2 in Page (1992).

By the Kuratowski, Ryll-Nardzewski Theorem (see Theorem 5.l in

Himmelberg (1975)), given any pair of inenus (C,H) E A x S there exists a

(E,B(Y) x B(T) x B(G))-measurable function7 w~(y(w),T(w),z(w)) such that

(y(w),T(w),z(w)) e~(w,C,H) for all w e W, (16)

and thus such that for all w E W,

u(w,Y(w),t(w),z(w)) - u"(w,C,I~ - max(y 2,z)eCxH u(w,y,2,z).

(17)

6Here B(A) denotes the Borel 6-field in the compact melric space (A, h) and B(S) the Bore] a-

field in [he compact melric spare ( S, h). ~( ,,) is E x B(A) x B(S)-measurable iff for each closed

subset E of Y x T x G, ((w, C, H) e W x A x 5:~(w, C, H) n E~ PJ) e E x 6(A) x B(S) (see
Himmelherg (1975)).
7Thc function w~(y(w),t(w),z(w)) is (i, B(Y) x B(T) x B(G))-measurahle iff w -~ y(w) is

(E, B(Y))-measurahle, w~ t(w) is ( E, B(T))-measurable, and w~ z(w) is (i, B(G))-

measurahle (see Dudley ( 1989)).
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In fact, it is easy to show that any 3-tuple of functions

(Y(-),t(.),z(-)) E M(E,Y) x M(E,T) x M(E,G) (18)

satisfying (16), satisfies for each w and w' in W the inequality

u(w,y(w),i(w),z(w))? u(w,Y(w"),T(w"),z(w')). (19)

Thus, any 3-tuple of ineasurable funcHons ( y(-),t( ),z(-)) satisfying (16) is an

incentive compatible, direct public sector mechanism corresponding to the pair

of inenus (C,H) e A x S. Moreover, given any incentive compatible direct

public sector mechanism (y(-),T(.),z(.)) corresponding to the menus

(C,H) e A x S, we have for each w e W

u(w, Y(w), T(w), z(w)) - u(w,y, 2, z) frrr all (y, T,z) e~(w, C,H) .
(20)

Finally, given any pair of inenus (C,H) e A x S and any 3-tuple of
measurable functions (y(.),t(-),z(.)) satisfying (16) , we have for some z in G
z(w) - z for all w e W(recall that H-(z) for some z in G).

We will take as the set of all possible direct public sector mechanisms, the
set of all 3-tuples

(Y(~),T(~),z(~)) e M(E,Y) x M(E,T) x M(E,G).

Moreover, given any direct public sector mechanism (y(.),t(.),z(.)), we will

refer to y(.) as the direct income function (as before), Z(.) as the direct tax

function, and z(.) as the direct public goods function (as before).

Menus and Revenue Requirements
A pair of inenus (C, H) e A x S is revenue feasible if the set-valued

mapping w ~~(w,C,H) has a measurable selection (y(.),T(-),z(.)) such that

J(i(w) -c(z(w)))dP(w) ? 0. (21)

W
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Consider the problem

a(w,C,II)-max(2-c(z):(y,t,z)e~(w,C,I-I)i, (22)

The quantity a(w,C,H) is the maximum amount of tax surplus obtainable from

a type w agent consistent ~~ith incentive compatibility given menus
(C,H)eAxS.Since ~(w,C,H)cKxG is nonempty and compact, a(w,C,H) is

well-defined for each (w,C,H) e W x A x S. Now consider the real-valued
mapping A(., ) defined on A xS and given by

A(C,H)- ja(w,C,H)dP(w). (23)
W

Proposition 3
(1) a( ,-,.) is E x B(A) x B(S)-measurable and for each w e W, 6(w,.,.) is

upper semicontinuous on A x S. Moreover, for each pair of inenus
(C,H) e A x S, there exists a measurable selection (y(.),t(.),z(.)) from

~(.,C,H) suchthat T(w)-c(z(w))-a(w,C,H) for all we W.

