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Abstract

In this paper we establish necessary and sufficient conditions for the simultaneous
existence of an optimal income tax mechanism and an optimal vector of public goods. Moreover,
we identify a condition sufficient to guarantee that the optimal mechanism is budget balancing.
The key ingredient in our analysis is a result characterizing incentive compatible income
tax/public goods mechanisms. This result allows us to convert the tax design/public goods
problem with financing and incentive compatibility constraints to an equivalent design problem
without incentive compatibility constraints. Our characterization of incentive compatibility
requires only very weak assumptions concerning agents' utility functions and does not rely in
any way on the problematic first order approach. Thus, gaps and bunching are permitted.
While much of the literature restricts optimal taxes to be in certain classes of functions, our only
restriction on the class of income tax functions is measurability.
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1. Introduction

Since the seminal work of Mirrlees (1971), economists have used models
of optimal income taxation for policy prescriptions as well as normative
analysis of models of government behavior. Although it is usually necessary to
employ simulations since closed form solutions to the optimal tax problem are
often unavailable, the model seems capable of yielding important insights into
tax design since it combines government optimization with individual
behavior in the context of uncertainty about the types or wage rates of agents.
The incentive compatibility constraints on the government that arise naturally
from this uncertainty place interesting and vital limits on government
behavior. Examples of the model's usefulness include Brunner (1989), Tillman
(1989), Tuomala (1990), and Weymark (1986a and b, 1987).

The model also suffers from some notable defects. First, it is generally
difficult to give necessary (or sufficient) conditions for an optimal income tax
other than the standard condition that the top ability individual(s) face a
marginal tax rate of zero. Further properties of an optimal income tax are
derived only from simulation. Second, it is convenient to replace the
optimization problem of agents with the associated first order conditions for
optimization (the so-called first order approach to incentive compatibility)
both for analytical tractability and for simulations. Unfortunately, as L'Ollivier
and Rochet (1983) show using an example, some optimal taxes involve
bunching (having multiple types earning the same gross income) or gaps
(having no types earning some incomes), which implies that the first order
approach is not valid in the sense that a true optimal tax might not satisfy the
first order conditions. It also implies that income taxes derived using the first
order approach are not necessarily optimal, as they might violate second order
conditions for the consumer optimization problems. Berliant and Gouveia
(1994) find conditions on primitives of the optimal income tax problem
sufficient to obtain validity of the first order approach to incentive
compatibility, but these conditions are rather stringent, as they involve
additive separability of consumer utility functions and conditions on the third
derivatives.

Further problems with the model include the restriction to one-
dimensional type descriptions (agents are differentiated only by the wage rate)
and strong assumptions concerning the properties of utility functions,



generally including normality of one or both goods, a single crossing property,
smoothness, and quasi-concavity.

In this paper we establish necessary and sufficient conditions for the
simultaneous existence of an optimal income tax mechanism and an optimal
vector of public goods. More importantly, we identify a condition sufficient to
guarantee that an optimal tax mechanism can be chosen so to generate the exact
amount of revenue required to finance the optimal vector of public goods. Thus
an optimal tax mechanism can be chosen that is budget balancing.

Our analysis is carried out in a general setting, independent of the
validity of the first order approach to incentive compatibility, and requires
only very weak assumptions on consumer utility functions.! No single crossing
property is assumed, and utility functions need not even be quasi-concave or
have any normality property. Gaps and bunching are permitted. The techniques
employed are sufficiently general to allow for multidimensional (and even
infinite dimensional) agent type descriptions. Quinzii and Rochet (1985) found
the first order approach to such models to be exceedingly messy.

The model developed here, while similar to models found in the
principal-agent literature (e.g., Mirrlees (1976), Holmstrom (1979)), differs from
the standard principal-agent model in several important respects. First, rather
than there being a single agent, in our model there are uncountably many
agents. Second, in our model agents face no uncertainty once they have chosen
an action. In particular, each agent chooses a level of income rather than a
probability distribution over income. Finally, in our model there are no
voluntary participation (or individual rationality) constraints. These constraints
are replaced by a financing constraint which requires that the government
choose a tax mechanism that finances the public goods.

Because public goods are financed from current consumption via the
income tax, the government in choosing a vector of public goods and a tax
function must be concerned with the incentives for subsequent income
generation their choices create. In analyzing the government's tax
design/public goods problem we explicitly take into account these incentives.
Thus we formally examine the trade-off between the welfare enhancing effects
of public goods versus the adverse incentives effects of taxation.

1Using variational techniques, Brito and Oakland (1977) give necessary conditions the optimal quantity of
public goods will satisfy if financed by an optimal income tax. Besides carrying out our analysis in a more
general setting, our focus here is upon the simultaneous existence of an optimal tax mechanism and an
optimal quantity of public goods.



Much of the tax literature simply restricts optimal taxes to be in certain
classes of functions (e.g., a class of equicontinuous functions) to obtain the
existence of an optimum. Of course once this restriction is made, it is possible
that an income tax function not in this class dominates the optimum in this
class. For instance, if an optimal income tax is found in the class of
differentiable functions, it is possible that an income tax in the class of
continuous functions dominates it. If an optimal tax is found in the class of
continuous functions, it is possible that an income tax in the class of piecewise
continuous functions dominates it, and so forth. In the analysis below no
substantial restrictions are placed upon the class of income tax functions
considered. Thus, the optimal income tax function is determined by economic
considerations rather than exogenous technical restrictions.

In the work presented here, we find necessary and sufficient conditions
for the simultaneous existence of an optimal income tax mechanism and an
optimal vector of public goods. The modeling assumptions required for these
conditions to be valid are surprisingly weak - the most critical assumption
being the existence of a direct tax function and a vector of public goods
satisfying the financing constraint (i.e., the requirement that the income tax
function generate enough revenue to finance the vector of public goods). This
assumption is similar to the Slater condition in the context of mathematical
programming and can be quite easily checked in many problems.

