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1. INTRODUCTION 
 

Forecast uncertainty is playing an increasingly important role in macroeconomics 

and monetary policy making. For instance, effective November 2008, the U.S. Federal 

Open Market Committee (FOMC) will publish information about uncertainty associated 

with their economic outlooks. Since the mid-90s the Bank of England has been reporting 

fan charts that show subjective confidence bands surrounding official forecasts. Since 

forecast uncertainty is unobservable, economists have experimented with alternative 

proxies for it. One of the more popular measures has been forecast disagreement, simply 

calculated as the dispersion in alternative point forecasts. When disagreement is taken to 

indicate uncertainty, the underlying assumption is that this inter-personal dispersion 

measure is an acceptable proxy for the average dispersion of intra-personal predictive 

probabilities held by individual experts. The validity of this assumption can by no means 

be taken for granted. Since the seminal work of Zarnowitz and Lambros (1987), 

economists have studied but disagreed on whether disagreement is a good proxy for 

uncertainty.1 As pointed out by Bomberger (1996) and Giordani and Söderlind (2003), 

disagreement remains to be theoretically an unfounded measure of uncertainty. 

Interestingly, there has been a parallel but largely independent research in the accounting 

and finance literature on whether disagreement among financial or market analysts can be 

used as a proxy for uncertainty about future earnings.2  

In this paper, we establish a simple relationship connecting forecast uncertainty to 

disagreement. Using a standard decomposition of forecast errors into common and 

                                                 
1 See, for instance, Bomberger (1996, 1999), Rich and Butler (1998), Giordani and Söderlind (2003), Lahiri 
and Liu (2005), and Boreo, Smith and Wallis (2007). 
2 See Zhang (2006) and references therein. Barry and Jennings (1992), Abarbanell et al. (1995), Barron et 
al. (1998), Diether et al. (2002) and Johnson (2004) have argued that disagreement alone is not sufficient to 
approximate uncertainty. 
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idiosyncratic components, we show that forecast uncertainty equals disagreement plus the 

variance of future aggregate shocks that accumulate over the horizons. This finding has 

important implications for the empirical studies using disagreement as a proxy for 

uncertainty. It suggests that the robustness of the proxy depends on the variance of 

aggregate shocks over time and across horizons. It also simplifies the multi-dimensional 

covariance matrix of individual forecast errors in Barry and Jennings (1992) in terms of 

the variance of aggregate shocks, which can be easily interpreted as the uncertainty 

shared by all forecasters due to their exposure to future common shocks. 

Using a panel of density forecasts from Survey of Professional Forecasters over 

1969-2007, we find direct evidence in support of our hypothesized time and horizon 

effects. As for the time effect, disagreement is found to be a reliable measure for 

uncertainty in a stable period. In periods with large volatility of aggregate shocks, 

however, disagreement becomes less reliable a proxy. As for the horizon effect, we find 

that the longer the forecast horizon, the larger is the difference between disagreement and 

uncertainty.  

In recent accounting and finance literature, squared errors in consensus forecasts 

have been used to proxy for the variance of future aggregate shocks as a component of 

forecast uncertainty. Our results suggest that adding squared mean forecast error to 

disagreement can make the estimated uncertainty worse than the use of disagreement 

alone.  If one wants to construct a robust ex ante measure of uncertainty, our suggestion 

is to use the sum of the observed disagreement from the survey and the variance of future 

aggregate shocks generated by GARCH-type models that use a moving average squared 

errors over past few years as one of the covariates. 
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The reminder of the paper is organized as follows. In section 2, we develop the 

theoretical model and derive the relationship between disagreement and uncertainty. 

Section 3 tests empirically whether disagreement is a reliable proxy for uncertainty and 

suggests a method to construct the ex ante measure of uncertainty. Section 4 concludes.  

2. THE ECONOMETRIC MODEL 

For N individuals, T target years, H forecast horizons, let ithF  be the forecast of 

the variable of interest made by agent i, for the target year t and h-quarter ahead to the 

end of the target year, and tA  be the actual value of variable. The individual forecast 

error ( ithe ) is defined as 

ithtith FAe −= .        (1) 

Following Davies and Lahiri (1995), we write ithe  as the sum of a component common to 

all forecasters ( thλ ) and idiosyncratic errors ( ithε ): 

,iththithe ελ +=         (2) 

.
1
∑
=

=
h

j
tjth uλ         (3) 

The common component ( thλ ) represents the cumulative effect of all shocks that 

occurred from h-quarter ahead to the end of target year t. Equation (3) specifies thλ as the 

accumulation of all quarterly aggregate shocks ( tju ) over the forecast horizon. 

We make the following simplifying assumptions:  

Assumption 1: 

0)( =tjuE ; 2)var( tjutju σ=  for any t and j; 0)( =tstjuuE  for any t and sj ≠ ; 

0)( , =− hktthuuE  for any t, h and 0≠k . 
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Assumption 2: 

0)( =ithE ε ; 2)var( ithith εσε =  for any i, t and h; 0)( =jthithE εε  for any t, h and ji ≠ . 

Assumption 3: 

0)( , =− jktithuE ε  for any i, t, h, k and j. 

Thus, aggregate shocks are assumed to be uncorrelated over time and horizons 

(assumption 1). The idiosyncratic errors ( ithε ) capture forecaster heterogeneity due to 

differences in information acquisition and processing, interpretation, judgment, 

forecasting models, etc., and are taken to be mutually uncorrelated at all leads and lags 

(assumption 2). In addition, the common component and idiosyncratic disturbances are 

assumed to be uncorrelated at all leads and lags (assumption 3), which is a standard 

assumption in the literature. Taken together, assumptions 1 to 3 imply that the individual 

forecast error is a zero-mean stationary process for any h and has the factor model 

interpretation.  

The observed disagreement ( thd ) among forecasters is the variance of their point 

forecasts which, given (1) and (2), can be expressed as: 

,)1(
1

1)(
1

1
1

2

11

2
. ∑ ∑∑

= ==

−
−

=−
−

≡
N

i

N

i
ithith

N

i
thithth NN

FF
N

d εε   (4) 

where ∑
=

=
N

i
ithth F

N
F

1
.

