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1 Introduction

The future dynamics of greenhouse gas emissions, and their implications for global climate

conditions in the future, will be shaped by the way in which policymakers respond to climate

information, react to model uncertainty, and derive resultant mitigation decisions. When

governments make climate policy decisions, they do not have complete confidence in the

probability measure they utilise as a description of future climate uncertainty. Given the

enormous complexity of the nonlinear physical system, they may think other probability

measures divergent from their own measure are also possible. Such uncertainty, character-

ized not by a single probability measure but a set of probability measures, is called Knightian

uncertainty. In contrast, uncertainty that is reducible to a single probability measure with

known parameters is usually referred to as risk. Given the deep and irreducible uncertainties

in the processes and implications of climate change, along with the many economic complexi-

ties that climate adaptation and mitigation decisions entail, standard tools of policy analysis

are often not up to the task. The evolution of the IPCC guidelines on risk and uncertainties

from the 3rd to the 4th report can be read as a move away from a purely probabilistic view

of risk, to include more complex aspects of uncertainty.1 Continuing along the same line,

we formally develop mathematical tools for situations in which probabilities are not well de-

fined, but not totally unknown either. In other words, we contribute to the climate change

literature by developing continuous-time models with irreversibilities, Knightian uncertainty,

and imprecise probabilities which appear on the informational radar screen of policymakers.

We will then illustrate how the conceptualization of Knightian uncertainty alters optimal

behaviour.2

Recent theoretical analyses of decisions under uncertainty have highlighted the effects of ir-

reversibility in generating “real options”. In these models, the interaction of time-varying

uncertainty and irreversibility leads to a range of inaction where policymakers refer to “wait

and see” rather than undertaking a costly action with uncertain consequences. We employ

this recent literature and interpret climate policies as consisting of a portfolio of options.

The general idea underpinning the view that climate policies are option-rights is that climate

policy can be seen as analogous in its nature to the purchase of a financial call option, where

the investor pays a premium price in order to get the right to buy an asset for some time at

a predetermined price (exercise price), and eventually different from the spot market price

of the asset. In this analogy, the policymaker, through his/her climate policy decision, pays
1A number of methods have been employed to provide information about future climate dynamics. Golub

et al. (2011) have recently provided a non-technical summary of alternative approaches modelling uncertainty

in the economics of climate change.
2The tools developed in this paper have a clear importance for the potential impact of decadal variability,

predictability and prediction. They provide a better understanding of how a change in Knightian uncertainty

on the basis of decadal predictions will affect decision-making. For example, increased information about the

unfolding of climate dynamics may change the course of investment in adaptation and mitigation technologies

as well as the willingness to join in various versions of bi-, multi- or global climate agreements.
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a price which gives him/her the right to use a mitigation strategy, now or in the future,

in return for lower damages. Taking into account this options-based approach, the calcu-

lus of suitability cannot be done simply applying the net present value rule, but rather has

to consider the following three salient characteristics of the environmental policy decision:

(i) there is uncertainty about future payoffs from climate policies; (ii) waiting allows poli-

cymakers to gather new information on the uncertain future; and (iii) climate policies are

at least partially irreversible. These characteristics are encapsulated in the concept of real

option models.3 This strand of literature now constitutes a significant branch of the climate

economics literature.

A limited, but growing, strand of literature – particularly in mathematical economics - has

extended the real options approach to analyse the interplay of irreversibility and uncertainty

under Knightian uncertainty. A first axiomatic foundation of Knightian uncertainty or am-

biguity was given by Gilboa and Schmeidler (1989). The impact of Knightian uncertainty on

optimal timing decisions was further investigated by Nishimura and Ozaki (2007) and Tro-

janowska and Kort (2010) in continuous-time models. Recently, Asano (2010) and Vardas

and Xepapadeas (2010) have transferred these theoretical advances into environmental eco-

nomic issues. In this paper, we expand the paper by Pindyck (2009) on uncertain outcomes

and climate change policy focussing on the impact of tail effects on Knightian uncertainty in

a continuous-time setting. In particular, we shall investigate the impact of Knightian uncer-

tainty on the optimal climate threshold policies and their values. This anchors our approach

in the existing literature.

The remainder of the paper is organized as follows. In Section 2, the comprehensive mod-

elling set-up is presented. The framework incorporates cross-discipline interactions in order

to derive dynamically optimal policy responses to Knightian uncertainty. Subsequently, in

Section 3 we illustrate the working of the model through numerical exercises and examine

the sensitivity of the main results with respect to key parameters. The paper concludes in

Section 4 with a brief summary and suggestions for further research. Omitted details of

several derivations are provided in appendices.

2 The Model

Over the last decades, climate models have been developed to an impressive level of complex-

ity. Over a similar period, there has been growing interest in the uncertainty of future climate

scenarios. Future climate predictions are uncertain because both the initial conditions and

the computational representation of the known equations of motion of the natural system are

uncertain. To aid future climate policy decisions, accurate quantitative descriptions of the
3Concise surveys of the real options literature are provided by Bertola (2010), Dixit and Pindyck (1994)

and Stokey (2009).
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uncertainty in climate outcomes under various possible policies and scenarios are needed.

Of course, the multidisciplinary nature of the field presents a challenge. This requires integrat-

ing different natural and social sciences modelling paradigms traditions in a unified decision

tool. Here, we have decided to extend the modelling framework of Pindyck (2009, 2010)

that embodies, in a simplified way, all essential ingredients by allowing for real options under

Knightian uncertainty. The stochastic dynamic programming framework quantifies scientific

uncertainties to the extent possible, and explains the potential implications of Knightian un-

certainty for the outcomes of concern to the policymakers. It should be noted that the most

obvious challenge along the way is to minimise complexity so that the model setup under

massive uncertainty is still tractable.4

Let’s first focus our attention on the expected temperature change ∆T. What will the

world be like in 50 or 100 years when climate change may become acute? Most climate

change scenarios project that greenhouse gas concentrations Gt will increase through 2100

with a continued increase in average global temperatures. How much and how quickly the

temperature will increase remains unknown given the uncertainty of future greenhouse gas,

aerosol emissions and the Earth’s response to changing conditions. The Intergovernmental

Panel on Climate Change (IPCC, 2007) has estimated that the Earth’s temperature is likely

to increase within the interval 1.1◦C < ∆T < 6.4◦C by the end of the 21st century, relative

to 1980-1990 level, with a best estimate of 1.8◦C < ∆T < 4.0◦C, with a long tail of small but

finite probabilities of large temperature increases.5 So although the basics of global warming

are not in scientific dispute, the uncertainties about the future state of nature are immense

and the range of uncertainty still is a factor of 2-5. This illustrates the scale of the problem.