(2) The mapping (C,H) ~ A(C,H) is upper semicontinuous on A x S.

PROOF: (1) Notíng that the function (2,z)-i T-c(z) is upper semicontinuous,

the first part of (1) follows directly from ProposiHon 4.3 in Page (1992). The

second part follows from the Kuratowski, Ryll-Nardzewski Theorem.

(2) Since (C, H) --~ a(w,C,H) is upper semicontinuous on A x S for each w e W,

it follows from Fatou's Lemma that (C,H)~A(C,H) is upper semicontinuous

on A x S(see Dudley (1989)). Q.E.D.

Let
R-(íC,I-I)E AXS:A(C,I-~?0}.

R is the set of all revenue feasible menu pairs. In particular, for (C,H) e R,

Ja(w, C, H)dP(w) ? 0,
W

(24)

13



and by part ( 1) of Proposition 3 there is a measurable selection (y(.),T(.),z(.))
from di(.,C,H) such that 2(w)-c(z(w))-a(w,C,H) for all we W. Thus, for this

measurable selection

J (T(w) -c(z(w)))dP(w) ? 0.

W

We will assume that

[A-3] R ~ fd.

Proposition 4
R is a closed subset of the compact metric space A x S.

PROOF: The result follows directly from the definition of upper semicontinuity
and the fact that (C,H) -~ A(C,H) is h-upper semicontinuous. Q.E.D.

EXAMPLE 2:
Suppose Y x T-[0,5] x[0,5] and G-[0,2]. Suppose also that agents' ability
parameter, w, is distributed uniformly on the closed interval W-[4,5], and

that agents have preferences defined over nonnegative values for consumption
c, labor Q, and public goods z represented by a conHnuous utility function,
vE(-,.,.):[0,1]x[0,5]x[0,2J~R, given by

~E(Q,c.z)-(1-PfE)-(cfE).(Zf-1),

where e~ 0 is a small positive number.g LetHng 2- y and c- y- T, we have
w

then uE (. ,.,.,.) :[4,5] x K x[0, 2] -i R given by

uE(w,y,i,z)-(1- W fe).(y-zfe).(ztl),

SNote that if e- 0, then agents have Cobb-Douglas utility functions. Unfortunately Cobb-
Douglas utility functions violate monotonicity at boundaries. Thus, in our example if e- 0 and

P- l, then utility is no longer increasing in consumption and the example will fail to satisfy [A-
1](2). Hence, we have e ~0.

14



and it is easy to verify that uE (-,.,.,.) satisfies (A-1] (1) and (2). Finally, suppose

that the cost of public good z is given by c(z) - z. Thus, the cost function c(-)

satisfies [A-2].

If the government chooses menus (C,H) e A x S given by

C-((y,2)eK:2- 2y,O5y52},

and
H - {1},

then the choice problem for each agent, w, is given by

max(V 2,z)eCx(1} u(w'y'2'z)'

For each agent, w, this problem reduces to

maxye[05](1- W te) (2yfe).(2).

Using elementary calculus, it is easy to show that the mapping w~ ~(w,C,H)

corresponding to this collection of choice problems has a unique measurable
selection (y(.),2(-),z(-)) given for each w e W by

y(W)- 2(1tE)W-E

T(w) -~(1 f E)w - 2 E

z(w) -1.

The tax surplus function w ~ a(w,C,H) ( see expression ( 22)) is then given by

6íw,C,H) - 2(w) -c(zíw))

- 4(lfe)w- 2e-1,

and thus we have

15



e(c,H)- J6(w,c,H)dP(w)
W

- J(~(lte)w-2e-1)dw
4

- .125 t .625e.

We can conclude, therefore, that the pair of inenus (C,H) E A x S given by

C-{(y,2)eK:t- 2y,05y52)and H-{1}

is revenue feasible and thus is contained in R.

Menus nrrd Public Sector Mechanisrns
Next we have our main result characterizing public sector mechanisms

in `Y n T' n Il in terms of inenu pairs in R.