The existence question centers on whether or not the constrained
mathematical programming problem describing the tax design/public goods
problem has a solution. Because there can be uncountably many consumer
types (i.e., wage rates), the tax design problem can have uncountably many
incentive compatibility constraints. This, of course, greatly complicates the
existence problem. The key ingredient in our analysis is a result characterizing
(multi-dimensional and even infinite dimensional) incentive compatibility that
allows us to convert the tax design/public goods problem with financing and incentive
compatibility constraints to an equivalent design problem without incentive compatibility
constraints. The existence of an optimal income tax mechanism and an optimal
vector of public goods can then be established within a very general class of
models using only classical results (e.g., a continuous function on a compact set
achieves a maximum).

Before proceeding with the analysis, two remarks are in order. First,
while we focus on existence, we believe that the techniques developed here will



be useful in analyzing the properties of optimal tax mechanisms and optimal
levels of public goods. Second, Kaneko (1981) proves existence of an optimal
tax in a different but related model.

In Section 2 we present the basic ingredients of the model, state the
mechanism design problem corresponding to the optimal tax/public goods
problem, and discuss efficiency. In Section 3 we discuss income/tax menus,
financing requirements, and incentive compatibility. Moreover, in Section 3 we
present our characterization of incentive compatible public sector mechanisms.
In Section 4 we establish necessary and sufficient conditions for the
simultaneous existence of an optimal income tax mechanism and an optimal
vector of public goods. Finally, in Section 5 we identify a condition sufficient to
guarantee the existence of an optimal tax mechanism that generates the exact
amount of revenue required to finance the optimal vector of public goods.



2. The Framework

Basic Ingredients
Let Y and T denote two closed bounded intervals of R} (the nonnegative
real numbers) such that Y=T. In particular, let Y=T=[0,m] for some large

positive real number m. Consider the set
K={(y,1)e YxT:y21}. (1)

K'is the set of all feasible income and tax liability pairs in Y x T. Equipped with
the standard Euclidean metric, de(:,-), K is compact.

Now let G be a compact subset of RL‘,, and let z=(z1,...,zK) denote a
typical element in G. Each vector z is a vector of public goods. For each vector z
of public goods, let c(z) denote the (nonnegative) cost of providing public
goods z. In the model we develop here, the cost public goods will be financed
from consumption via the tax mechanism.

Denote by W the set of agent types, usually called ability or wage rates
in the literature, and equip W with a o —field £ and a probability measure P(-)
defined on X. For E€ X, P(E) is the fraction of the total number of agents that
are of type weE.

Finally, for each agent type we W, let u(w,-,-,-):KxG— R denote the
agent's utility function defined over 3-tuples of income, tax liability, and public
goods, (y,t,z) e KxG. We will assume the following concerning agents' utility

functions:

[A-1]: (1) For each we W, u(w,:,-,-) is continuous on KxG, and for
each (y,1,z) e KxG, u(-,y,1,2) is £- measurable.

2 For each (w,y,z)e W x Y XG, u(w,y,-,z) is strictly decreasing
on K(y)={t:(y,71) €K]} (i.e., if Tand 1" arein K(y) and t< 7/,
then u(w,y,1’,z) < u(w,y, 1,2)).

EXAMPLE 1:
Suppose agents have preferences defined over nonnegative values for
consumption ¢, labor /, and public goods z represented by a continuous utility



function, v(¢,c,z) which is strictly increasing in consumption. Suppose also that
agents differ by an ability parameter, w, strictly positive which can be
interpreted as a wage rate or productivity. In particular, let W =[L,Hlc R4
denote the set of all possible ability parameters and equip W with the Borel o-
field. Finally, suppose that for each income and tax liability pair (y,1)eK,

labor is given by ¢=Y, and consumption by c¢=y—1. The utility function
w

u(-,-,-,*) given by u(w,y,1,z) =v(—}i, - 1,z) satisfies [A-1](1) and (2).
g ¥ ¥ = pg

We will also assume the following concerning the cost of providing
public goods:

[A-2] The cost function c(-) :G — Ry is lower semicontinuous.2

The Tax Design Problem with Public Goods

As in Berliant and Gouveia (1994), we assume that the government does
not know each agent's type but can observe each agent's income and thus
deduce (the resulting) tax liability.

To begin, let p(-) be a countably additive finite measure defined on the
measurable space of agent types (W,X), equivalent to the probability measure
P(-).3 The measure j(-) represents one possible welfare weighting scheme for
agent types.

Now let M(W,Y) denote the set of all (£,B(Y))-measurable functions
y(-):W—>Y, M(Y,T) the set of all (B(Y)B(T))-measurable functions
t(:):Y> T, and M(W,G) the set of all (Z,B(G))-measurable functions
z(-): W — G.4 The p-tax design problem with public goods is stated as follows:

2c(») :G — R, is lower semicontinuous if z — z implies lim infy o(zp) 2 c(2).

31 and P are equivalent if they have the same sets of measure zero. Thus p and P are
equivalent if p is absolutely continuous with respect to P and P is absolutely continuous with
respect to p.