How should policymakers respond to that kind of large-scale uncertainty?

In the following we give a formal exposition of the model. We first focus on future tem-

perature changes. What can be expected from some specified increase in the concentration

of greenhouse gases like carbon dioxide? In order to model future warming, we adopt the

commonly used climate sensitivity function in Weitzman (2009a) and Pindyck (2009, 2010).

(1) d∆Tt = m1

(
ln (Gt/G0)

ln 2
−m2∆Tt

)
dt = m1 (1−m2∆Tt) dt,

where G0 is the inherited pre-industrial baseline level of greenhouse gas, and m1 and m2 are

positive parameters; with a further assumption that Gt initially doubles to 2G0. Equation (1)

shows that the changes in temperature are a mean-reverting process with a moving target, if
4The plethora of potentially significant contributions to overall atmospheric heat balance that are not

treated in the simple model used here includes changes in other well-mixed greenhouse gases, ozone, snow

albedo, cloud cover, solar irradiance, and aerosols. From this list, it should be clear that the objectives of the

present paper are limited ones. A more complete assessment of outcome probabilities would include detailed

models of the past and future of each of these effects.
5The gradual and continuous temperature increase reflects the strong inertia in the climate system which

will expose the earth to some degree of warming irrespective of what policymakers do to curb emissions in

the future.
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the green house concentration keeps rising. Let H be the time horizon for which we assume

that ∆Tt = ∆TH at t = H and ∆Tt → 2∆TH as t→∞, which means that 2∆TH = 1/m2.6

This implies that the change in temperature is given by

(2) ∆Tt = e−m1m2t∆T0 −
(
e−m1m2t

m2
− 1

m2

)
= 2∆TH

(
1− e−at

)
,

where the initial value for ∆T0 is set to zero, and a = m1m2 is equivalent to the adjustment

speed of the mean-reverting process of ∆Tt approaching the eventual temperature change

2∆TH . Using the assumption that ∆Tt = ∆TH at t = H, it follows that

(3) ∆Tt = 2∆TH
(

1− (1/2)t/H
)
,

which is the same as in Pindyck (2009, 2010) with ln (1/2) /H = −α.7 It is easy to verify

that due to 2∆TH = 1/m2 and ln (1/2) /H = −a = −m1m2, it follows that

(4) d∆Tt =
ln (2)

H
(2∆TH −∆Tt) dt,

and

(5) ∆Tt = 2∆TH
(

1− e−
ln 2
H
t
)
,

where ln (2) /H denotes the adjustment speed of changes in temperature to the eventual

changes in temperature 2∆TH .8 Equation (4) is convenient to use in the real options setting,

because the differential equation allows one to derive the corresponding partial differential

equation related to the real options terms and thus to solve the optimal stopping problem

in a straightforward way. For analytical convenience, we assume that the policymaker solves

the following isoelastic objective function under climate uncertainty:

(6) W = E

 ∞∫
t=0

C1−δ
s

1− δ
e−rsds

 ,
where E[.] is the expectation operator, C is the aggregate consumption over time with the

initial value normalised to 1, δ ≥ 0 is the inverse of the intertemporal elasticity of substitution,
6Equation (1) indicates that the eventual target temperature is 1/m2 and the adjustment speed is m1m2 ,

since equations (1) can be written as d∆Tt = m1m2 (1/m2 −∆Tt) dt = (adjustment speed) (mean−∆Tt) dt.
7Substituting ∆Tt = ∆TH at t = H back into equation (2) gives ln (1/2) /H = −α and hence equation

(3) is obtained.
8There is considerable a priori uncertainty in the probability and scale of climate change, but at least

there are historical time series data available to calibrate probability distributions for parameters important

in modelling climate sensitivity. On the other hand, based on current knowledge there is a large a priori

uncertainty concerning when dramatic technological breakthroughs might occur and how much impact they

will have, so allowing for such possibilities should increase the spread of outcomes for global carbon emissions

and their consequences.

4



and r is the risk-free social utility discount rate. In the simplest form, the level of consumption

is equivalent to the level of GDP.9

There are countless estimates regarding the impact of climate change. Instead of trying to

model climate impacts in any detail, we keep the problem analytically simple by assuming

that damages depend only on the temperature change, which is chosen as a measure of

climate change. To be precise, following Pindyck (2009, 2010) we assume that the damage

from warming and the associated physical impacts of climate change as a fraction of GDP

is implied by the exponential loss function

(7) L (∆Tt) = e−Xt(∆Tt)2 ,

where Xt is a (positive) stochastic damage function parameter determining the sensitivity of

losses to changes in temperature, 0 < L (∆Tt) ≤ 1 and ∂L/∂ (∆T) < 0. This yields GDP

at time t net of damage from warming in the order of L(∆Tt)GDPt, i.e. climate-induced

damages result in less GDP, and hence less consumption.10 It follows that:

W = E

 ∞∫
t=0

(
e−Xs(∆Ts)2Cs

)1−δ

1− δ
e−rsds

 .(8)

The standard real options approach emphasizes the importance of uncertainty in determining

option value and timing of option exercise. However, the standard real options approach rules

out the situation where policymakers are unsure about the likelihoods of future events. It

typically adopts strong assumptions about policymakers’ beliefs and no distinction between

risk and uncertainty is made. The usual prescription for decision making under risk then is

to select an action that maximises expected utility. This is assumed although the knowledge

of climate dynamics is still far from conclusive.11 New modelling techniques in natural

science and greater computing power provide more details and finer distinctions, but not

necessarily more accurate predictions. In the more realistic Knightian uncertainty scenario,
9In our model framework we treat the world as a single entity in the interest of brevity. The world

climate policy equilibrium can be constructed as a symmetric Nash equilibrium in mitigation strategies. The

equilibrium can be determined by simply looking at the single country policy which is defined ignoring the

other countries’ mitigation policy decisions [Leahy (1993)].
10Due the scarcity of empirical information about the magnitude of the damages in question, the shape of

the damage function is somewhat arbitrary. Pindyck (2009) has assumed the exponential function L(∆T) =

exp[−β(∆T2)], where β follows a gamma distribution. This implies that future damages are fully captured

by the probabilistic outcomes of a given distribution. This concept can be understood as risk. However, the

present uncertainty about β also comprises the choice of the probability distribution, which will be tackled

in this paper.
11One has to admit that despite more observations, more sophisticated coupled climate models and sub-

stantial increases in computing power, climate projections have not narrowed appreciably over the last two

decades. Indeed, it has been speculated that foreseeable improvements in the understanding of the underlying

physical processes will probably not lead to large reductions in climate sensitivity uncertainty. See Roe and