Theorem 1
Suppose [A-1], [A-2], and [A-3] hold.
(1) Given any pair of inenus (C,H) e R, there exists a public sector

mechanism ( y(.), t(.),z(.)) in `Y n I' n II such that

(y(w),t(y(w)),z(w)) E~(w,C,H) for all w e W.

(2) Given any public sector mechanism (y(.), t(.),z(.)) in `Y n r n II, there

exists a pair of inenus (C,H) e R such that

(Y(w),t(y(w)),z(w))e~(w,C,H)forall weW.

PROOF: (1) First, let (C,H) e R and let w-~ (y(w),2(w),z(w)) be a direct public

sector mechanism such that

(y(w),T(w),z(w)) e~(w,C,H) for all w e W and

16



~ (i(w) - c(z(w)))dP(w) ? 0.
W

Thus the direct tax function 2(-) finances public goods z(.) and

u(w,Y(w),t(w),z(w))- max(y T,z)ECxH u(w,y,i,z) for all we W.

Second, let y-~ C(y) be a set-valued mapping given by C(y) -{T E T:(y, t) e C}
and let t(.) : Y~ T be a(B(Y),B(T))-measurable function such that

t(y) e C(y) for all y E Y and t(y) - min(2 : t e C(y)},

Since the set-valued mapping y ~ C(y) ís B(Y)-measurable with nonempty

closed values in Y, such a function exists (see Bertsekas and Shreve (1978),

Proposition 7.33).y Moreover, since t(y) e C(y) for all y E Y, 0 5 t(y) 5 y for all

VEY.

Claim 1: (Y(~`'), T(~"),z(``')) -(Y(~`'), t(Y(~`')),z(w)) for all w E W.

If not then for some agent type w' E W, t(w') ~ t(y(w')). Since

t(y(w)) - min(2 : i e C(y(w))} for all w e W,

2(w') ~ t(y(w')) implies that 2(w') ~ t(y(w')). But given [A-1](2), 2(w') ~ t(y(w'))

contradicts the fact that

u(w,Y(w),2(w),z(w))-max(y i,z)ECxH u(w,y,t,z)

for each w. Thus, T(w) - t(y(w)) for all w E W, and thus,

J(t(Y(w)) -c(z(w)))dP(w) ? 0.
W

9Given [A-7](2), u(w,y, t(y),z) - max rEC(y) u(w,y, z, z) for all (w,y,z) e W x Y x G whcre t(. )

is any seleclion from y~ C(y) -(T :(y, t) e C}, C e A, such that t(y) - min{t : t e C(y)) .

17



Claim 2: For each w e W,

u(w,Y(w),t(Y(~")),z(w))? u(w,y,t(y),z(w')) for all y e Y and w' E W.

Suppose not. Then for some w' E W, y" E Y, and w" E W,

u(w' Y'"
t(Y,"),z(w"))

~ u(w,Y(w ),t(Y(w )),z(w'))

- u(w',Y(`N'),t(`N'),z("'')).

Since (y", t(y"),z(w")) E C x H, (') contradicts the fact that

u(w,Y(w),T(w),z(w)) - max(y T,z)ECxH u(w,y,T,z)

for each w. Thus, the (y(.), t(.),z( )) is contained in `1' n i' n[7 and

(Y(``'), t(Y(w)),z(w)) E~(w,C,H) for all w e W,

(')

so that

u(w,y(w), t(y(w)),z(w)) - max(y T z)ECxH u(w,y,T,z) for all w E W.

(2) Let (y(.), t(.),z(.)) e`Y n I' n II and let C- cl[Gr(t(.))], where cl denotes

closure and Gr(t(-)) is the graph of the indirect tax function t(.). Thus,

Gr(t(.)) -{(y, T) E Y x T: T- t(y)j.

Also, let H-{z} where z is that public goods vector in G such that

z(w) - z for all w E W.

Thus, H E S.