4Here, B(Y) denotes the Borel o-field in Y, B(T) the Borel o-field in T, and B(G) the Borel o-
field in G. A function y(:):W — Y is (Z, B(Y))-measurable iff {w e W :y(w) € E}e £ for

Ee B(Y). (B(Y), B(T))-measurability and (£, B(G))-measurability are defined in a similar
manner.



maximize j’ u(w, y(w), t{y(w)), z(w))dp(w) )
W
subject to the constraints

(y () (), z(-)) € MW, Y) x M(Y, T) x M(W, G), ©)

the function z(-) is everywhere constant and

equal to some ze G, 4)

foreach weW,
u(w, y(w), t(y(w)), z(w)) 2 u(w, y, t(y), z(w")) ®)
forall yeYand w eW,

0<t(y)<y forall yeY, (6)

_[(t(y(W))- c(z(w))dP(w) 2 0. @)
W

We will refer to any y(-) e M(W,Y) as a direct income function (since it is
defined on types) and any t(-)e M(Y,T) as an indirect tax function (since it is
defined on income rather than types). We will also refer to any function
z(-)e M(W,G) as a direct public goods function. Since the consumption of
public goods must be the same for all agents, the feasible set of direct public
goods functions consists of constant functions (as specified in (4)). We will refer
to any pair of functions (y(:),t(-))e M(W,Y)xM(Y,T) as an income tax

mechanism and to any 3-tuple of functions
(y() (), z(-) € M(W, Y) x M(Y, T) x M(W, G), ®

as a public sector mechanism.

The constraints given by (5) are the incentive compatibility constraints.
Note that there can be uncountably many incentive compatibility constraints.
Denote by ¥ the subset of public sector mechanisms (y(-),t(:),z(-)) satisfying
the incentive compatibility constraints with z(-) a constant function.

The constraint given by (6) is a feasibility constraint requiring that the
indirect tax function be such that for all income levels taxes be nonnegative and



not exceed income. Denote by I' the subset of public sector mechanisms
(y(-), t(-),z(:)) with t(-) satisfying the feasibility constraint.

The constraint given by (7) is the financing constraint. It requires that
any public sector mechanism (y(:),t(-),z(-)) be such that the total tax revenues
generated by the income tax mechanism (y(-),t(-)) be sufficient to cover the cost
of providing public goods z(-). Denote by II the subset of public sector
mechanisms (y(-), t(-),z(-)) satisfying the financing constraint.

Definition 1

We say that the public sector mechanism (y(-), t(-),z(-)) implements the indirect
tax function t(-) and finances public goods z() if and only if
(y() () z(:)) e ¥ NI NIl

Efficiency
We begin with a definition.

Definition 2
We say that a public sector mechanism (y(-),t(-),z(-)) e ¥ "I NIl is efficient if

and only if there does not exist another public sector mechanism
()t (:),Z'(-)) € ¥ nT NII such that

u(w, y'(w), Y (y' (W), Z'(w)) 2 u(w, y(w), t(y(w)), z(w)) a.e.[P] ©)
and
u(w, y'(w), U (y'(w)), z'(w)) = u(w, y(w), t{y(w)), z(w)) for all weE,
(10)
for some E € X with P(E) > 0.

The following Proposition gives sufficient conditions for efficiency. The
proof is straightforward.

Proposition 1

If the mechanism (y(-),t(-),z(-)) € ¥ "T NII solves the design problem ((2)-(7))
for some finite measure y equivalent to the probability measure P, then
(y(-), t(-),z(-)) is efficient.



3. Menus, Mechanisms, and Revenue Requirements

Menus and Direct Public Sector Mechanisms

One way to approach the public sector design problem is to view the
problem as an optimal delegation problem (e.g., see Holmstrom (1984) or Page
(1992)). Viewing the problem in this way, the government simply chooses a
menu of public goods and a menu of income and tax liability pairs from some
feasible collection of menus and delegates the choice of public goods
consumption and the choice of an income and tax liability pair to the agents.
There are two problems that must be overcome, however, in order for the
delegation approach to the public sector design problem to be valid. First, a
feasible collection of menus must be identified that is consistent with the
constraints in the design problem. Second, the menu design problem must be
shown to be equivalent to the mechanism design problem. In the analysis to
follow we will show that both of these difficulties can be easily overcome.

To begin, let Pr(K) denote the collection of all nonempty closed subsets
of K (where as before, K is the set of all feasible income and tax liability pairs
in YxT), and equip Pf(K) with the Hausdorff metric h. To accomplish this,
define de(s’,C) = infSGC dy(s’,s) where s’=(y’,7") and s=(y,T) are income/tax

payment pairs in K and C € P;(K). The Hausdorff metric h is then given by

h(A,B) = max{supseA dT](s,B),supSEB dn(s,A)} for A, Bin Pr(K) .
11)

Since K is a compact metric space, Pr(K) equipped with the Hausdorff metric is
also a compact metric space (Berge (1963)).

Convergence in (Pf(K),h) can be characterized as follows. Let {Cp, };; be a
sequence in Pf(K) and define Li(Cp) as follows: se Li(Cp) if and only if there
is a sequence {sp}y in K such that for each n sy €eC; and limp s, =s. Now
define Ls(Cp,) as follows: s € Ls(Cp,) if and only if there is a subsequence {snj Jj

in K such that for each j Snj ean and Iimjsnj =s. A subset of income/tax
liability pairs C e Pg(K) is said to be the limit of {Cp} if Li(Cp)=C=Ls(Cp).
Moreover, h(Cp,C) — 0 (i.e., the sequence {C, }, converges to C e Pp(K) under
the Hausdorff metric h) if and only if Li(C,,) =C=Ls(Cy).



Since the government cannot control or restrict the agent's income
choice, any menu CePf(K) chosen by the government must be such that
projy(©) =Y, where projy (C) denotes the projection of the closed set

Cc YxT onto Y. Hence menu choice must be restricted to the set A, where

A={CePf(K):pron(C)=Y}. 12)

The set A is nonempty (e.g., take the 45 degree line in the square Y x T)
and closed with respect to the Hausdorff metric h (i.e., A is h-closed).5 Thus,
(A, h) is a compact metric space.