Baker (2007).
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policies therefore become more complex, as now the policymakers carry a set of probability

measures for future climate change and consequently every policy measure is associated with

an interval of expected costs. This implies that it would be more appropriate to describe the

process of Xt using a set of probability measures, not just one measure such as a geometric

Brownian motion with a drift term as often used in real options. In other words, the Knightian

version of the real options models differs from the plain vanilla real options model by having

an entire set of subjective probability distributions. Modelling Knightian uncertainty is

a non-trivial task in general. To incorporate a situation where policymakers are unable to

assign a precise probability to future alternatives, we use the Knightian uncertainty modelling

approach developed by Nishimura and Ozaki (2007). In their comprehensive representation

of Knightian uncertainty, unresolved processes are represented by computationally efficient

stochastic-dynamic schemes. We introduce their treatment of Knightian uncertainty below.

To formalize the concept, let (Bt)0≤t≤T be a standard Brownian motion on (Ω,FT , P ) that

is endowed with the standard filtration (Ft)0≤t≤T for (Bt). Consider a real-valued stochastic

process (Xt)0≤t≤T that is generated by the Brownian motion with drift α and standard

deviation σ:

(9) dXt = αXtdt+ σXtdBt.

In equation (9) the particular probability measure P is regarded as capturing the true nature

of the underlying process.12 This, however, is highly unlikely, as this would imply that poli-

cymakers are absolutely certain about the probability distribution that describes the future

development of (Xt)0≤t≤T . Unlike this standard case, Knightian uncertainty describes how

policymakers form ambiguous beliefs. Thereby a set P of probability measures is assumed

to comprise likely candidates to map the future dynamics.

Technically spoken, these measures are generated from P by means of density generators, θ.13

By restricting the density generators to a certain range like a real-valued interval [−κ, κ], we

are enabled to confine the range of deviations from the original measure P . The broader this

interval is, the larger the set of probability measures, P =
{
Qθ |θ ∈ [−κ, κ]

}
, and thus the

12The Brownian motion in equation (9) is a reasonable approximation and we share this assumption with

most of the existing literature.I would give a quotation for the assumption that Brownian motions describe

the damages by warming well.
13Assume a stochastic process (θ)0≤t≤T that is real-valued, measurable and (Ft)-adapted. Furthermore it

is twice integrable, hence θ := (θ)0≤t≤T ∈ L
2 ⊂ L. Define

(
zθt
)
0≤t≤T by zθt = e

(
− 1

2

t∫
0
θ2sds−

t∫
0
θsdBs

)
∀t ≥ 0.

Note that the stochastic integral
t∫
0

θsdBs is well-defined for each t, as θ ∈ L. A stochastic process θ ∈ L

is a density generator, if
(
zθt
)
0≤t≤T is a (Ft)-martingale. Using a density generator θ another probability

measure Qθ on (Ω,FT ) can be generated from P by

Qθ(A) =

∫
A

zθT dP ∀A ∈ FT .

Note that any probability measure that is thus defined is called equivalent to P .
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higher the degree of ambiguity. This specific notion of confining the density generators to

an interval [−κ, κ] is named κ-ignorance by Chen and Epstein (2002), who applied this to a

different field of research.

Endowed with this concept we can now define a stochastic processes (Bθ
t )0≤t≤T by

(10) Bθ
t = Bt + tθ

for each θ ∈ [−κ, κ]. As Girsanov’s theorem shows, each process (Bθ
t )0≤t≤T defined as above

is a standard Brownian motion with respect to Qθ on (Ω,FT , Q
θ). Inserting the definition

of (Bθ
t )0≤t≤T into equation (9), we obtain for every θ ∈ [−κ, κ]

dXt = (α− σθ)Xtdt+ σXtdB
θ
t .(11)

Equation (11) displays all stochastic differential equations and thus all future developments of

(Xt)0≤t≤T that the decision maker thinks feasible. Note that the implementation of Knightian

uncertainty implies different drift but not volatility terms.

Knightian uncertainty allows to assume that the policymaker is uncertainty–averse, which

makes her consider the worst case scenario. As e−Xt(∆Tt)2GDPt is calculated as GDP net of

damages, the worst case scenario is described by the largest value of Xt. As an illustration

and in order to gain an intuition we have numerically simulated equation (6) and (9) for a

time period of 200 years for ∆TH = 1.9◦C versus ∆TH = 3.4◦C (equivalent to pre-industry

levels of 2.5◦C versus 4◦C) of warming and three alternative drift terms. The character of the

impact function (6) for various drift terms is shown in Figure 1. The various graphs indicate

the forces at play in our analysis. Two effects must be recognized. First, the highest value of

the drift term generates the maximum of 1 − L(∆Tt) and therefore the minimum of GDPt
net of damages„ which is in line with the our above made considerations about uncertainty-

aversion. Second, as can be seen the function L(∆Tt) spreads out considerably for higher

temperature increases. After 100 years and for ∆T = 3.4◦C the damage is 0.09154 = 9.15

percent of GDP.14

After understanding the process of Xt, we can now discuss the optimal response to climate

change under Knightian uncertainty. If the decision maker conducts no climate policy –

referred to as the business asusual approach - and faces Knightian uncertainty in equation

(11), then the resulting intertemporal welfare, WN, with consumption growing at a rate g0

14The calibrated damages from warming are in the range of previous estimates. Weitzman (2009b) has

assumed damage costs of 1.7 percent of GDP for 2.5◦C of warming – a level that is considered to be a

threshold for danger. For higher temperature increases he has assumed rapidly increasing damages of 9 (25)

percent of GDP for 4◦C (5◦C) of warming. Millner et al. (2010) have assumed damages of 1.7 (6.5) percent

of GDP for 2.5◦C (5◦C) of warming.
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Figure 1: Simulated Damages 1−L(∆Tt) Due To Global Warming in Percent of GDP . The