1 . Note that the sample variance thd  is a random variable prior to 

observing forecasts. Taking expectations, we get the non-random disagreement, denoted 

by thD : 

∑ ∑
= =

−
−

=≡
N

i

N

i
ithiththth N

E
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dED
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)1(
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       ∑ ∑
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       .1
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2∑
=

=
N

i
ithN εσ        (5) 

Thus, not surprisingly, we find that thD  is determined by the average variance of 

idiosyncratic errors.3  

The uncertainty associated with a forecast of any specific individual is measured 

by the variance of individual forecast error, and can be expressed as  

.)()( 22
iththiththithtith VarFAVarU ελ σσελ +=+=−≡    (6) 

Individual forecast uncertainty in (6) is comprised of two components: perceived 

uncertainty associated with forthcoming common shocks, 2
thλσ  and idiosyncratic shocks, 

2
ithεσ . Following Zarnowitz and Lambros (1987), we measure overall forecast uncertainty 

( thU ) as the average of the individual forecast error variances ∑
=

≡
N

i
ithth U

N
U

1

1 , which 

measures the confidence an outside observer will have in a randomly drawn typical 

individual forecast from the panel of forecasters.4 Given our model, thU  can be expressed 

as a function of the model parameters as:  

.1
1

22 ∑
=

+=
N

i
iththth N

U ελ σσ       (7) 

After substituting (5) into (7), we get 

.2
ththth DU += λσ        (8)  

                                                 
3 The number of forecasters in the survey changes over both t and h. For simplicity, we suppress the 
subscripts t and h of N in equation (4) and thereafter. 
4  See also Lahiri et al. (1988), Bomberger (1996), Giordani and Söderlind (2003), and Boero et al. (2007). 
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Given the model assumptions, forecast uncertainty, disagreement and the variance of 

forthcoming aggregate shocks are expected to be related in the sample as in (8) − 

uncertainty is simply the disagreement plus the variance of the accumulated aggregate 

shocks over the forecast horizon. Thus, the wedge between uncertainty and disagreement 

will be determined partly by the size of the forecast horizon over which the aggregate 

shocks accumulate – the longer is the forecast horizon the bigger will be the difference on 

the average. It also suggests that the robustness of the relationship between two will 

depend on the variability of aggregate shocks over time. In relatively stable time periods 

where the variability of aggregate shocks is small, whether the variability of these shocks 

were correctly perceived or not, disagreement will be a good proxy for the unobservable 

aggregate forecast uncertainty. In periods where the volatility of aggregate shocks is high, 

disagreement can become a tenuous proxy for uncertainty.  

In the context of equation (8), one can understand the efforts of Bomberger (1996) 

who examined the dependence of the variance of consensus forecast errors (called 

“consensus uncertainty”) on forecast disagreement using Livingston’s survey data on 

inflation expectations. Certainly, a positive relationship between the two during periods 

of economic instability will ensure that disagreement will continue to be positively 

correlated with the overall forecast uncertainty. However, since the difference between 

uncertainty and disagreement is the variance of unanticipated aggregate shocks (as will 

be explained later, this is approximately the same as the “consensus uncertainty”), 

theoretically it is not clear why disagreement will be able to predict it. Our model 

assumptions, though admittedly simple, rule out any feedback from perceived future 

variability of common shocks to current idiosyncratic individual variances. However, it is 
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possible that enhanced future uncertainty about common shocks affects current individual 

2
ithεσ  and co-vary with 2

thλσ . This is how Bomberger’s (1996) econometric exercise can 

be justified. On the other hand, as Zarnowitz and Lambros (1987) have pointed out, there 

may be periods where all forecasters agree on relatively high macroeconomic uncertainty 

in the immediate future, and hence disagreement between forecasters will be low even 

though uncertainty is high. The opposite is also possible where forecasters disagree a lot 

about their mean forecasts, but they are confident about their individual predictions. This 

situation will arise when forecasters disagree on otherwise precise models and scenarios 

that should be used to depict the movement of the economy over the forecasting horizon. 

Thus, lacking any theoretical basis, the strength and the stability of the relationship 

between disagreement and overall forecast uncertainty (not merely 2
thλσ  or consensus 

uncertainty) becomes an empirical issue. But our result clearly suggests that the 

relationship will crucially depend on the sample period, the target variable, and length of 

the forecast horizon. Our analysis also helps to reconcile the divergent findings in 

previous empirical studies examining the appropriateness of disagreement as a proxy for 

forecast uncertainty. Certainly, to the contrary to a statement in Bomberger (1996, p.385), 

it is not necessary that “if disagreement is to be a good proxy for individual uncertainty, it 

must also track consensus uncertainty”.  

In our current framework, we model the variance of forecast errors without 

modeling forecasters’ expectation formation process. Actually, it is easy to connect our 

model with Bayesian learning framework that models individuals’ forecasting behavior. 

Suppose that each forecaster is endowed with two signals: one public signal, represented 

by  
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thtth Al η+= , )1,0(~ 2
thth N ηση ,       (9) 

and one private signal, represented by  

ithtith As ζ+= , )1,0(~ 2
ithith N ζσζ .      (10) 

The private signal is assumed to be independent of the public signal and also independent 

of other private signals, which are standard assumptions in the literature, cf. Lahiri and 

Sheng (2007). Each forecaster then combines these two sources of information, via Bayes 

rule, to derive the conditional expected value of tA  as  

)()(),( 2222
iththithithththiththtith slslAEF ζηζη σσσσ ++=≡ ,   (11)5 

and the conditional variance of tA  as 

)(1),( 22
iththiththtith slAVarU ζη σσ +=≡ .    (12) 

The individual forecast uncertainty defined in (12) reflects the uncertainty in both the 

public and private information, which is similar to (6) where the individual forecast 

uncertainty is comprised of perceived uncertainty associated with forthcoming common 

shocks and idiosyncratic shocks. Then we measure overall forecast uncertainty ( thU ) as 

the average of the individual uncertainties ∑
=

≡
N

i
ithth U

N
U

1

1 . Given the Bayesian learning 

model, thU  can be expressed as:  

.
)(

11
1

22∑
= +

=
N

i ithth
th N

U
ζη σσ

      (13) 

                                                 
5 Under the assumption that 22

thith ζζ σσ =  for all i, the individual forecast error can be written as 

iththththththththithe ζσσσησσσ ζηζζηη ])([])([ 222222 +−++−= , where the first and second term on 

the right-hand side correspond to thλ  and ithε  in (2), respectively. 
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Note that overall forecast uncertainty in (13), derived in the context of Bayesian learning 

framework, provides the justification that the aggregate uncertainty can be defined as the 

simple average of individual uncertainties as in (7). It is a combined uncertainty in the 

context of forecast combination literature with equal weights.6  

The disagreement among forecasters can be measured by the expected dispersion 

of ithF . To examine the effect of new information on the disagreement, we consider the 

so-called pre-posterior variance of opinions across forecasters. For any given information 

system represented by 2
thησ  and 2

ithζσ , the pre-posterior variance is the variance based on 

the distribution of the signals thl  and iths  for Ni ,...,2,1= . The disagreement among 

forecasters can then be measured as 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
≡ ∑ ∑