Now let P¢(G) denote the collection of all nonempty closed subsets of

GCR!f., the feasible set of public goods vectors, and equip Pf(G) with the
Hausdorff metric h. Since G is compact, (Pf(G),h) is also a compact metric
space. In the case of public goods consumption, the public goods consumption
choice for each agent must be the same (see expression (4) in the design
problem (2)-(7)). In order to capture this constraint in the menu problem, let S
denote the collection of all singleton sets (i.e., He S if and only if H={z} for
some z in G). The collection of single-element menus S is an h-closed subset of
P¢(G). Thus, (S,h) too is a compact metric space.

Given a particular pair of menus (C,H)e AxS chosen by the

government, the resulting choice problem for agents is given by

max( u(w,y,t,z). (13)

y,1,z)eCxH

Since Cx Hc K xG is compact, for each agent type we W, this problem has a
solution. Let

M (w,C, H) = max(y,t,z)erH u(w,y,,2z), (14)

and
@d(w,C,H)={(y,7,2) eCxH:u(w,y,1,2z) 2u” (w,C, H)}. (15)

5In particular, it is easy to show that if {Cpy }, € A converges to Ce Pf(K) under the h metric,
then pron(C) =Y.

10



Given menus (C,H)e AxS, u®(w,C,H) is the optimal level of utility
attainable by a type w agent, while ®(w,C,H) is the set of income, tax liability,
and public goods 3-tuples from which the type w agent must choose in order to
attain utility level u”(w,C,H). Thus, the mapping w — ®(w,C,H) is a best
response mapping.

Proposition 2

1) u”(w,-,+) is continuous on A xS for each we W (with respect to the
product metric) and u”(-,C,H) is Z-measurable on W for each
(C,H)e AxS.

(2) ®(w,C,H) c KxG is nonempty and compact for each
(w,C,H) e W x A xS. Moreover, ®(w,-,-) is upper semicontinuous on
A xS foreach we W (with respect to the product metric) and ®(-,-,-)
is X x B(A) x B(S)-measurable on W x A xS.8

Proposition 2 essentially summarizes the contents of Propositions 4.1
and 4.2 in Page (1992).

By the Kuratowski, Ryll-Nardzewski Theorem (see Theorem 5.1 in
Himmelberg (1975)), given any pair of menus (C,H)e A XS there exists a
(Z,B(Y) x B(T) x B(G))-measurable function”? w — (y(w), t(w),z(w)) such that

(y(w), t(w),z(w)) € (w,C,H) forall weW, (16)
and thus such that forall we W,

u(w,y(w), 1(w),z(w)) =u”(w,C,H) = max(y,t,z)erH u(w,y,T,z).
17)

6Here B(A) denotes the Borel ¢-field in the compact metric space (A, h) and B(S) the Borel -
field in the compact metric space (S, h). @(-,-) is T x B(A)x B(S)-measurable iff for each closed
subset Eof YXTxG, {(w,C, H)e WxAxS:®(w,C,H)NE# D} e ZxB(A)xB(S) (see
Himmelberg (1975)).

7The function w — (y(w), t(w), z(w)) is (£, B(Y)x B(T) x B(G))-measurable iff w — y(w) is

(Z,B(Y))-measurable, w — 7(w) is (£, B(T))-measurable, and w — z(w) is (Z, B(G))-
measurable (see Dudley (1989)).

11



In fact, it is easy to show that any 3-tuple of functions
(y(:),2(-),z()) e M(Z, Y) xM(Z, T) x M(Z,G) (18)
satisfying (16), satisfies for each w and w’ in W the inequality
u(w, y(w), ©u(w),z(w)) 2 u(w, y(w’), T(W’), z(W’)). (19)

Thus, any 3-tuple of measurable functions (y(-),t(-),z(-)) satisfying (16) is an
incentive compatible, direct public sector mechanism corresponding to the pair
of menus (C,H)e AxS. Moreover, given any incentive compatible direct
public sector mechanism (y(-),7(:),z(:)) corresponding to the menus
(C,H) e A xS, we have for each we W

u(w, y(w), o(w),z(w)) = u(w,y, ,2) forall (y,1,z) € ®(w,C, H).
(20)

Finally, given any pair of menus (C,H)e AxS and any 3-tuple of
measurable functions (y(-),7(-),z(-)) satisfying (16) , we have for some z in G
z(w) =z for all we W (recall that H ={z} for some z in G).

We will take as the set of all possible direct public sector mechanisms, the
set of all 3-tuples

(y(),1(),z()) e M(Z,Y) X M(Z, T) x M(Z,G).

Moreover, given any direct public sector mechanism (y(-),(-),z(-)), we will
refer to y(-) as the direct income function (as before), ©(:) as the direct tax
function, and z(-) as the direct public goods function (as before).

Menus and Revenue Requirements
A pair of menus (C,H)e AxS is revenue feasible if the set-valued
mapping w — ®(w,C,H) has a measurable selection (y(-),t(-),z(-)) such that

J(x(w) = c(z(w)))dP(w) 2 0. 1)
W

12



Consider the problem
o(w,C,H) = max{t—c(2):(y,1,2) € ®(w,C,H)}, (22)

The quantity o(w,C,H) is the maximum amount of tax surplus obtainable from
a type w agent consistent with incentive compatibility given menus
(C,H) e AxS. Since ®(w,C,H)c KxG is nonempty and compact, o(w,C,H) is
well-defined for each (w,C,H)e W xAxS. Now consider the real-valued
mapping A(-,-) defined on A xS and given by

A(CH) = [o(w,CH)dP(w). 23)
w

Proposition 3

1) o(-,-,) is £xB(A)x B(S)-measurable and for each we W, o(w,-,") is
upper semicontinuous on A xS. Moreover, for each pair of menus
(C,H) € A xS, there exists a measurable selection (y(-),7(-),z(-)) from
®(-,C,H) such that 1(w) —c(z(w)) =o(w,C,H) for all we W.