Initial Value for X is X0 = 0.008 and H = 100. The Simulated Time Series are Computed

Ignoring the Uncertainty Part of Equation (11), i.e. dXt = αXtdt.

and initial consumption normalised as 1 is determined as

WN (X,∆T; ∆TH) = min
Qθ∈P

EQ
θ

 ∞∫
t=0

(
e−Xs(∆Ts)2Cs

)1−δ

1− δ
e−rsds

∣∣∣∣∣∣∣Ft


=

1

1− δ
min
Qθ∈P

EQ
θ

 ∞∫
t=0

e−Xs(1−δ)(∆Ts)2e−(r−(1−δ)g0)sds

∣∣∣∣∣∣Ft

 ,(12)

s.t. equations (4) and (11), where “N” refers to the no-actions-taken approach, r− (1− δ) g0

is assumed to be positive, and EQ
θ

[· |Ft ] represents the expectation value with respect to

Qθ ∈ P conditional on Ft.15 The first equation holds as uncertainty aversion implies that

the policymaker is interested in the lowest welfare value.16

For the sake of analytical tractability, we apply a Taylor series expansion to e−X(1−δ)∆T2 in
15For reasons of mathematical tractability we assume that the continuous Knightian uncertainty is indepen-

dent of time and therefore the planning horizon is infinite. The reasoning for the perpetual assumption is that

the underlying time scales in the natural climate system are much longer than those in the economic system.

Technically, we consider T →∞ in the above made introduction to the concept of Knightian uncertainty.
16First the uncertainty-averse politician takes only the probability measure into consideration that creates

the worst outcomes for the welfare. Then she strives to find the policy strategy that maximizes this ‘worst-

case welfare function’. The maxmin nature of the problem links the analysis with contributions on robust

control. See, for example, Funke and Paetz (2011).
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equation (7) such that

(13) e−Xs(1−δ)∆T2
s ∼= 1−Xs (1− δ) ∆T2

s +
1

2

(
Xs (1− δ) ∆T2

s

)2
,

where 0 < L (∆Tt) ≤ 1 and ∂L/∂ (∆T) < 0 still hold. By inserting (13) into (12) we thus

obtain

WN (X,∆T; ∆TH)

(14)

=
1

1− δ
min
Qθ∈P

EQ
θ

 ∞∫
t=0

(
1−Xs (1− δ) ∆T2

s +
1

2

(
Xs (1− δ) ∆T2

s

)2)
e−(r−(1−δ)g0)sds

∣∣∣∣∣∣Ft

 ,
s.t. equation (4). Using Itô’s Lemma and following the standard dynamic programming

argument, we formulate the problem in terms of the Hamilton-Jacobi-Bellman equation17

(r − (1− δ) g0)WN = 1−X∗ (1− δ) ∆T2 +
1

2

(
X∗ (1− δ) ∆T2

)
+

(
ln (2)

H
(2∆TH −∆T)

)
∂WN

∂∆T
+ (α+ κσ)X∗

∂WN

∂X∗
+

1

2
σ2X∗

2 ∂2WN

∂X∗2
.(15)

The asterisk represents the density generator −κ, meaning that Q∗ is generated by −κ and

the stochastic process X∗ is defined by inserting −κ into equation (11):

dX∗t = (α+ σκ)X∗t dt+ σX∗t dB
−κ
t .(16)

Equation (15) describes the model fully. For policies to be optimal, equation (15) must hold.

The solution of equation (15) is the sum of a particular and general solution. The particular

solutionWNP is obtained by integrating the integral forWN of equation (14) without consid-

ering possible policy intervention. Therefore, the real options terms are not exercised. It is

straightforward to explain WNP as the value of business-as-usual, without the policymaker’s

intervention through the exercising the real options to reduce the green house gas emissions

leading to a cap in future temperature changes ∆TH . The general/homogenous solutions or

real options solutions WNG are obtained by focusing attention on the homogenous part of

equation (15) such that

(r − (1− δ) g0)WNG =

(
ln (2)

H
(2∆TH −∆T)

)
∂WNG

∂∆T

+ (α+ κσ)X∗
∂WNG

∂X∗
+

1

2
σ2X∗

2 ∂2WNG

∂X∗2
.(17)

Let’s assume that the policymaker is willing to pay annual abatements costs w (τ) as a

percentage of GDP to limit the temperature increase at t = H to less than or equal to τ :
17For the derivation please see Appendix A.
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∆TH ≤ τ .18 Due to Itô’s lemma, the intertemporal welfare function of taking action to

reduce the green house gas emission, WA, is then given by

(r − (1− δ) g0)WA =1−X∗ (1− δ) ∆T2 +
1

2

(
X∗ (1− δ) ∆T2

)
+

(
ln (2)

H
(2τ −∆T)

)
∂WA

∂∆T
+ (α+ κσ)X∗

∂WA

∂X∗
+

1

2
σ2X∗

2 ∂2WA

∂X∗2
,(18)

which is derived from the following integral

WA (t = 0, X,∆T; τ) =
1

1− δ
×

(19)

EQ
∗

(1− w (τ))1−δ
∞∫

t=0

(
1−X∗s (1− δ) ∆T2

s +
1

2

(
X∗s (1− δ) ∆T2

s

))
e−(r−(1−δ)g0)sdt

∣∣∣∣∣∣Ft

 ,
s.t. (20) that is

(20) d∆Ts =
ln (2)

H
(2τ −∆Ts) ds,

where equation (20) is a variant of equation (4) by replacing ∆TH with τ . If climate policy

is time-consistent, then the solutions to WA can be obtained by integrating equation (20)

directly. In this case, the thresholds for X∗ of taking actions to limit the future temperature

increase to less than or equal to τ at t = H are then computed from the identity

(21) W (taking action) = W (business as usual) + Real options.

Substituting, we have

(22) WA
(
X̄,∆T; τ

)
= WNP

(
X̄,∆T; ∆TH

)
+WNG

(
X̄,∆T; ∆TH

)
,

where X̄ denotes the thresholds at which the policy-maker would take action by exercising

the real options today and committing paying annual abatement costs w (τ) in percent of

GDP to limit the future temperature increase to less than τ at t = H. On the contrary,

exercising of the real options WNG
(
X̄,∆T; ∆TH

)
implies that the policymaker forgoes the

option to wait and act later as more information about Xt becomes available.