First note that since t(.) is defined on all of Y, projl,[cl[Gr(t(.))]] - Y. Note also

that since 0 5 t(y) 5 y for all y E Y, 0 5 T 5 y for all (y, t) E cl[Gr(t(.))]. Thus,

Cl[Gr(t('))] E n.
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Second, since C-c1[Gr(t(.))] it is easy to see that

and thus

(y(w), t(y(w))) e C for all w E W,

u(``',Y("'),KY(`")),z("'))5 max(v,t,z)eCxH u(w'y,t,z) for all we W.

Suppose now that for some agent type w' E W there is some 3-tuple

((y', í), z') e C x H such that

u(w',y(w'),t(Y(w'))~z(w )) ~ u(w'~Y'~j'~z ).

Since H-{z}, u(w',y',t',z')-u(w',y',t',z(w'))-u(w',y',t',z). Moreover, since

(y',2') is in the closure of the graph of t(-) and since u(w',-,-,z(w')) is

continuous on Y x T, there is an income and tax liabilíty pair (y,T) contained in

the graph of t(.) such that

Thus,

u(w,Y(w'),t(y(w')),z(w'p ~ u(w',y,T,z(w )).

u(w', y(w'), t(Y(w')),z(w')) ~ u(w', Y, t(Y),z(w7)

where t(y) - i. This contradicts the assumption that (y(.),t(.),z(-)) E`Y (i.e., the

assumption that (y(.),t(.),z(.)) is incentive compatible with z( ) a constant

function). Thus, since (y(w), t(y(w)),z(w)) e C x H for all w E W and since

u(w,Y(w),t(Y(w)),z(w))- max(y t,z)eCxH u(w,Y,t,z) for all we W,

we can conclude that (y(w), t(y(w)), z(w)) e~(w,C, H) for all w E W. Moreover,

since (y(-),t(y(.)),z(.)) is a measurable selection from ~(.,C,H), and since

J (t(Y(w)) - c(z(w)))dP(w) ? ~,
W

we can conclude that (C, H) -(cl[Gr(t(.))],{z)) e R Q.E.D.
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4. The Existence of an Optimal Public Sector Mechanism

The Il-tax design problem with public goods (i.e., the public sector

mechanism design problem) can be written compactly as

max Ju(w,Y(w),t(Y(w)),z(w))du(w)
(Y(.),t(.),z(.))E`Yni'nCl W

The u-menu design problem is given by
(25)

max(C,I-neR ju~(w'C'I-I)du(w)' (26)
W

We now have our main result stating necessary and sufficient conditions
for the existence of an optimal public sector mechanism. The proof of this
Theorem follows directly from Theorem ] and its proof.

Theorem 2
Suppose [A-1], [A-2], and [A-3] hold. Let It be any finite measure equivalent to
the probability measure P. Then the ft-tax design problem has a solution if and

only if the It-menu design problem has a solution. In particular, the following

statements are true:
(1) If the public sector mechanism (y(-), t(-),Z(.)) E Y' n i' n I7

maximizes J u(w,y(w),t(y(w)),z(w))dp(w) over `Pnfn[7,

W
then the pair of inenus (cl[Gr(t(-))],{z)), where cl[Gr(t(.))] is the closure of

the graph of the indirect tax function t(.) and z is the public goods vector

in G such that z(w) - z for all w E W, is contained in R and

maximizes Ju~(w,C,H)d~(w) over R.
W

(2) If (C, H) E R
maximizes Ju~(w,C,H)d~(w) over R,

W
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then the mechanism (y(.),t(.),z(.)) constructed in (a) and (b) below is

contained in `Y n I' n fl and

maximizes J u(w,y(w), t(y(w)),z(w))dli(w) over `Y n I' n II.

W

(a) y(.) is the direct income function and z(-) the direct public

goods function corresponding to a direct public sector

mechanism
(y(.),t(-),z(.)) e M(W,Y) x M(W,T) x M(W,G)

such that (y(w),T(w),z(w)) e~(w,C,H) for all w e W and

J(T(w)- c(Z(w)))dP(w) ? ~;
W

(b) t(.) : Y-~ T is a (B(Y),B(T))-measurable function such that

t(y) e C(y) for all y e Y and t(y) - min{2 : T e C(y)},

wherey ~ C(y) is the set-valued mapping given by

C(y) -{2 e T:(y, t) e C} for each y e Y.