= =

N

i

N

i
ithithth F

N
F

N
ED

1

2

1
)1(

1
1  

⎥
⎦

⎤
⎢
⎣

⎡
−

−⎥
⎦

⎤
⎢
⎣

⎡
= ∑∑∑

= ≠=

N

i

N

ij
jthith

N

i
ith FFE

NN
FE

N 11

2

)1(
11 .   (14) 

After substituting for ithF  from (11), we get 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
= ∑∑∑

= ≠=

N

i

N

ij jththithth

th
N

i ithth
th NNN

D
1

2222

2

1
22 ))(()1(

1
)(

11

ζηζη

η

ζη σσσσ

σ

σσ
.  (15) 

Note that the first term on the right-hand side of (15) is forecast uncertainty, thU  and the 

second term is the average covariance among forecast errors, thC , where 

),(
)1(

1
1

jthtitht

N

i

N

ij
th FAFACov

NN
C −−

−
= ∑∑

= ≠

.    (16) 

                                                 
6 Our measure of uncertainty is different from the “combined uncertainty” as defined by the variance of 
aggregate density forecast in Wallis (2005), which includes both our measure of uncertainty and the 
disagreement as its components. 
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Barry and Jennings (1992) derived a similar relationship among uncertainty, 

disagreement and the average covariance in forecasts. Their result justifies forecast 

disagreement as one component of forecast uncertainty, which has, unfortunately, been 

unnoticed in the economics literature. Given our model, we can simplify the expression 

for the average covariance among forecast errors in (16) as  

2

1
)])([(

)1(
1

thjththithth

N

i

N

ij
th E

NN
C λσελελ =++

−
= ∑∑

= ≠

,   (17) 

 
which can be easily interpreted as the uncertainty shared by all forecasters due to their 

exposure to common shocks. Thus, (17) greatly simplifies the results in Barry and 

Jennings (1992) and Barron et al. (1998), and gives the relationship (8).  

3. EMPIRICAL TEST OF THE RELATIONSHIP BETWEEN UNCERTAINTY AND 

DISAGREEMENT 

This section begins with a short description of data on density forecasts used in 

this study. In subsequent sections, we present empirical evidence in support of our 

hypothesized relationship between disagreement and uncertainty over time and horizons. 

We then evaluate the appropriateness of using squared error of mean forecasts as a proxy 

for the variance of aggregate shocks that has been extensively used in recent accounting 

literature. Our suggestion to construct a robust measure of ex ante uncertainty given a 

panel of forecasts is presented at the end. 

3.1 Data 

The data in our study are taken from Survey of Professional Forecasters (SPF) 

that is provided by the Federal Reserve Bank of Philadelphia. A unique feature of SPF 

data is that forecasters are also asked to provide density forecasts for output growth and 

inflation, which is the focus of this paper. The historical time series of forecasts in this 
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survey is quite lengthy (since the fourth quarter of 1968), and there are a number of 

changes in the surveys that make the data challenging to work with. We focus on the 

density forecasts for the change from year 1−t  to t that were issued in the four 

consecutive surveys from the first quarter through the fourth quarter of year t. The actual 

horizons for these four forecasts are approximately 3½, 2½, 1½, and ½ quarters but we 

shall refer to them simply as horizons 4, 3, 2, and 1 quarter. After deleting observations 

with missing values, we obtain a total of 4,986 observations for inflation over 1969:Q1 to 

2007:Q4 and 3,312 observations for output growth over 1981:Q3 to 2007:Q4.7 For the 

purpose of estimation, we eliminate observations for infrequent respondents. We focus on 

the “regular” respondents who participated in at least 25 surveys in inflation forecasts and 

at least 17 surveys in output growth forecasts – approximately 15% in both cases. This 

leaves us with a total of 2,787 observations for inflation forecasts and 2,342 observations 

for output growth forecasts.8 

To test the hypothesized relationships, we also need the actual values of inflation 

and output growth. As is well known, the NIPA data often go through serious revisions. 

Obviously, the most recent revision is not a good choice, since it involves adjustment of 

definitions and classifications. Consistent with the findings in Harvey and Newbold 

(2003) that the unrevised data approximates the forecasters’ objective better, we choose 

the first release of annual inflation and output growth to compute the actual values. These 

are the real-time data available from the Federal Reserve Bank of Philadelphia.9 

                                                 
7 The Philadelphia Fed is uncertain about the target years referred to in the surveys made in the first quarter 
of 1985 and 1986. We deleted those forecasters who were obviously misled by the wrong wording of the 
question and used the rest of the responses.  
8 See Giordani and Söderlind (2003) and Lahiri and Liu (2005) for a detailed discussion on the 
specification and construction of the analytical sample, and hence not repeated here.  
9 All calculations reported in this paper were also repeated with the so called “first final” (i.e., the third 
monthly revision) and July revisions. The main results and conclusions were unchanged.  
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3.2 Test of the relationship between uncertainty and disagreement 

Note that the variance of forecast error in (6) can be interpreted as the variance of 

random variable tA  as perceived by individual i, given information available at time 

ht − , which is conceptually the same as the variance of the density forecast reported by 

individual i. Taking the average of the variances of individual densities yields estimates 

of forecast uncertainty as defined in (7). 

To get appropriate measures of forecast disagreement, we need to control for any 

possible individual bias in the sample. Following Davies and Lahiri (1995), the individual 

forecast error has a 3-dimensional nested structure in the presence of individual bias ihφ : 

iththihithtith FAe ελφ ++=−≡ .      (18) 

The systematic individual bias, ihφ̂ , can be estimated as  

  .)(1ˆ
1
∑
=

−=
T

t
ithtih FA

T
φ        (19) 

By adding these individual biases to the forecasts, we get unbiased forecasts and forecast 

disagreement.10 

We should note that equation (8) specifies a relationship between uncertainty, 

disagreement and the variance of aggregate shocks based on unconditional expectations 

before observing any forecast or actual. However, the SPF forecast density data were 

obtained sequentially in the real time. Thus, we should develop a corresponding 

relationship in terms of expectations conditional on observing the individual forecasts 

(and hence disagreement thd ) at time ht − , but before the actual value tA  was realized. 