The next step is to solve the particular integrals of WNP and WA, and real options WNG.

As there are no uncertain terms for the processes of changes in temperatures ∆Tt, we can

use equation (5) to obtain

(23) ∆Tt = 2τ
(

1− e−
ln 2
H
t
)
.

18In practical terms, this means that the policymaker reduces Gt in equation (1) so that the increase in

temperature is limited to less than τ at t = H.
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As shown in Appendix B the following particular integrals result from Itô’s Lemma:

WNP (X,∆T; ∆TH) =
1

1− δ

[
1

r − (1− δ) g0
− 4∆T2

H (1− δ) γ1X
∗ + 8∆T4

H (1− δ)2 γ2X
∗2
](24)

WA (X,∆T; τ) =
(1− w (τ))1−δ

1− δ

[
1

r − (1− δ) g0
− 4∆τ2 (1− δ) γ1X

∗ + 8∆τ4 (1− δ)2 γ2X
∗2
]
.

(25)

where

γ1 =
1

η1
− 2

η1 + ln 2
H

+
1

η1 + 2 ln 2
H

,

γ2 =
1

η2
− 4

η2 + ln 2
H

+
6

η2 + 2 ln 2
H

− 4

η2 + 3 ln 2
H

+
1

η2 + 4 ln 2
H

,

η1 = r − (1− δ) g0 − (α+ κσ) ,

η2 = r − (1− δ) g0 −
(
2 (α+ κσ) + σ2

)
.

Note that it is assumed that both η1 and η2 are positive.

After obtaining the analytical particular solutions of equations (24) and (25), we now need to

turn our attention to the real options term WNG in equation (17). In Appendix C we show

that the general solutions have the forms:

WNG (t = 0, X,∆T; ∆TH) = A1X
∗β1 (∆T2 − 4∆TH∆T + 4∆T2

H

)
,(26)

where β1 is the positive root of the quadratic characteristic equation

(27)
1

2
σ2β (β + 1) + (α+ κσ)β −

(
r − (1− δ) g0 + 2

(
ln (2)

H

))
= 0,

and A1 is the unknown parameter to be determined by the value-matching and smooth-

pasting conditions. The meaning of equation (26) is straightforward. For a small ∆TH the

value of the options to take actions is small – the option of taking action is reduced for

less global warming. The effective discount rate for real options is a positive function of

2ln (2) /H. As we know from equation (4), ln (2) /H also denotes the adjustment speed of

changes in temperature. Higher adjustment speed to the higher temperature (for example,

H = 50 years instead of H = 100 years) means that the damage is higher and thus the

option value is smaller. After obtaining the solutions to equation (22) by applying the value-

matching condition, the smooth-pasting condition is given by equalising the derivative of

(25) with respect to X∗ with the sum of the derivatives of (24) and (26) with respect to X∗.

Substituting (24) – (26) back into the value-matching and smooth-pasting conditions yields

4γ1

(
∆T2

H −∆τ2 (1− w (τ))1−δ
)
X̄∗ − 8 (1− δ) γ2

(
∆T2

H − (1− w (τ))1−δ τ4
)
X̄∗

2

=
1− (1− w (τ))1−δ

(r − (1− δ) g0) (1− δ)
+A1X̄

∗β1 (∆T2 − 4∆TH∆T + 4∆T2
H

)
,(28)
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and

4γ1

(
∆T2

H −∆τ2 (1− w (τ))1−δ
)
− 16 (1− δ) γ2

(
∆T2

H − (1− w (τ))1−δ τ4
)
X̄∗

= A1β1X̄
∗β1−1 (

∆T2 − 4∆TH∆T + 4∆T2
H

)
.(29)

So far, our discussion of Knightian uncertainty has been exclusively analytical. With the

optimality conditions and the value-matching and smooth-pasting conditions, we can now

proceed to the numerical simulations of the model.

3 Numerical Simulations and Results

While the preceding section has laid out the modelling framework, we now focus on a thor-

ough numerical analysis of the model. Several problems occur when mapping the theoretical

framework presented above into real-world climate data. Where possible, parameter values

are drawn from empirical studies. The determination of some parameters, however, requires

the use of judgement, i.e. they reflect a back-of-the-envelope calculation.19 Therefore, for

each parameter a sensitivity analysis over a sufficiently wide grid is performed.20

The unit time length corresponds to one year. Our base parameters are σ = 0.075, κ = 0.02,

r = 0.04, α = 0.0, g0 = 0.01, δ = 0.0, and H = 100. ∆TH is assumed to be 3.4◦C which is

equivalent to 4 degrees of warming since the pre-industrial level. τ is assumed to be 1.4◦C

by assumption which is equivalent to 2 degrees of warming compared with the pre-industrial

level. Special attention has to be paid to the calibration of w(τ). The term w(τ) represents

the achievability and costs of climate targets. What are the economic costs of reaching the

target of climate stabilisation at no more than 2◦C above pre-industrial level by the end of this

century? In oder to assess this question, Edenhofer et al. (2010) have compared the energy-

environment-economy models MERGE, REMIND, POLES, TIMER and E3MG in a model

comparison exercise. In order to improve model comparability, the macroeconomic drivers

in the five modelling frameworks employed were harmonised to represent similar economic

developments. On the other hand, different views of technology diffusion and different struc-

tural assumptions regarding the underlying economic system across the models remained.

This helps to shed light on how different modelling assumptions translate into differences in

mitigation costs. Low stabilisation crucially depends upon learning and technologies avail-

able. Despite different structures employed in the models, four of the five models show a
19Despite the increasingly detailed understanding of climate processes from a large body of research, various

parameters involved inevitably remain inestimable, except in retrospect.
20The calibrated model is not based on detailed time series data in the way econometric models are and

does not have the predictive power of the latter. Note, however, that the goal of this paper is not to derive

precise quantitative estimates of the impact of Knightian uncertainty, but rather to illustrate the scale of the

Knightian uncertainty impact, and to see what we can learn from this framework. We address this point

clearly and frankly knowing that economics ultimately is an empirical science. Without empirical evidence,

many beautiful theories would be merely that beautiful.
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similar pattern in mitigations costs in order to achieve the first-best 400ppm CO2 concen-

tration pathway. After allowing for endogenous technical change and carbon capture and

storage with a storage capacity of at least 120 GtC, the mitigation costs are estimated to be

approximately 2 percent of worldwide GDP. These costs turned out to be of a similar order

of magnitude across the models. We therefore assume that w(τ) = 0.02.