Our next Theorem is our existence result for the menu design problem.

Theorem 3

Suppose [A-1], [A-2], and [A-3] hold. Then for each finite measure ft equivalent

to the probability measure P, there exists a pair of inenus (C`,H;) e R such that

Ju"(w,C`,Ht)d~(w)- max(C,I~eR J u~(`v'C'H)d~(`v)'

W W

PROOF: Since (C,H) ~ u~(w,C,H) is upper semicontinuous on A x S for each

w, (C,H) ~ J u~(w,C,H)du(w) is upper semicontinuous on A x S for each

W
finite measure ~. This follows from Fatou's Lemma (e.g., see Dudley (1989))

and the definition of upper semicontinuity. Thus, since R c A x S is compact,

the existence of an optimal pair of inenus (C`,H`) e R follows from the classical

Weierstrass Maximum Theorem. Q.E.D.
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Now we have the main result of the paper. This result states that the

general public sector mechanism design problem has a solution, and moreover,

that this solution is e-ffi~ient.

Theorem 4
Suppose [A-1], [A-2], and [A-3] hold. Then for each finite measure u equivalent

to the probability measure P, there exists a public sector mechanism

(Y`(.),t`(.),z`(~))E~r~rr,n
such that

J u(w, y ` ( w), t ` (Y ` (w)),z ` (w))dN(w)
W

-max(Y(.),t(.),z(-))e`i'nI'nI7 j"(w,y(w),t(Y(w)),z(w))dlt(w).
W

Moreover, the public sector mechanism (y `(.), t`( .),z' (.)) E `Y n I' n Il is

efficient.

PROOF: By Theorem 3, for each P-equivalent finite measure lt there exists an

optimal pair of inenus (C`,H')E R.

By part ( 1) of Theorem 1 this implies that there exists a cnirPCnnnrjin~
optimal public sector mechanism ( y `(.),t` (- ),z`(.)) E `Y n I'n CI.

By Proposition 1 such a mechanism is efficient Q.E.D.

5. Optimal Budget Balancing Public Sector Mechanisms

In this section, we identify a condition sufficient to guarantee that the
optimal public sector mechanism can be chosen so as to generate no excess

revenue ( i.e., so that the optimal mechanism is budget balancing). The budget
surplus problem is, of course, well-known in the public finance literature (e.g.,
see Groves and Loeb (1975), Groves and Ledyard (1977), and Green and Laffont

(1977)).
We begin by considering the best response mapping

w -~ ~(w,C, H).
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corresponding to the menus (C,H). The closed set ~(w,C,H) is the type w
agent's set of optimal income, tax liability, and public goods 3-tuples given
menus (C,H). Since for all w e W and all (C, H) e A x S

~(w,C,H)cKxG,

and since K x G is a compact subset of Rk}2 (recall K is a compact subset of Rf

and G is a compact subset of Rt), the collection of best response mappings,

{~(.,C, H) :(C, H) e A x S},

is P-integrably bounded.~~

Now consider the set-valued mapping

(C,I-)7-~ j~(w,C,I-I)dP(w), (2~
W

where

J~(w,C, H)dP(w)
W

-: { j f(w)dP(w) :f(w) -(y(w),t(w),z(w)) e~(w,C,H) f1 w e W}.

W

(28)

~~Chus, there is a P-integrable, point-valued function g(-) : W-~ Rk}2 such that for any menus

(C, H) E A x S, ~xu 5 g(w) for all xe Rktz and w E W such that x E~(w, C, H).
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Proposition 5
(1) For each (C,H) e A x S, J~(w,C,H)dP(w) is a nonempty, compact subset

W

of Rk}2. Moreover, if the probability space of agent types (W,E,P) is

atomless, then
J~(w,C,H)dP(w) isconvex.~~

W

(2) The mapping (C,H) -~ J~(w,C,H)dP(w) is upper semicontinuous on
W

AxS.