                                                 
10 Since they were estimated to be relatively small, individual biases did not affect forecast disagreement by 
any significant amount. 
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Following Engle (1983), note that one can always decompose the average squared 

individual forecast errors as: 

ththt

N

i
itht d

N
FAFA

N
)11()()(1 2

.
1

2 −+−=−∑
=

.    (20) 

Taking expectations on both sides given all available information at time t including ithF  

and thd , we get the following conditional relationship between aggregate uncertainty, the 

variance of consensus forecast errors and observed disagreement:  

.)( 2
. ththtth dFAEU +−=        (21) 

Now focusing on the first term on the right-hand side of (21), it can be alternatively 

written as  

⎥
⎦

⎤
⎢
⎣

⎡
−−+⎥

⎦

⎤
⎢
⎣

⎡
−=− ∑∑∑

= ≠=

N

i

N

ij
jthtitht

N

i
ithttht FAFAE

N
FAE

N
FAE

1
2

1

2
2

2
. ))((1)(1)( .  (22) 

In the context of forecast combination, Batchelor and Dua (1995) had a similar 

decomposition. Given our framework, (22) can be expressed as 

∑
=

+=−
N

i
ithththt N

FAE
1

2
2

22
.

1)( ελ σσ .      (23)  

We should point out that the uncertainty about the consensus forecast in (23) defined by 

Bomberger (1996) is different from our measure of forecast uncertainty in (7). The 

uncertainty about the consensus forecast is less than the average of the individual 

uncertainties due to the fact that combining individual forecasts implicitly pools the 

diverse idiosyncratic errors. Note that, as the number of forecasters goes to infinity, the 

uncertainty about the consensus forecast will reflect only the uncertainty in the common 

information.  

Substituting (23) in (21), we obtain 
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.1
1

2
2

2
th

N

i
iththth d

N
U ++= ∑

=
ελ σσ       (24) 

For typical values of N and 2
ithεσ  in our context, the second term on the right-hand side of 

(24) will be very close to zero and can be ignored.11 Thus, the difference between the 

reported ex ante forecast uncertainty and disagreement will give approximately estimates 

of ex ante variance of aggregate shocks in real time before the actual values were 

realized. Estimates of uncertainty, disagreement and their difference, which is an estimate 

of the variance of ex ante aggregate shock, are plotted in Figures 1 to 4. Their average 

values are given in Table 1. Several points are worth noting. Disagreement and 

uncertainty typically move together but the former is almost always smaller than the 

latter in both series, which is in line with the evidence that the former tends to 

underestimate the latter (cf. Zarnowitz and Lambros, 1987; Lahiri et al. 1988). Also, the 

difference between uncertainty and disagreement (i.e., the variance of ex ante aggregate 

shocks) in both series becomes larger, as forecast horizon gets longer from 1 quarter to 4 

quarters, which provides evidence in support of the horizon effect. Note also that the 

estimated variances of aggregate shocks are systematically much bigger for GDP growth 

than inflation at all horizons. This finding implies that it is more difficult to forecast real 

GDP growth than inflation, and is consistent with most recent studies on forecast 

evaluation that report significantly higher RMSE for real GDP than for inflation 

forecasts.12 

                                                 
11 In our sample, the average values of ∑

=

N

i
ithN 1

2
2

1
εσ  lie between 0.01 and 0.02 for both inflation and output 

growth forecasts. 
12 See, for instance, Öller and Barot (2000), Banerjee and Marcellino (2006), and Reifschneider and Tulip 
(2007).  



 16

Second, somewhat unexpectedly, in some quarters disagreement exceeds 

uncertainty, especially for inflation. Certainly, one reason is the imprecision in the 

estimation of uncertainty and disagreement based on a finite sample of survey 

respondents. After all, relationships (8) and (24) are expected to hold only on the average. 

However, there are other possibilities that should be pointed out.  It could be that survey 

measure of uncertainty does not represent the “true” or objective uncertainty correctly. 

Diebold et al. (1999) concluded that survey uncertainty overestimates the true values. 

However, Giordani and Söderlind (2003) reached an opposite conclusion. Following the 

latter approach, in Table 2 we report the average percentage times the 90% predictive 

interval covers the actual outcomes after fitting a uniform distribution over the bins 

during 1969-2007. We find that survey measures of uncertainty are well calibrated for all 

horizons except 4-quarter ahead forecasts. For the 4-quarter ahead forecasts, the survey 

measure underestimates the objective uncertainty by 13% for inflation and 17% for 

output growth forecasts. This possible underestimation of the true uncertainty by survey 

densities can rule out a few of the negative estimates of the variance of aggregate 

shocks.13 Also, if we believe that, for a particular horizon, the extent of under or over-

estimation is time invariant, the survey uncertainty will continue to be a meaningful 

indicator for true forecast uncertainty. Even if adjusted for the degree of underestimation 

by 13%, the uncertainty is still far less than disagreement at 4-quarter ahead inflation 

forecast for 1980. This can be a sign of the occurrence of structural break. Recall that for 

our decomposition of forecast errors into common and idiosyncratic components, the 

                                                 
13 Following Giordani and Söderlind (2003), we also fitted normal distributions over histograms and 
repeated the same comparison exercise. As expected, the normal approximation suggested even more 
underestimation. Many recent studies have, however, avoided the practice of fitting normal distribution to 
the individual density forecasts because the majority of the respondents seldom assign probabilities to more 
than 3 intervals, see Engelberg et al. (2006).   
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individual forecast errors were assumed to be a stationary process. As is well known, 

inflation rose sharply and unexpectedly during 1979-1981, and is characterized by a 

structural break in the inflation process. Thus, the stationary assumption is violated and 

accordingly (24) may not hold during periods of structural breaks. If the economic system 

is temporarily non-stationary due to structural breaks and regime change, there will 

typically be many different beliefs about the future course of the economy. This leads to 

forecasters adopting disparate forecasting functions and as a result, their predictions will 

generate extraordinary disagreement. Uncertainty, on the other hand, is seen to be very 

sticky in terms of its high autocorrelation and low volatility and as a result, responds 

slowly to even rapid changes in the economic environment.14 Thus, whereas the relatively 

large negative variance of aggregate shocks may suggest periods of structural breaks and 

regime change, the smaller ones can be attributed to imprecision in small sample 

estimation.   