2) The mapping (C,H) — A(C,H) is upper semicontinuous on A xS.

PROOF: (1) Noting that the function (1,z) - T—c(z) is upper semicontinuous,
the first part of (1) follows directly from Proposition 4.3 in Page (1992). The
second part follows from the Kuratowski, Ryll-Nardzewski Theorem.

(2) Since (C,H) = o(w,C,H) is upper semicontinuous on AxS for each weW,
it follows from Fatou's Lemma that (C,H) — A(C,H) is upper semicontinuous
on A xS (see Dudley (1989)). Q.E.D.

Let
R ={(C,H)e AxS:A(C,H)>0}. (24)

R is the set of all revenue feasible menu pairs. In particular, for (C,H) e R,

[o(w,C,H)dP(w) 20,
W

13



and by part (1) of Proposition 3 there is a measurable selection (y(-),(-),z(-))
from ®(-,C,H) such that ©(w)—c(z(w)) = o(w,C,H) for all we W. Thus, for this

measurable selection

j (t(w) — c(z(w)))dP(w) > 0.
W

We will assume that
[A-3] R=J.

Proposition 4
R is a closed subset of the compact metric space A xS.

PROOQOF: The result follows directly from the definition of upper semicontinuity
and the fact that (C,H) — A(C,H) is h-upper semicontinuous. Q.E.D.

EXAMPLE 2:
Suppose YxT=[0,5]x[0,5] and G=[0,2]. Suppose also that agents' ability
parameter, w, is distributed uniformly on the closed interval W =[4,5], and
that agents have preferences defined over nonnegative values for consumption
¢, labor ¢, and public goods z represented by a continuous utility function,
Ve ()t [0,1] x[0,5] x[0,2] = R, given by

vE(Z,c,z)=(l—£+s)-(c+e)-(z+l),

where £> 0 is a small positive number.® Letting / =Y and c= y—1, we have
w
then ug (-,:,,7):[4,5]xKx[0,2] > R given by

up (W,y,52)=(1-L4e)-(y-t+e) (2+1),

8Note that if € =0, then agents have Cobb-Douglas utility functions. Unfortunately Cobb-
Douglas utility functions violate monotonicity at boundaries. Thus, in our example if & =0 and
£=1, then utility is no longer increasing in consumption and the example will fail to satisfy [A-
1](2). Hence, we have & >0.

14



and it is easy to verify that ug (-,+,-,-) satisfies [A-1] (1) and (2). Finally, suppose
that the cost of public good z is given by c(z) =z. Thus, the cost function c(-)
satisfies [A-2].

If the government chooses menus (C,H) € A xS given by

C={(y,t)eK:t=%y,OSyS2},

and
H={1},

then the choice problem for each agent, w, is given by
maxy ¢ z)eCx{1} “WY: % 2)-

For each agent, w, this problem reduces to
max a-YL1e).Ay+e)-@.
yeloS]T w 2

Using elementary calculus, it is easy to show that the mapping w — ®(w,C,H)

corresponding to this collection of choice problems has a unigue measurable
selection (y(-),t(-),z(-)) given for each we W by

y(w)=%(l+£)w—£

o(w)= %(1+e)w—%e

z(w)=1.
The tax surplus function w — o(w,C,H) (see expression (22)) is then given by

o(w,C H) = 1(w) —c(z(w))

and thus we have

15



AC,H) = [o(w,C,H)dP(w)
W

2 4 1

= I(Z(l +£)W—E£ —1)dw
4

=.125+.625¢.

We can conclude, therefore, that the pair of menus (C,H) € A xS given by
C={(y,r)eK:‘t=%y, 0<y<2}and H=({1}

is revenue feasible and thus is contained in R.

Menus and Public Sector Mechanisms
Next we have our main result characterizing public sector mechanisms
in ¥ NI’ NI in terms of menu pairs in R.

Theorem 1
Suppose [A-1], [A-2], and [A-3] hold.
(L Given any pair of menus (C,H) € R, there exists a public sector
mechanism (y(-),t(-),z(-)) in ¥ "I" N II such that
(y(w), t(y(w)), z(w)) € ®(w,C,H) for all weW.

2) Given any public sector mechanism (y(-),t(:),z(:)) in ¥ "I NTI, there
exists a pair of menus (C,H) € R such that
(y(w), t(y(w)),z(w)) € ®(w,C,H) for all we W.

PROOF: (1) First, let (C,H)e R and let w — (y(w),T(w),z(w)) be a direct public

sector mechanism such that

(y(w), ©(w),z(w)) € ®(w,C,H) for all we W and

16



[ (W) = c(z(W)))dP(w) 2 0.
W

Thus the direct tax function 1(-) finances public goods z(-) and

u(w, y(w), 1(w),z(w)) = max(y 1,z)eCxH u(w,y,1,z) for all we W.

Second, let y — C(y) be a set-valued mapping given by C(y)={teT:(y,1) eC}
and let t(-): Y —> T be a (B(Y), B(T))-measurable function such that

t(y) e C(y) for all ye Y and t(y) = min{t: 1 C(y)},
Since the set-valued mapping y — C(y) is B(Y)-measurable with nonempty
closed values in Y, such a function exists (see Bertsekas and Shreve (1978),
Proposition 7.33).9 Moreover, since t(y) e C(y) for all yeY, 0<t(y)<y for all
yeY.
Claim 1: (y(w), (W), z(w)) = (y(W), t(y(w)),z(w)) for all weW.
If not then for some agent type w’ e W, t(w’) # t(y(w’)). Since

t(y(w)) = min{t: 1€ C(y(w))} for all we W,

T(w’) # t(y(w’)) implies that t(w’) > t(y(w’)). But given [A-1](2), t(w’) > t(y(w"))
contradicts the fact that

u(w, y(w), 1(w),z(w)) = max (v,7,2)eCxH u(w,y,T,z)
for each w. Thus, ©(w) = t(y(w)) for all we W, and thus,