In the real option literature the problem we must solve is referred to as “optimal stopping”.

The idea is that at any point in time the value of temperature reductions is compared with

the expected value of waiting dt, given the available information set and the knowledge of

the stochastic processes. First, we consider the thresholds for adopting climate policies, i.e.

we calculate the optimal timing of adopting climate policies. The optimal strategy is to stop

and adopt the climate policy right now if X∗t≥ X̄∗ and to continue waiting if X∗t< X̄∗, where

X̄∗ is the threshold value.21 To start with, in Figure 2 and 3 we focus our attention on the

sensitivity of the optimal thresholds of a risk-neutral and uncertainty-averse policymaker with

respect to the degree of Knightian uncertainty κ and changes in the degree of risk, i.e. the

volatility of the geometric Brownian motion process σ. The solutions for κ = 0 characterize

the situation of a single probability measure and therefore the situation without Knightian

uncertainty as in a traditional real option framework.

Figure 2: The Climate Policy Thresholds for Alternative κ’s and α’s

Figure 2 provides a sensitivity analysis of the threshold with respect to κ. The numerical

results indicate an acceleration of climate policy for higher degrees of Knightian uncertainty,

i.e. increasing ambiguity has an unequivocally positive impact upon the timing of optimal

climate policy and shrinks the continuation region where exercising climate policy is sub-

optimal. In contrast, Figure 3 indicates that the threshold value at which climate policy is

implemented is increasing in the noisiness level σ even though the policymaker is risk neu-

tral. The intuition is that the policymaker can counteract the impact from additional risk

by a wait and see attitude for the time being. The case κ = 0 again represents the case of

no Knightian uncertainty. As expected, increased Knightian uncertainty tends to accelerate
21It is worth conjecturing that the existence of the no action area sheds light on why policymakers often

deem it desirable to stay put, contrary to intuition which stems from thinking in terms of a simple cause and

effect framework..
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Figure 3: The Climate Policy Thresholds for Alternative σ’s and κ’s

optimal timing, while increasing risk leads to the opposite response.

Additional observations emerge from a bird’s eye examination of the 3-dimensional Figure

4 which helps to visualize the parameter space. The perspective is such that the viewer is

looking from the origin from a point high in the positive orthant., i.e. from a low value for all

three axis variables. Figure 4 tells essentially the same story. The qualitative result is that as

κ increases or/and σ decreases, the threshold plunges downward. Furthermore it is evident

from Figure 4 that an increase in κ has a comparatively smaller impact on the climate policy

threshold.

Figure 4: The Impact of Simultaneous Changes in κ and σ Upon the Threshold

The fundamental explanation to this finding lies in the fact that higher Knightian uncertainty

decreases the confidence of the policymaker on the credibility of the probability distribution

describing the stochastic behaviour of the underlying state variable Xt. Consequently, a

rational policymaker becomes more reluctant to postpone the timing of climate policy further

into the future on the basis of this vaguer probability distribution. We now put the spotlight

on the discount rate

14



Figure 5: The Climate Policy Thresholds for Alternative Discount Rates r and κ’s

To explore the sensitivity to alternative discounting assumptions, we employ a range of

0.035 < r < 0.055. As expected, the results in Figure 5 affirm the view that higher discount

rates will bolster the reasons for taking a “wait and see” attitude” towards climate policy.

This is due to the fact that for a small value of r the particular integral is a good deal

bigger and therefore the intertemporal damage is substantially larger. Conversely, a higher

discounting factor will trigger a later adoption and a lower intensity of climate policy. This

highlights the importance of attaining a consensus on the discount rate before an appraisal

on the optimal timing of policy implementation can be achieved. Once again, we also find

that if policymakers face a higher level of Knightian uncertainty, then the option value is

lower and the policymaker exercises the option earlier.

Figure 6: The Climate Policy Thresholds for Alternative Costs of Climate Stabilisation

Figure 6 provides a sensitivity analysis of the thresholds with respect to w(τ), i.e. we illustrate

the impact of alternative climate stabilisation costs upon the threshold. The major result

of the simulations is that higher climate stabilisation costs lead to an increase of the no

action area, i.e. an increasing w(τ) increases the climate policy threshold. Intuitively, this

makes perfect sense. Higher costs make climate policies less attractive for policymakers, so

policymakers hesitate to perform them in the first place. However, the option value of the

climate policy opportunity is again lower under Knightian uncertainty than in the standard

model. Therefore, an uncertainty averse policymaker acts earlier.
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Figure 7: The Impact of Changes in ∆TH Upon the Threshold

Finally we analyse how different expected degrees of warming, i.e. changes in ∆TH , affect

the threshold. Figure 7 clearly indicates that the tactic to keep options open and await new

information rather than undertake climate policy today becomes less attractive. In other

words, higher ∆TH values accelerate climate policies by shrinking the no action area.

4 Conclusions

The modelling of Knightian uncertainty is a relatively unchartered area of climate research.

In spite of its clear climate policy relevance, few authors have explored the topic yet. While

the paper will be of interest to specialists in real option theory, given the policy importance

of the issue in hand we also believe that our assessment of the central question motivating

our analysis will be of interest to a wider audience of climate scientists and policymakers.

A unifying message from our paper could be stated as follows: We have demonstrated that

Knightian uncertainty affects irreversible climate policies in a way which radically differs from

the impact of risk, and that Knightian uncertainty accelerates climate policy.22 This insight

holds non-trivial value for decision making. We believe that our application of Knightian

uncertainty comes with an advantage and a disadvantage. The advantage is that it allows

one to recognize the difference between risk and uncertainty.23 Thus it provides a more

realistic grounding for assessing current climate policy and to derive optimal and rational

policy trajectories when fundamental uncertainties and ambiguities are involved.24 On the
22It should be mentioned that the acceleration of climate policy depends upon the underlying dynamics

being characterised by a geometric Brownian motion. This model feature is not necessarily valid any more

for more general stochastic processes.
23To quote from Mastrandrea and Schneider (2004, p. 571) “we do not recommend that our quantitative

results be taken literally, but we suggest that our probabilistic framework and methods be taken seriously”.