Third, Figures 1-4 suggest that the volatility of aggregate shocks declined sharply 

after 1991 for both inflation and output growth. This finding contributes to our 

understanding of the factors behind Great Moderation - the well-documented decline in 

macroeconomic volatility in the United States since 1984. Our result suggests that the 

decline in macroeconomic volatility during 1984-1991 can not be attributed to “good 

luck”, since the economy was hit by unforeseen large shocks during this period (cf. 

Campbell, 2007), and instead must be explained by other factors, such as structural 

changes (cf. McConnell and Perez-Quiros, 2000) or improved monetary policy (cf. 

                                                 
14 This is also true for time series measures of uncertainty. Giordani and Söderlind (2003) and Lahiri and 
Liu (2005) show that the GARCH measure of uncertainty fails to capture the increase in inflation 
uncertainty around the second oil price shock. 
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Mishkin, 2007). After 1991, the shocks hitting the economy became smaller and more 

stable, and thus played a large role in the reduction of macroeconomic volatility. 

Now we can test formally the implications of (24) that the relationship between 

uncertainty and disagreement depends on the variance of aggregate shocks over time and 

across horizons. By plotting actual inflation rate, we find its average value during 1969-

1983 to be at least 2.5 times than that during 1984-2007, consistent with the stylized fact 

documented in the literature, cf. Stock and Watson (2007). As is well known, higher rates  

of inflation are generally associated with higher variability of inflation and presumably 

greater uncertainty about future rates. We thus divide the sample of inflation forecasts 

into two periods: the unstable period (1969-1983) and the stable period (1984-2007). To 

study the relationship between uncertainty and disagreement, we run the following 

regression: 

,44332211 ththth HHHHDU ερρρρβ +++++=    (25) 

where 1=iH  if the forecast is made at horizon i for ,4,3,2,1=i  and 0 otherwise. 

Table 3 shows the estimation results. The estimated coefficient on disagreement is 

0.43 for inflation forecasts during 1969-83. The same coefficient during 1984-2007 is 

estimated to be 0.76 and 0.72 for inflation and GDP forecasts, respectively. Thus the 

evidence from SPF density forecasts supports our model implication that disagreement is 

a good proxy for uncertainty when the variance of aggregate shocks is small, and is 

consistent with the empirical results presented by Bomberger (1996) and Giordani and 

Söderlind (2003). As is also clear in Table 3, the difference between uncertainty and 

disagreement, which is an estimate of ex ante variance of aggregate shocks, is larger, as 

forecast horizon gets longer. For example, as the horizon increases from 1 quarter to 4 
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quarters, the difference increases monotonically from 0.24 to 0.96 in output growth 

forecast. This pattern is also observed for inflation forecasts during the stable period at all 

horizons with the exception of 4-quarter ahead forecasts, which means that the additional 

variability due to the shocks that fell during the first quarter of the current year (on the 

average during 1984-2007) compared to the remaining quarters is not significant. This is 

caused by the relatively high disagreement in 4-quarter ahead forecasts during the 1986-

1989 period compared to other forecasts (see Figure 1). Furthermore, all horizon 

dummies are estimated to be statistically significant at the 5% level. On balance, the 

empirical evidence above shows that the variance of aggregate shocks accumulates 

systematically over horizons, as predicted by our model. This finding is important since 

most of studies have focused on their relationship over time, without specifying the 

underlying forecast horizons.15  

3.3 Should squared error of mean forecast be used as a proxy for 2
λσ ? 

An influential paper in the accounting literature by Barron et al. (1998) extended 

the model in Barry and Jennings (1992) and suggested “one can infer uncertainty and 

consensus from observable forecast dispersion, error in the mean forecast and the number 

of forecasts” (Barron et al. 1998, p. 427). Their suggestion has been extensively used to 

study the information environment in analysts’ earning forecasts. Yet, without direct 

information on uncertainty, the validity of their suggestion in finite samples can never be 

established. Our analysis below addresses this question. 

                                                 
15 Two exceptions are the recent papers by Lahiri and Sheng (2007) and Patton and Timmermann (2007), 
who explicitly modeled the evolution of survey forecasts over horizons. 
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Barron et al. (1998) argued that one can use the squared error in the mean forecast 

as a proxy for 2
thλσ  to empirically estimate forecast uncertainty as in the following 

equation: 

ththtth d
N

FAU )11()(ˆ 2
. −+−= .      (26) 

Because forecast errors are known to respondents only after the announcement of actual 

values, (26) indeed yields a measure of ex post uncertainty. Its reliability as a proxy for ex 

ante uncertainty faced by individual forecasters at the time of forecast is questionable. 

With density forecasts at our disposal, we can compare them directly. Figures 5 and 6 

plot these two measures of uncertainty in inflation and output growth forecasts during 

1984-2007. The general message is that, compared to survey measure of uncertainty, ex 

post uncertainty from (26) is considerably more volatile. The ex post uncertainty 

overstates the survey measure of uncertainty whenever a forecast is followed by a large 

unanticipated forecast error. This is unfortunate because, being unanticipated, these errors 

should not have affected the forecast uncertainty that predates the observed forecast error. 

The regression results in Table 4 reinforce some of the features from these graphs. For 

inflation forecasts, the estimated coefficient of ex post uncertainty is almost zero during 

the unstable period 1969-83. Even in the stable period, the coefficients are estimated to 

be very small for both inflation and output growth forecasts. Comparing 2R  in Tables 3 

and 4, we see that disagreement alone is a reasonable proxy for uncertainty. However, 

adding the squared error in the consensus forecast to disagreement turns out to be a 

significantly worse proxy for uncertainty than the disagreement alone. 2R  falls from 0.34 

to 0.09 during 1969-83 and from 0.39 to 0.30 during 1984-2007 for inflation, implying 
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that the squared forecast errors contribute negatively to explaining survey uncertainty. 

For real GDP, the squared forecast errors have practically no additional explanatory 

power, as 2R  increases from 0.53 to 0.54.  

To understand this puzzle, note the decomposition in (20). Comparing (20) with 

(26), it immediately follows that ex post uncertainty is nothing but the average squared 

individual forecast errors.16 Clearly, forecast uncertainty constructed according to Barron 

et al. (1998) depends on the realization of individual forecast errors. But forecast error is 

necessarily an ex post quantity, which reflects unexpected shocks after the forecast is 

made, and thus should not affect uncertainty at the time a forecast is issued. One may 

think that it may be an acceptable practice to use mean squared forecast error as a proxy 

for its ex ante counterpart because Barron et al. (1998) are looking at forecast uncertainty 

retrospectively. Their measure has been used to study the impact of special events, such 

as Regulation Fair Disclosure, on the forecasting environment of financial analysts, see, 

for example, Mohanram and Sunder (2006) and references therein. Even in this historical 

context, squared forecast error can give very misleading indication of the uncertainty 

environment in real time in a past sample, as shown by the extra variability in ex post 

uncertainty during periods that are characterized by large ex post forecast errors (see 

Figures 5 and 6).  