[ (ty(w)) —c(z(w))dP(w) 2 0.
\%

9Given [A-1](2), u(w,y,t(y),z) = max. . c(y) u(w,y, 1,2) forall (w,y,z)e WxYxG where t(-)
is any selection from y — C(y) ={t:(y,7) € C}, Ce A, such that t(y) = min{t:1e C((y)}.
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Claim 2: For each we W,
u(w, y(w), t(y(w)),z(w)) 2 u(w,y, t(y),z(w") forall ye Y and w e W.
Suppose not. Then for some w' e W, y”eY,and w’eW,

u(w’,y", ty”),z(w")) > u(w’, y(w), t(y(w’), 2(w"))
=u(w’,y(w'), t(w’), z(W").

*)
Since (y”,t(y”’),z(w”")) e Cx H, (*) contradicts the fact that
u(w, y(w), t(w),z(w)) = max(yl 1,2)eCxH u(w,y,1,z)

for each w. Thus, the (y(-),t(-),z(-)) is contained in ¥ "TI" N IT and

(y(w), t(y(w)),z(w)) € ®(w,C,H) forall we W,
so that

u(w, y(w), t(y(w)),z(w)) = max (y,%,2)CxH u(w,y,1,z) forall we W.

(2) Let (y(:),t(-),z(-))e¥NI' NI and let C=cl[Gr(t(-))], where cl denotes
closure and Gr(t(-)) is the graph of the indirect tax function t(-). Thus,

Gr(t(-)) ={(y, ) e YXT:1=t(y)}.
Also, let H ={z} where z is that public goods vector in G such that
z(w)=1z forall weW.
Thus, HeS.
First note that since t(-) is defined on all of Y, pron[cl[Gr(t(-))]] =Y. Note also

that since 0<t(y)<y for all yeY, 0<t<y for all (y,t)ecl[Gr(t(-))]. Thus,
cl[Gr(t(-))] e A.

18



Second, since C =cl[Gr(t(-))] it is easy to see that

(y(w), t(y(w))) e C forall we W,
and thus

u(w,y(w), t(y(w)),z(w)) < MaxX(y + 2)eCxH u(w,y,1,z) for all we W .

Suppose now that for some agent type w’eW there is some 3-tuple
((y’,7'),2) e Cx H such that

u(w, y(w'), t(y(w)), z(w)) <u(w’,y’, 7', 2).
Since H={z}, u(w’,y’,7,z") = u(w’,y’, 7", 2(W)) = u(w’,y’,1’,z) . Moreover, since
(y’,7') is in the closure of the graph of t(-) and since u(w’,-,-,z(w’)) is

continuous on Y X T, there is an income and tax liability pair (y,T) contained in
the graph of t(-) such that

u(w’, y(w), t(y(w")),z(w")) < u(w’,y,%,z(w)).
Thus,
u(w’, y(w), t(y(w), z(w")) < u(w’, ¥,(y),z(w"))

where t(y) =7. This contradicts the assumption that (y(:),t(-),z(-)) e ¥ (i.e., the
assumption that (y(:),t(-),z(-)) is incentive compatible with z(-) a constant

function). Thus, since (y(w), t(y(w)),z(w)) e CxH for all we W and since

u(w, y(w), t(y(w)),z(w)) = max(y,t,z)erH u(w,y,1,z) forall we W,

we can conclude that (y(w), t(y(w)),z(w)) € ®(w,C,H) for all we W. Moreover,
since (y(-),t(y(:)),z(:)) is a measurable selection from ®(-,C,H), and since

[ (ty(w)) — c(z(w)))dP(w) 20,
A%

we can conclude that (C,H) = (cl[Gr(t(-))].{z}) e R Q.E.D:
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4. The Existence of an Optimal Public Sector Mechanism

The p-tax design problem with public goods (i.e., the public sector

mechanism design problem) can be written compactly as

max 5 42 Ne¥rrall Vjv u(w, y(w), ty(w)), z(w))dp(w)

25)
The p-menu design problem is given by
max iR [ur(w,C, Hydp(w). (26)
w

We now have our main result stating necessary and sufficient conditions
for the existence of an optimal public sector mechanism. The proof of this
Theorem follows directly from Theorem 1 and its proof.

Theorem 2

Suppose [A-1], [A-2], and [A-3] hold. Let p be any finite measure equivalent to
the probability measure P. Then the p-tax design problem has a solution if and
only if the p-menu design problem has a solution. In particular, the following

statements are true:
1) If the public sector mechanism (y(-),t(-),z(-)) e ¥ "' 11

maximizes Ju(w, y(w), t(y(w)), z(w))dp(w) over ¥ NI'NII,
w
then the pair of menus (cl[Gr(t(-))],{z}), where cl[Gr(t(-))] is the closure of

the graph of the indirect tax function t(-) and z is the public goods vector
in G such that z(w) =z for all we W, is contained in R and

maximizes ju"(w,C,H)du(w) over R.
w

) If (C,H)eR

maximizes ju"(w,C,H)du(w) over R,
w
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then the mechanism (y(:),t(-),z(-)) constructed in (a) and (b) below is

contained in ¥ nI" 1T and

maximizes J u(w, y(w), t(y(w)),z(w))dp(w) over ¥ T NII.
w

(a) y(-) is the direct income function and z(-) the direct public

goods function corresponding to a direct public sector
mechanism
(y(-),7(-),z()) e MW, Y) xM(W, T) x M(W, G)
such that (y(w), t(w),z(w)) € ®(w,C,H) for all we W and
[ @w)=cew))dP(w) 2 0;
w

(b) t(-): Y > T is a (B(Y),B(T))-measurable function such that
t(y) e C(y) forall yeY and t(y) = min{t:te C(y)},
wherey — C(y) is the set-valued mapping given by
C(y)={teT:(y,1)eC} foreach yeY.