Also see Schneider and Mastrandrea (2005).
24Some readers may find the ambiguity and the additional layer of uncertainty psychologically disturbing.

But if the previously agreed modeling framework was wrong and the certainty about appropriate climate

policy unjustified, it seems an improvement.
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other hand one has to admit that the comparative static results also have their limitations.

First, the numerical results do not account for the fundamental dynamic nature of abatement

and mitigation policies.25 Second, we have focussed on Knightian uncertainty in the damage

function. However, there may be further layers of uncertainty in complex climate models

about which we have ambiguous beliefs. Our analysis may therefore be considered as a first

step and it may be refined in several ways. One future research question is the possibility

of tipping points. In addition to a high level of complexity, the major challenge of this

extension is the need to incorporate thresholds, discontinuities and sudden switches which

remain poorly understood on a theoretical level.26 Another interesting direction goes towards

a more detailed analysis of decadal climate predictions.27 We hope to take up some of these

tasks in our future work and we consider it probable that this research agenda and the

conceptual follow-up issues will continue to warrant substantial research effort in the future.

Appendix

A Derivation of equation (12)

First, we to show that the Qθ ∈P that minimises the expectation value in equation (14) is

generated by θ = −κ.
We know that Xs (1− δ) ∆T2

s has a small value so that 1
2

(
Xs (1− δ) ∆T2

s

)2 only adds in-

significantly to the term in equation (14). We therefore neglect the quadratic term when

minimising the expectation value in the following.

Additionally Fubini’s theorem for conditional expectations transforms WN (X,∆T; ∆TH) to

1

1− δ
min
Qθ∈P

∞∫
t=0

e−(r−(1−δ)g0)sEQ
θ [

1−Xs (1− δ) ∆T2
s |Ft

]
ds.(A.1)

By applying Itô’s Lemma to the logarithm of Xs we obtain ∀ s ≥ 0 :

Xs = X0e
(α− 1

2
σ2−σθ)s+σBθs = X0e

(α− 1
2
σ2−σθ)seσB

θ
s .(A.2)

25One may also follow a different strategy. Instead of tailoring policies towards one future in particular,

one may find institutional arrangements, regulatory policies and technologies of adapting to many possible

future climate scenarios.
26The climate literature on tipping points is, indeed, a fast growing industry. Unfortunately, there are

not any models yet incorporating such nonlinearities into micro-founded decision-making frameworks with

Knightian uncertainty. It must be emphasised that the model described here is sufficiently general to study

various tipping points. It is only necessary to fine-tune the framework for specific nonlinearities and to embed

further stochastic processes.
27In Figure 2 – 6 the impact of Knightian uncertainty is “statically” addressed. Hence, we may next aim

to study the temporal implications of Knightian uncertainty, and the impact of less medium-run ambiguity

resulting from more reliable decadal predictions upon optimal climate policies.
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Obviously it holds that

Xs = X0e
(α− 1

2
σ2−σθ)seσB

θ
s ≤ X0e

(α− 1
2
σ2+σκ)seσB

θ
s ∀ s ≥ 0, ∀ θ ∈ [−κ, κ] .(A.3)

Due to the monotonicity of the conditional expectation value, we obtain

EQ
θ
[
1−X0e

(α− 1
2
σ2−σθ)seσB

θ
s (1− δ) ∆T2

s |Ft

]
≥ EQθ

[
1−X0e

(α− 1
2
σ2+σκ)seσB

θ
s (1− δ) ∆T2

s |Ft

]
=
(

1−X0e
(α− 1

2
σ2+σκ)s

)
(1− δ) ∆T2

sE
Qθ
[
eσB

θ
s |Ft

]
=
(

1−X0e
(α− 1

2
σ2+σκ)s

)
(1− δ) ∆T2

s e
1
2
σ2s

=
(

1−X0e
(α− 1

2
σ2+σκ)s

)
(1− δ) ∆T2

s E
Q−κ

[
eσB

−κ
s |Ft

]
∀s ≥ 0, ∀θ ∈ [−κ,κ] .(A.4)

Thus, the measure Q−κ ∈ P minimises the expectation value in (14), which we therefore

denote as Q∗. Consequently the process X that results from implementing θ = −κ into

equation (11) shall be called X∗.

For the following considerations let WN (X,∆T; ∆TH) be conveniently abbreviated by WN.

The corresponding Hamilton-Jacobi-Bellman equation to equation (14) is as follows (see for

example chapter 3.1. in Stokey (2009) as an introduction to the Hamilton-Jacobi-Bellman

equation):

(r − (1− δ) g0)WN = 1−X∗ (1− δ) ∆T2 +
1

2

(
X∗ (1− δ) ∆T2

)
+

1

dt
EQ

∗ [
dWN |Ft

]
.

(A.5)

WN is obviously differentiable at least once in ∆T and twice in X∗, which allows to apply

Itô’s Lemma:

dWN =
∂WN

∂∆T
d∆T +

∂WN

∂X∗
dX∗ +

∂2WN

∂X∗2
(dX∗)2

=
ln (2)

H
(2∆TH −∆Tt)

∂WN

∂∆T
dt+

∂WN

∂X∗
[
(α+ σκ)X∗t dt+ σX∗t dB

−κ
t

]
+

1

2
σ2X∗

2 ∂2WN

∂X∗2
dt,(A.6)

by using equation (4) in the text. Taking expectation of (A6) and dividing by dt we obtain

E
[
dWN

]
dt

=
ln (2)

H
(2∆TH −∆Tt)

∂WN

∂∆T
+ (α+ κσ)X∗t

∂WN

∂X∗
+

1

2
σ2X∗

2 ∂2WN

∂X∗2
.(A.7)

Substituting (A7) back to the Hamilton-Jacobi-Bellman equation (A5) gives

(r − (1− δ) g0)WN = 1−X∗ (1− δ) ∆T2 +
1

2

(
X∗ (1− δ) ∆T2

)
+

(
ln (2)

H
(2∆TH −∆T)

)
∂WN

∂∆T
+ (α+ κσ)X∗

∂WN

∂X∗
+

1

2
σ2X

2 ∂2WN

∂X∗2
,(A.8)

which is equation (15) in the text.
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B Particular solutions to WNP for WA

Using equations (14) and (5) yields the following particular integral,

WNP (X,∆T; ∆TH) =
1

1− δ
×

(B.1)

∞∫
t=0

[
1−

2∑
i=1

(−1)i+1

i!
X∗

i
e[i(α+κσ)+ 1

2
i(i−1)σ2]s (1− δ)i

(
2∆TH

(
1− e−

ln 2
H
s
))2i

]
e−(r−(1−δ)g0)sds.