Engle (1983) demonstrated that the average squared individual forecast errors do 

not show patterns similar to ARCH measures of uncertainty.17 Our findings here, together 

                                                 
16 During our sample period, the squared error of the mean forecast accounts for 40% to 70% of ex post 
uncertainty in output growth forecast and from 30% to 60% in inflation forecast, as the horizon gets longer 
from 1- to 4-quarter ahead. The remainder is attributable to disagreement.  
17 As shown in Table 2 of Engle (1983), the average squared individual forecast errors are 31.78 (1947/12-
1952/6), 1.35 (1962/6-1966/12) and 13.01 (1971/6-1975/12), but the corresponding ARCH uncertainty is 
19.22, 2.57 and 3.37, respectively.  
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with the empirical evidence presented in Engle (1983), strongly caution against using the 

squared error in the mean forecast as a component of overall forecast uncertainty. We 

show that forecast disagreement by itself, without the ex post mean squared error, 

correlates better with the observed survey uncertainty. 

Interestingly, Reifschneider and Tulip (2007) have recently suggested a similar 

measure of past forecast uncertainty using squared individual forecast errors of a number 

of private and government forecasters averaged over 1986-2006. The purpose is to use 

this average historical uncertainty based on past predictive accuracy as a benchmark 

against which FOMC participants can assess their present uncertainty.  In order to 

generate this benchmark for a “typical” uncertainty to be associated with the individual 

forecasts, they first calculate the individual root mean squared error (RMSE) over the 

period and then average across forecasters of the individual RMSEs to obtain:  

∑ ∑
= =

−=
N

i

T

t
itt FA

TN
RMSE

1 1

2
1 )(11 .     (27) 

Note that the above measure is different from the one suggested by our analysis. Instead, 

according to (20), one should use  

   ∑∑
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2 )(1      (28) 

to estimate the typical uncertainty of a randomly drawn forecaster from the sample. It is 

clear that the Reifschneider-Tulip measure (27), like (28), will have the disagreement and 

the squared consensus forecast error as components of uncertainty. Also, because of the 

averaging of squared consensus forecast errors over the last twenty years, (27) may not 

be very sensitive to occasional large forecast errors, and thus, may be a reasonable 

approximation for the average variance of ex ante aggregate shocks over the period. 



 23

However, according to Jensen’s inequality, we can easily show that in general 

21 RMSERMSE ≤ , the latter having been justified in our previous analysis as the 

appropriate measure of benchmark ex post uncertainty. In order to gauge the extent of 

underestimation in our sample, we calculated the two measures using our data during 

1986-2006. As can be seen in Table 5, the Reifschneider-Tulip measure underestimates 

the benchmark uncertainty (28), by 4% to 8% for inflation forecasts. The degree of 

underestimation is even more pronounced for GDP forecasts ranging from 8% to 13%. 

Also, we find that this benchmark measure of historical uncertainty based on average ex 

post predictive accuracy can be sensitive to occasional large forecast errors. For instance, 

the one-quarter ahead GDP forecast for 1995 is associated with an unusually large error 

due to the sudden slowdown of the U.S. economy. If we take out this large forecast error 

from our calculations for GDP forecasts, the measures based on (27) and (28) decrease 

from 0.47 to 0.40 and from 0.54 to 0.47, respectively (cf. Table 5).  

3.4 Construction of an ex ante measure of uncertainty 

Because uncertainty is essentially an ex ante concept attached to a forecast before 

the actual outcome is known, it must be constructed using data available in real time. To 

form a measure of forecast uncertainty, we should use the observed disagreement from 

the survey, thd  and the variance of aggregate shocks generated conditionally by GARCH-

type models, 2ˆ thλσ  (cf. Engle, 1982; Bollerslev, 1986) to estimate thU : 

.ˆˆ 2
ththth dU += λσ        (29) 

The justification is as follows. Uncertainty comes from two sources: the error 

components in common information and in private information. 2ˆ thλσ  captures the 
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imprecision in common information, and thd  reflects the same in forecasters’ 

idiosyncratic information and diversity in forecasting models. The measure of uncertainty 

in (29) avoids the drawback of the inability to capture the heterogeneity of forecasting 

models in using GARCH measure of uncertainty alone. Our suggestion is supported by 

the findings in Batchelor and Dua (1993) and Bomberger (1996); in a comparison of 

ARCH and survey measures of uncertainty, these two studies concluded that the former 

tends to be lower than the latter, and more importantly the former is less variable over 

time than the latter. Thus, if one accepts survey measures as valid, ARCH measure alone 

underestimates the level and the variation in uncertainty over time.  

In order to generate GARCH-type estimates of the variability of aggregate shocks, 

we first filter the mean forecast errors for possible autocorrelation, see Harvey and 

Newbold (2003). The order of autocorrelation present in a given mean forecast error 

series is found by fitting moving average models of varying order, the preferred model 

being chosen by the use of Schwarz information criterion. We then estimated 2
tλσ  using 

different GARCH-type models with various distributional assumptions on the filtered 

mean forecast errors. For convenience, these models are labeled as Model 1 through 

Model 8. In Model 1, we estimated the standard GARCH (1, 1) model with the following 

specification: 

),0(~ 2
tt Ne λσ , 2

12
2

110
2

−− ++= ttt e λλ σααασ ,     (30) 

where te  is the serially uncorrelated mean forecast error. Equation (30) has been 

estimated using the quasi-maximum likelihood (cf. Bollerslev and Wooldridge, 1992) for 

the 1984-2007 subsample and for each horizon. Consistent with many earlier studies, in 

Model 2 we estimated (30) using the t-distribution with 6 degrees of freedom. As an 
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alternative specification, we replaced the lagged mean squared forecast error in (30) with 

the average of mean squared errors over the last ten years.18 In Model 3, we estimated 

2
tλσ  using the following model specification: 

),0(~ 2
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stt MSE λλ σβββσ .   (31) 

Model 4 estimated (31) using the t-distribution with 6 degrees of freedom. Models 5 

through 8 correspond to Models 1 through 4, except that we modeled the standard 

deviation instead of the variance in the GARCH-type models. The estimation results, not 

reported here, show that the lagged variance of aggregate shocks was significant at the 