Our next Theorem is our existence result for the menu design problem.

Theorem 3
Suppose [A-1], [A-2], and [A-3] hold. Then for each finite measure p equivalent

to the probability measure P, there exists a pair of menus (C* H*) € R such that

[ur(w,C* H*)dp(w) = max (CH)eR [ur(w,C, Hydu(w).
W W

PROOF: Since (C,H) — u”(w,C,H) is upper semicontinuous on A xS for each
w, (CH)— ju"(w,C,H)du(w) is upper semicontinuous on A XS for each

w
finite measure Q. This follows from Fatou's Lemma (e.g., see Dudley (1989))

and the definition of upper semicontinuity. Thus, since R © A XS is compact,
the existence of an optimal pair of menus (C*,H*) e R follows from the classical

Weierstrass Maximum Theorem. Q.E.D.
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Now we have the main result of the paper. This result states that the
general public sector mechanism design problem has a solution, and moreover,
that this solution is efficient.

Theorem 4
Suppose [A-1], [A-2], and [A-3] hold. Then for each finite measure yu equivalent

to the probability measure P, there exists a public sector mechanism

Y* Lt ()z*()e¥nT NI
such that

Jutw,y* W), t* (y * (W), z* (W)dp(w)
w

= max (YA 2())e¥ AT AT j u(w, y(w), t(y(w)),z(w))dp(w).
W

Moreover, the public sector mechanism (y*(:),t*(-),z*(:))e¥nI'nIl is

efficient.

PROOF: By Theorem 3, for each P-equivalent finite measure | there exists an
optimal pair of menus (C*, H*)eR.

By part (1) of Theorem 1 this implies that there exists a corresponding
optimal public sector mechanism (y* (:),t*(:),z*(-)) e ¥ NI N II.

By Proposition 1 such a mechanism is efficient. Q.E.D.
5. Optimal Budget Balancing Public Sector Mechanisms

In this section, we identify a condition sufficient to guarantee that the
optimal public sector mechanism can be chosen so as to generate no excess
revenue (i.e., so that the optimal mechanism is budget balancing). The budget
surplus problem is, of course, well-known in the public finance literature (e.g.,
see Groves and Loeb (1975), Groves and Ledyard (1977), and Green and Laffont
(1977)).

We begin by considering the best response mapping

w— ®(w,C,H),
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corresponding to the menus (C,H). The closed set ®(w,C,H) is the type w
agent’s set of optimal income, tax liability, and public goods 3-tuples given

menus (C,H). Since for all we W and all (C,H)e AxS

o(w,C,H)cKxG,

and since KxG is a compact subset of le’z (recall K is a compact subset of R.%

and G is a compact subset of Rl.f.), the collection of best response mappings,
{®(,C,H):(C,H) e AxS},

is P-integrably bounded.!10
Now consider the set-valued mapping

(CH) > [d(w,CH)dP(w), 27)
W
where
jd:(w,c, H)dP(w)
w

={ Jf(w)dP(w) Hf(w) = (y(w), 1(w),z(w)) e &(w,C,H) V we W}
w
(28)

10T hus, there is a P-integrable, point-valued function g(-) : W — Rk+2 such that for any menus
(CH)eAxS, [ <gw) for all xe RK*2and w € W such thar x € &(w, C, H).
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Proposition 5
(1) For each (C,H)e A xS, Jcb(w,C, H)dP(w) is a nonempty, compact subset
W
of RK+2, Moreover, if the probability space of agent types (W,X,P) is
atomless, then
I(D(w,C,H)dP(w) is convex.!!
W

(2) The mapping (C,H) — jtb(w,C,H)dP(w) is upper semicontinuous on
W
A XS.

PROOF: (1) It is easy to see that I¢(w,C,H)dP(w) is nonempty and bounded.
w

To show that I(ib(w,C,H)dP(w) is closed consider a sequence {xp}, in

W

J¢(w,C,H)dP(w) converging to xeRK*2, Let {fan(:)}n be a corresponding

:unence of measurable selections from ®(-,C,H) such that for each n,

Xp = jfn(w)dP(w). Thus, limp an(w)dP(w)=x. It follows from Fatou's
w w

Lemma in several dimensions (e.g., see Page (1991)), that there exists a
(Z,B(Y) x B(T) x B(G))-measurable selection f(-) from the mapping

w — Ls{f, (w)}
such that
X= j f(w)dP(w).
w

Since @®(-,C,H) is closed-valued, Ls{f,(w)}c ®(w,C,H) for all weW. Thus,
f(w) e ®(w,C,H) for all we W, and thus

xe [@(w,CH)AP(w).
W

1A subset E € X is an atom of the probability space (W, Z,P) if P(E)>0 and forall F€ X suchthat FcE
cither P(F) =0 or P(E—F) = 0. The probability space (W, Z, P) is atomless if it contains no atoms.
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The convexity of I(D(W,C,H)dP(w) whenever (W,X,P) is atomless
W
follows directly from a classical result due to Richter (see Hildenbrand (1974),
Theorem 3, page 62).