In the same manner we employ equation (19) and (23) to derive

WA (X,∆T; τ) =
(1− w (τ))1−δ

1− δ
×

(B.2)

∞∫
t=0

[
1−

2∑
i=1

(−1)i+1

i!
X∗

i
e[i(α+κσ)+ 1

2
i(i−1)σ2]s (1− δ)i

(
2∆TH

(
1− e−

ln 2
H
s
))2i

]
e−(r−(1−δ)g0)sds.

Equations (B1) and (B2) result from Itô’s Lemma which means that equation (A2) with

θ = −κ is applied to equation (14) and (19), respectively. Furthermore please note that

EQ
−κ
[
eσB

−κ
s |Ft

]
= e

1
2
σ2s. By expanding the terms

(
1− e−

ln 2
H
t
)2

= 1− 2e−
ln 2
H
t + e−2 ln 2

H
t(B.3)

and (
1− e−

ln 2
H
t
)4

= 1− 4e−
ln 2
H
t + 6e−2 ln 2

H
t − 4e−3 ln 2

H
t + e− 4 ln 2

H
t,(B.4)

we obtain

[
1−

2∑
i=1

(−1)i+1

i!
X∗

i
e[i(α+κσ)+ 1

2
i(i−1)σ2]s (1− δ)i

(
2∆TH

(
1− e−

ln 2
H
s
))2i

]
e−(r−(1−δ)g0)s

(B.5)

= e−(r−(1−δ)g0)s − 4∆T2
H (1− δ)X∗e(α+κσ)s

(
1− 2e−

ln 2
H
s + e−2 ln 2

H
s
)
e−(r−(1−δ)g0)s

+ 8∆T4
T (1− δ)2X∗

2
e[2(α+κσ)+σ2]s×(

1− 4e−
ln 2
H
s + 6e−2 ln 2

H
s − 4e−3 ln 2

H
s + e− 4 ln 2

H
s
)4
e−(r−(1−δ)g0)s.

Substituting (B5) back into (B1) and integrating yields

WNP (X,∆T; ∆TH) =
1

1− δ

[
1

r − (1− δ) g0
− 4∆T2

H (1− δ)X∗
(

1

η1
− 2

η1 + ln 2
H

+
1

η1 + 2 ln 2
H

)

+8∆T4
H (1− δ)2X∗

2

(
1

η2
− 4

η2 + ln 2
H

+
6

η2 + 2 ln 2
H

− 4

η2 + 3 ln 2
H

+
1

η2 + 4 ln 2
H

)]
,(B.6)
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where

η1 = r − (1− δ) g0 − (α+ κσ) ,

η2 = r − (1− δ) g0 −
(
2 (α+ κσ) + σ2

)
.

Similarly, we have

WA (X,∆T; τ) =
(1− w (τ))1−δ

1− δ

[
1

r − (1− δ) g0
− 4∆τ2 (1− δ)X∗

(
1

η1
− 2

η1 + ln 2
H

+
1

η1 + 2 ln 2
H

)

+8∆τ4 (1− δ)2X∗
2

(
1

η2
− 4

η2 + ln 2
H

+
6

η2 + 2 ln 2
H

− 4

η2 + 3 ln 2
H

+
1

η2 + 4 ln 2
H

)]
,(B.7)

which are equations (24) and (25) in the text, respectively.

C General Solution WNG for WN

We guess the solution to equation (17) has the following functional form:

WNG (t = 0, X,∆T; ∆TH) = AX∗
β (

∆T2 + C∆T +D
)
.(C.1)

where A, C, D are some parameters. Calculating derivatives, we obtain

∂WNG

∂∆T
= AX∗

β
(2∆T + C) ,(C.2)

X∗
∂WNG

∂X∗
= βAX∗

β (
∆T2 + C∆T +D

)
and(C.3)

X∗
2 ∂2WNG

∂X∗2
= β (β − 1)AX∗

β (
∆T2 + C∆T +D

)
.(C.4)

Substituting equations (C1) - (C4) back to equation (17) and rearranging yields

2

(
ln (2)

H

)
AX∗

β

(
∆T2 −

(
2∆TH −

C

2

)
∆T− C∆TH

)
=

[
− (r − (1− δ) g0) + (α+ κσ)β +

1

2
σ2β (β − 1)

]
AX∗

β (
∆T2 + C∆T +D

)
.(C.5)

Solving (C5) requires ∆T2 −
(
2∆TH − C

2

)
∆T − C∆TH =

(
∆T2 + C∆T +D

)
. Thus, we

have

C = −4∆TH and(C.6)

D = −C∆TH = 4∆T2
H .(C.7)

Plugging (C6) and (C7) into (C5), we obtain[
−
(
r − (1− δ) g0 + 2

(
ln (2)

H

))
+ (α+ κσ)β +

1

2
σ2β (β − 1)

]
WNG = 0,(C.8)
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where WNG = AX∗
β (

∆T2 − 4∆TH∆T + 4∆T2
H

)
. The solution of (C8) requires

(α+ κσ)β +
1

2
σ2β (β − 1)−

(
r − (1− δ) g0 + 2

(
ln (2)

H

))
= 0.(C.9)

Let β1 and β1 be the positive and negative roots of the above characteristic function, respec-

tively. By some manipulations, this leads to

WNG = A1X
∗β1 (∆T2 − 4∆TH∆T + 4∆T2

H

)
−A2X

∗β2 (∆T2 − 4∆TH∆T + 4∆T2
H

)
.

(C.10)

As we only consider the option to take action, we need to set the boundary condition such

that lim
X→0

WNG (X) = 0, which is tantamount to a zero option value of a climate policy, if

climate change causes no damages that reduce the GDP. Therefore, the general solution with

the negative root can be ignored. Consequently, we obtain

WNG = A1X
∗β1 (∆T2 − 4∆TH∆T + 4∆T2

H

)
.(C.11)
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