5% level in the majority of the cases, but the lagged mean forecast errors, as well as the 

average of mean squared errors over the last ten years, are only significant in some cases, 

depending on the horizons and variables under study.19 

According to (29), forecast uncertainty is generated by the sum of the estimated 

variance of aggregate shocks 2ˆ thλσ  from GARCH-type models and the disagreement from 

the survey. Table 6 shows the correlations between survey and other measures of 

uncertainty. Several points stand out. First, the GARCH estimates of uncertainty with the 

average squared errors over the last ten years (in place of the last period forecast error) 

help to capture the variation in the survey measure of uncertainty (Models 3, 4, 7 and 8) 

fairly well. Compared to the simple correlation with the disagreement alone (the first row 

in Table 6), the correlations between the survey uncertainty and the uncertainty generated 

by Models 3, 4, 7 and 8 increase by about 5% for 1- and 2-quarter ahead inflation 
                                                 
18 During 1974-1981, SPF did not ask for the annual average forecast. We matched the reported quarterly 
point forecasts with the real time data to derive the implied annual forecasts for the current year. 
19 Following Bomberger (1996), we also added disagreement in the variance equation of the GARCH 
models and found that disagreement never became significant at the 5% level. This is consistent with the 
findings in Rich and Butler (1998). 
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forecasts, and by more than 15% and 10% for 3- and 4-quarter ahead GDP forecasts, 

respectively. Second, models with t-distributions (Models 2, 4, 6 and 8) match survey 

measure of uncertainty better. In general, Models 2, 4, 6 and 8 using t-distribution with 6 

degree of freedom perform better to capture the variation in survey uncertainty than 

Models 1, 3, 5 and 7 using normal distribution. Third, modeling the standard deviation 

instead of the variance tends to do a better job in representing the variation in survey 

measure of uncertainty. For output growth forecasts, the best model seems to be Model 8 

that performs even better at longer horizons. For inflation forecasts, the best model is 

Model 8 at shorter horizons and Model 6 at longer horizons. In addition, when we add 

squared errors to disagreement (Model 0), its predictive power to proxy survey 

uncertainty decreases across almost all horizons for both variables – a point that we have 

established before in section 3.3.  

 In summary, the GARCH-type models are very successful in modeling the 

variability of future aggregate shocks to the economy in the sense that when added to 

disagreement, this composite measure of ex ante forecast uncertainty explains the 

corresponding survey measure better than disagreement alone.20 

We plot the evolution of uncertainty generated from the best models in inflation 

and output growth forecasts over time in Figures 5 and 6. Compared to the uncertainty 

constructed using the squared error in the mean forecast, the uncertainty from GARCH-

type models is less volatile and thus matches better the survey measure of uncertainty. 

This underscores the important point that ex ante uncertainty has to be generated 

conditionally based on the information known to survey respondents when making their 

                                                 
20 We also estimated Models 1, 2, 5 and 6 during 1969-2007. We find that the generated uncertainty 
according to these four models cannot beat the disagreement alone to match the survey measure of 
uncertainty when we include the unstable period. 
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forecasts, which is exactly what GARCH-type models do. We should, however, note that 

the error-based measures of uncertainty including the GARCH have failed to signal the 

slowly creeping uncertainty in inflation and output growth forecasts since 2002 as 

indicated by the density forecasts. This is because the corresponding forecast errors have 

continued to be small despite the slow but steady increase in uncertainty due to unusual 

financial market developments and political instability in recent years. Uncertainty 

estimates based on density forecasts have an obvious advantage in this regard.  

4. CONCLUDING REMARKS 

Due to the ready availability of point forecasts, disagreement among forecasters 

has been widely used as a proxy for aggregate uncertainty in the economics, accounting 

and finance literature. Lacking theoretical basis, empirical evidence has been mixed as to 

whether the disagreement is a reliable measure for the uncertainty. Using a standard 

decomposition of forecast errors into common and idiosyncratic shocks in a panel data 

setting, our paper demonstrates that under certain regularity conditions, the difference 

between uncertainty and disagreement is the perceived variance of future aggregate 

shocks that accumulate over horizons. This result has important implications. It implies 

that the robustness of the relationship between uncertainty and disagreement depends on 

the variance of aggregate shocks over time and across horizons. Using the SPF density 

forecasts for inflation and output growth, we find direct evidence in support of our 

hypothesized time and horizon effects. As for the time effect, disagreement is found to be 

a reliable measure for uncertainty in a stable period. In periods with large volatility of 

aggregate shocks, however, disagreement becomes less useful a proxy. As for the horizon 

effect, we find that the longer the forecast horizon, the larger is the difference between 
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disagreement and uncertainty. Though disagreement alone tends to understate the level of 

uncertainty, our empirical results suggest that one can safely use disagreement as a proxy 

for uncertainty in a regression context, provided the forecast environment is relatively 

stable. By subtracting observed disagreement from uncertainty using density forecasts, 

we obtain a truly ex ante measure of aggregate shocks that befell on the economy. These 

aggregate shocks are available to a policy maker before the actual values are realized, and 

show remarkable reduction in the volatility after 1991.    

Our results do not support the use of squared mean forecast errors to construct ex 

ante uncertainty, as often practiced in recent accounting and finance research. Since 

forecast error is an ex post measure reflecting unexpected shocks after the forecast is 

made, it should not affect uncertainty at the time of forecast. In order to construct an ex 

ante measure of forecast uncertainty, one should use the sum of the observed 

disagreement from the survey and the projected variance of aggregate shocks generated 

by a suitably specified GARCH model. We find that this approach performs much better 

than the use of squared forecast errors in matching the survey measure of uncertainty, and 

is less sensitive to occasional large forecast surprises. 
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Table 1. Uncertainty and disagreement averaged over time 

                   
 SPF inflation forecast (1969-2007) SPF GDP forecast (1981-2007) 
 1Q ahead 2Q ahead 3Q ahead 4Q ahead 1Q ahead 2Q ahead 3Q ahead 4Q ahead
Uncertainty 0.33 0.48 0.58 0.69 0.41 0.74 1.02 1.25 
Disagreement 0.18 0.26 0.32 0.42 0.22 0.25 0.26 0.37 
Difference 0.15 0.22 0.26 0.27  0.19 0.49 0.76 0.88 
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Table 2. Comparison of 90% predictive interval with actual outcomes 
 