(2) Let {(Cp,,Hp)}n be a sequence in A xS converging to (C,H) e A xS. Also let
{xn}n be a sequence such that for each n

xp € [®(w,Cp, Hp)dP(w).
W

Corresponding to the sequence {xp)}, there is a sequence of
(Z,B(Y) x B(T) x B(G))-measurable functions {f, ()} such that for each n, f,(-)
is a selection from ®(-,C,Hp) and

Xn = an(w)dP(w).
W

Since {xp}n is bounded, without loss of generality, we can assume that {xp}p

converges to some xe rRE+2, Thus, limp an(w)dP(w)=x. It follows from
W

Fatou's Lemma in several dimensions, that there exists a (Z,B(Y) x B(T) xB(G))-

measurable selection f(-) from w — Ls{f, (w)} such that

x= j f(w)dP(w).
w

Since the sequence {fy, (-)}n, is uniformly bounded on W, for each we W there is
a subsequence [fnk (w)Jk such that

f(w) =lim nk fnk (w)

where fnk (w)e (D(w,an ,an )s
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Since for each we W, ®(w,-,:) is upper semicontinuous on AXS, and since
(Ch Hp)—> (C,H), we have for each weW f(w)ed(w,C,H). Thus,
X € jd)(w,C,H)dP(w) and we can conclude that (C,H) —» Itb(w,C,H)dP(w) is
w 4%
upper semicontinuous on A xS (see Theorem 1, p. 24 in Hildenbrand (1974)) .
Q.E.D.

Our last Theorem identifies a condition sufficient to guarantee that an
optimal public sector mechanism can be found that generates no excess revenue.

Theorem 5

Suppose [A-1], [A-2], and [A-3] hold, and let (C*,H*) € R be optimal menus. If
I‘D(w,C"’,H")dP(w) is convex then there exits a corresponding optimal public
W

sector mechanism, (y*(-),t*(-),z*(-))e ¥ nI'NIl, that generates no excess

revenue. That is, there exists (y*(-),t*(-),z*(-)) e ¥ nT' NI1 such that

I(t “(y * (W) —c(z* (w)))dP(w) = 0.
w

PROOF: Let (y'(-),7'(-),2’(:)) e M(Z,Y) x M(Z, T) x M(Z,G) be a direct mechanism
such that

(y'(w),T'(w),z'(w)) e ®(w,C*H*) forall we W,
and
j(t'(w) —c(z'(w)))dP(w) > 0. (29)
w

Thus, the direct mechanism (y’(:),t'(:),z’(-)) generates excess revenue.
Since H* = {z*} for some public goods vector z* G and since z'(w)=z*

for all we W, (29) can be rewritten as

j 7 (w)dP(w) > c(z*). (30)
W
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Now take the menu C* and for each n form the menu Cp* by

multiplying the tax liability corresponding to each income level by (1—1).
n

Thus, each (yn,Tn)€Cp * is given by (y,(1 —l)t) for some (y,1)eC*. Given
n

assumption [A-1](2), for any n and any measurable selection (yp(-),tn(:),zn(-))
from ®(-,Cp* H*), we have!?

W, Y (W) T (W), 20 (W) 2 u(w, (), (L= DEGZ) )

> u(w, y'(w), t'(w),z'(w)).

Thus, for any n and any measurable selection (yn(-),Tn(:),zn(:)) from
®(-,Cp* H*) it must be true that

J‘cn(w)dP(w) <c(z*).
w

In particular, if for some n

[tn(W)dP(w) 2 c(z"),
W

then it follows that (Cp*H*)eR. Given (31) this would contradict the
optimality of (C*,H*).

Now observe that {(Ch* H*)}, converges to (C*H*). Let {xp}n be a
sequence such that for each n

xn € [®(w,Cp*H*)dP(W).
W

Corresponding to the sequence ({xp), there is a sequence of
(Z,B(Y) x B(T) x B(G))-measurable functions {f,(-)}y such that for each n,
fa()=(n()Tn(-),zn (")) is a measurable selection from ®(-,Cp, *, H*) and

12Note that for each n we have zn(w)=2z"* forall weW.
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xn = [fa(W)dP(w) = ( [yn(W)dPW), [tq(W)dP(W), [zq (W)dP(w))*
w w w w

For all n, we have

j Tn(W)dP(W) < c(z*). (32)
W

Without loss of generality, assume that {xp}, converges to some xeRK+2,

Thus, limp J.fn(w)dP(w) =x. Again it follows from Fatou's Lemma in several
w

dimensions and the upper semicontinuity of ®(w,-,-) on A xS for each we W

that there exists a measurable selection f(:)=(y(:),7(:),z(:)) from ®(-,C*H*)

such that

x= [f(w)dP(w) = ( [y(w)dP(w), [t(w)dP(w), [2(w)dP(w)).
w w W W

From (32) it follows that

[e(w)dP(w) < c(z*). (33)
W

Thus we have

X =( [y (w)dP(w), [¢'(w)dP(w), [Z/(w)dP(w))e [@®(w,C*,H*)dP(w)
w w w w

with
J"c'(w)dP(w) > c(z%),
w

and we have

x=( [y(w)dP(w), [2(w)dP(w), [z(w)dP(w)) [ ®(w,C*, H*)dP(w)
w w w W
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with
[1(w)dP(w) € c(z*).
W

Given the convexity of ICD(W,C*,H*)dP(W), there exists therefore
W

x*e [®(w,C* H*)dP(w),
w

and a corresponding measurable selection, (y*(:),t*(:),z*(-)), from
@(-,C*,H*) such that

[T (w)dP(wW) =c(z*) .
w

Following the directions given in part (2) of Theorem 2 and using the
direct public sector mechanism (y *(-),*(:),z* (-)), we can construct an optimal
public sector mechanism (y* (:),t*(:),z*(-)) e ¥ "' NIl such that

j(t “(y* (W) —c(z* (w)))dP(w) = 0.
w
QED.

By part (1) of Proposition 5, jCD(w,C*,H*)dP(w) will be convex if the
4%
probability space of agent types is atomless. In addition J'd)(W,C*, H*)dP(w)
w
will be convex if the best response mapping w — ®(w,C* H*) corresponding to
the optimal menus (C*,H*) is single-valued.
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