PROOF: ( 1) It is easy to see that J~(w,C,H)dP(w) is nonempty and bounded.
W

To show that J[6(w,C,H)dP(w) is closed consider a sequence {xn)n in
W

J~(w,C,H)dP(w) converging to xeRkt2. Let (fn(.)}n be a corresponding
W
sequence of ineasurable selections from ~(.,C,H) such that for each n,

xn- Jfn(w)dP(w). Thus, limn Jfn(w)dP(w)-x. It follows from Fatou's

W W
Lemma in several dimensions (e.g., see Page (1991)), that there exists a

(E,B(1) x B(T) x B(G))-measurable selection f(.) from the mapping

such that

w ~ Ls{fn(w)}

x - J f(w)dP(w).
W

Since 4i(.,C,H) is closed-valued, Ls{fn(w)}c~(w,C,H) for all wEW. Thus,

f(w) e~(w,C,H) for all w e W, and thus

xe J~(w,C,H)dP(w).
W

~ ~ A subset E e Y, is an atom of the probabiliry space (W, ï, P) iF P(E)10 and For all F e E such thaz F c E

either P(F) - 0 or P(E - F) - 0. The probabiliry spam (W, E, P) is a[omless if it contains no atoms.
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The convexity of Jdi(w,C,H)dP(w) whenever (W,E,P) is atomless

W

follows directly from a classical result due to Richter (see Hildenbrand (7974),

Theorem 3, page 62).

(2) Let {(Cn, Hn )}n be a sequence in A x S converging to (C,H) e A x S. Also let
{xn }n be a sequence such that for each n

xn E J~(w,Cn,Hn)dP(w).

W

Corresponding to the sequence {xn}n there is a sequence of

(E, B(Y) x B(T) x B(G))-measurable functions {fn (-)}n such that for each n, fn (.)

is a selection from ~(.,Cn,Hn) and

xn - J fn (w)dP(w).

W

Since {xn}n is bounded, without loss of generality, we can assume that (xn}n

converges to some xeRk}2. Thus, limn Jfn(w)dP(w)-x. It follows from

W

Fatou's Lemma in several dimensions, that there exists a(E,B(Y) x B(T) x B(G))-
measurable selecHon f(-) from w~ Ls{fn(w)} such that

x - J f(w)dP(w).

W

Since the sequence (fn(.)}n is uniformly bounded on W, for each w e W there is
a subsequence {fnk (w)}k such that

f(w) - limnk fnk (w)

where fnk(w)E~(w,Cnk,Hnk).
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Since for each w E W, ~(w,.,.) is upper semicontinuous on A x S, and sínce

(Cn,Hn)-~(C,H), we have for each we W f(w)e~(w,C,H). Thus,

xe Jd~(w,C,H)dP(w) and we can conclude that (C,H)-~ J~(w,C,H)dP(w) is

W W
upper semicontinuous on A x S(see Theorem 1, p. 24 in Hildenbrand (1974)) .

Q.E.D.

Our last Theorem identifies a condition sufficient to guarantee that an
opHmal public sector mechanism can be found that generates no excess revenue.

Theorem 5

Suppose [A-1], [A-2], and [A-3] hold, and let (C`,H`) e R be optimal menus. If
J~(w,C`,H`)dP(w) is convex then there exits a corresponding optimal public
W
sector mechanism, (y `(.),t `(-),z `(.)) e 4' n I' n CI, that generates no excess
revenue. That is, there exists (y `(. ), t` (. ),z `(. )) e `Y n i' n CI such that