          
Horizon 4Q ahead 3Q ahead 2Q ahead 1Q ahead 
SPF Inflation 78.48 85.46 89.34 88.22 
SPF Output growth 74.35 87.17 85.95 83.33 
Note: This table shows the percentage of times that the 90% predictive interval covers the actual 
outcomes. Predictive intervals are constructed from SPF individual density forecasts during 1969-
2007 by fitting uniform distribution over histograms. 
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Table 3. Regression of survey measure of uncertainty on disagreement over time 

          
 SPF inflation forecast   SPF GDP forecast 
 1969-1983 1984-2007  1984-2007 
Disagreement 0.43* 0.76*  0.72* 
 (0.08) (0.19)  (0.25) 
H1 0.39* 0.17*  0.24* 
 (0.13) (0.03)  (0.04) 
H2 0.34* 0.31*  0.56* 
 (0.04) (0.04)  (0.05) 
H3 0.36* 0.42*  0.81* 
 (0.06) (0.04)  (0.06) 
H4 0.53* 0.39*  0.96* 
 (0.06) (0.07)   (0.09) 
 Adj. R2 0.34 0.39  0.53 
Note: Standard errors are in parentheses. One asterisk denotes that the estimated values are 
significant at the 5% critical level.   
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Table 4. Regression of survey measure of uncertainty on ex post uncertainty 

          
 SPF inflation forecast   SPF GDP forecast 
 1969-1983 1984-2007  1984-2007 
Ex post uncertainty 0.02 0.27*  0.25* 
 (0.02) (0.07)  (0.05) 
H1 0.46* 0.24*  0.30* 
 (0.22) (0.02)  (0.01) 
H2 0.49* 0.40*  0.62* 
 (0.05) (0.02)  (0.02) 
H3 0.55* 0.49*  0.84* 
 (0.06) (0.03)  (0.03) 
H4 0.75* 0.48*  0.93* 
 (0.06) (0.05)   (0.06) 
 Adj. R2 0.09 0.30  0.54 
Note: Standard errors are in parentheses. One asterisk denotes that the estimated values are 
significant at the 5% critical level.   
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Table 5. Measures of uncertainty based on forecast errors averaged over 1986-2006 

                    
 SPF inflation forecast  SPF GDP forecast 
 1Q ahead 2Q ahead 3Q ahead 4Q ahead  1Q ahead 2Q ahead 3Q ahead 4Q ahead
          
RMSE1 0.49 0.52 0.56 0.64  0.47 0.52 0.62 0.97 
          
RMSE2 0.51 0.57 0.60 0.67   0.54 0.59 0.70 1.06 
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Table 6. Correlation between survey uncertainty and alternative measures of uncertainty 
                   
 SPF inflation forecast (1984-2007) SPF GDP forecast (1984-2007) 
 1Q ahead 2Q ahead 3Q ahead 4Q ahead 1Q ahead 2Q ahead 3Q ahead 4Q ahead
Disagreement 0.56 0.52 0.55 0.60 0.60 0.30 0.44 0.58 
Model 0 0.36 0.49 0.56 0.52 0.32 0.24 0.39 0.57 
Model 1 0.56 0.51 0.67 0.44  0.63 0.33 0.46 0.42 
Model 2 0.59 0.51 0.67 0.53  0.62 0.32 0.42 0.47 
Model 3 0.62 0.54 0.64 0.51  0.56 0.24 0.60 0.70 
Model 4 0.61 0.54 0.61 0.53  0.61 0.31 0.62 0.71 
Model 5 0.57 0.52 0.66 0.49  0.58 0.20 0.37 0.50 
Model 6 0.57 0.53 0.67 0.54  0.63 0.34 0.39 0.33 
Model 7 0.62 0.56 0.61 0.52  0.58 0.37 0.62 0.69 
Model 8 0.63 0.56 0.61 0.51  0.61 0.34 0.61 0.71 
Note: This table presents the correlations between survey and alternative measures of uncertainty. 
Alternative measures of uncertainty are generated by the sum of the variance of aggregate shocks 
from Models 0 to 8 and the disagreement from the survey. In particular, in Model 0, the squared 
error in the mean forecasts is used as a proxy for the variance of aggregate shocks. In Models 1 
through 8, the variance of aggregate shocks is generated from the following models: 
 
Model 1: GARCH (1, 1) with normal distribution; 
Model 2: GARCH (1, 1) with t-distribution (6 degree of freedom); 
Model 3: GARCH (0, 1) with the average of mean squared errors (MSE) over the last 10 years 

and normal distribution; 
Model 4: GARCH (0, 1) with the average of mean squared errors (MSE) over the last 10 years 

and t-distribution (6 degree of freedom); 
Model 5: Power GARCH (1, 1) with normal distribution; 
Model 6: Power GARCH (1, 1) with t-distribution (6 degree of freedom); 
Model 7: Power GARCH (0, 1) with the average of root mean squared errors (RMSE) over the 

last 10 years and normal distribution; 
Model 8: Power GARCH (0, 1) with the average of root mean squared errors (RMSE) over the 

last 10 years and t-distribution (6 degree of freedom). 
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Figure 1. Uncertainty (solid line) and disagreement (dotted line) in inflation forecasts 
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Figure 2. Uncertainty (solid line) and disagreement (dotted line) in real GDP forecasts 
 

1-quarter ahead

0.00

0.50

1.00

1.50

2.00

2.50

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007
 

2-quarter ahead

0.00

0.50

1.00

1.50

2.00

2.50

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007
 

3-quarter ahead

0.00

0.50

1.00

1.50

2.00

2.50

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007
 

4-quarter ahead

0.00

0.50

1.00

1.50

2.00

2.50

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007
 

 
 
 



 41

Figure 3. Estimated variance of aggregate shocks in inflation forecasts 
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Figure 4. Estimated variance of aggregate shocks in output growth forecasts 
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Figure 5. Measures of uncertainty in inflation forecasts: 
Survey measure of uncertainty (solid line) 
Uncertainty using squared error of mean forecast (dotted line) 
Uncertainty from GARCH-type model (line with diamond) 

1-quarter ahead

0.00

0.50

1.00

1.50

2.00

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

2-quarter ahead

0.00

0.50

1.00

1.50

2.00

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

3-quarter ahead

0.00

0.50

1.00

1.50

2.00

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

4-quarter ahead

0.00

0.50

1.00

1.50

2.00

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

 
 



 44

Figure 6. Measures of uncertainty in output growth forecasts: 
Survey measure of uncertainty (solid line) 
Uncertainty using squared error of mean forecast (dotted line) 
Uncertainty from GARCH-type model (line with diamond) 
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