J(t `(Y a (w))-c(z `(w)))dP(w) - 0.
W

PROOF: Let (y'(-),2'(-),z'(-)) e M(E,~ x M(E,T) x M(E,G) be a direct mechanism

such that

(Y'(w), í (w), z'(w)) e ~(w,C`, H`) for all w e W,

and
j (t'(w) -c(z'(w)))dP(w) ~ 0. (29)
W

Thus, the direct mechanism (y'(-),T'(-),z'(.)) generates excess revenue.
Since H` -(z`} for some public goods vector z` e G and since z'(w) - z`

for all w e W, (29) can be rewritten as

J 2'(w)dP(w) ~ c(z`).
W

(30)
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Now take the menu C` and for each n form the menu Cn` by

multiplying the tax liability corresponding to each income level by (1- 1).
n

Thus, each (yn, 2n ) E Cn ` is given by (y, (] - 1)t) for some (y, 2) E C`. Given
n

assumpHon [A-1](2), for any n and any measurable selection (yn('),2n('),zn( ))

from ~6(-,Cn`,H'), we havet2

u(w, Yn(w),2n (w),zn(w)) ? u(w, Y'(w), (1- 1)t'(w),z (w))n
~ u(w,Y(~`')~t'(w)~z (w))-

(31)

Thus, for anV n and any measurable selection (yn(.),2n(.),zn(-)) from

~(.,Cn',H') it must be true that

J2n (w)dP(w) ~ c(z`).

W

In particular, if for some n

J 2n (w)dP(w) ? c(z`),

W

then it follows that (Cn',H`) E R. Given (31) this would contradict the
optimality of (C`,H`).

Now observe that {(Cn',H`)}n converges to (C`,H`). Let {xn}n be a

sequence such that for each n

xn E J~(w,Cn',H`)dP(w).

W

Corresponding to the sequence (xn}n there is a sequence of
(E,B(1) x B(T) x B(G))-measurable functions {fn(.)}n such that for each n,

fn(')-(Yn(')~2n(')~zn(')) is a measurable selection from ~(-,Cn`,H') and

12Noic that for each n we have zn (w) - z' for all w e W.
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xn - jfn(w)dP(w)-( JYn(w)dP(~`')~ JTn(w)dP(w)~ Jzn(w)dP(w))~
W W W W

For all n, we have

J Tn(w)dP(w) c c(z`).

W

(32)

Without loss of generality, assume that (xn)n converges to some xeRkf2.

Thus, limn J fn (w)dP(w) - x. Again it follows from Fatou's Lemma in several

W
dimensions and the upper semicontinuity of ~(w,.,-) on A x S for each w e W

that there exists a measurable selection f(.)-(y(.),T(-),z(.)) from ~(.,C',H`)

such that

x- Jf(w)dP(w) - ( J Y(w)dP(w), j 2(w)dP(w), Jz(w)dP(w)).
W W W W

From (32) it follows that

Thus we have

JT(w)dP(w) 5 c(z`).

W

x'-( Jy'(w)dP(w), J t'(w)dP(w), Jz'(w)dP(w))e j di(w,C},H~)dP(w)

W W W W

with

and we have

J T'(w)dP(w) ~ c(z`),

W

x-( JY(w)dP(w), jT(w)dP(w), Jz(w)dP(w))e J~(w,C`,H`)dP(w)
W W W W

(33)
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with
f t(w)dP(w) 5 c(z').

w

Given the convexity of J~(w,C`,H`)dP(w), there exists therefore
W

x`e j~(w,C`,H')dP(w),
W

and a corresponding measurable selection, (y'(.),t`(-),z'( )), from

~( ,C',H`) such that

J 2 " (w)dP(w) - c(z') .
4N

Following the directions given in part (2) of Theorem 2 and using the
direct public sector mechanism (y' (.),2 `O,z ` (-)) , we can construct an optimal
public sector mechanism (y `(-), t`(-) ,z `(.)) e`f' n T' n I7 such that

j (t ~ (Y ` (w)) - c(z ~ ( w)))dP(w) - 0.
W

Q.E.D.

By part (1) of Proposition 5, J~(w,C',H')dP(w) will be convex if the
W

probability space of agent types is atomless. In addition Jd~(w,C`,H`)dP(w)
W

will be convex if the best response mapping w-~ d~(w,C~,H`) correspondíng to
the oatimal menus (C`,H') is single-valued.
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