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Abstract

This paper studies a class of multi-self decision-making models proposed in eco-
nomics, psychology, and marketing. In this class, choices arise from the set-dependent
aggregation of a collection of utility functions, where the aggregation procedure sat-
isfies some simple properties. We propose a method for characterizing the extent of
irrationality in a choice behavior, and use this measure to provide a lower bound on
the set of choice behaviors that can be rationalized with n utility functions. Under an
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1 Introduction

Suppose you see a group or individual decision-maker exhibiting choice behavior which is

inconsistent with standard utility maximization. It is presumed that this choice behavior

arises from the aggregation of multiple utility functions (e.g., corresponding to different in-

dividuals, selves, or rationales) using some given method of aggregation. How many utility

functions would be sufficient to explain this behavior? Conversely, given a method of ag-

gregation, can one identify choice behaviors that are explainable with a certain number of

utility functions? This paper studies these questions within a framework of utility aggrega-

tion. Consider the following examples of aggregation methods (included in this framework),

where U is a collection of utility functions over a space of alternatives X.

Example 1 - Utilitarianism. The aggregate utility of an alternative a in a choice set A

is given by
∑

u∈U u(a). Note that the utility of an alternative is independent of the choice

set within which it is evaluated.

Example 2 - Generalization of Tversky (1969). The aggregate utility of an alternative a

in a choice set A is
∑

u∈U Φ(maxb∈A u(b)−minb∈A u(b))u(a), where the contribution of u(a) to

the aggregate utility depends via Φ on the range of u over choice set A. For binary choice sets,

this reduces to the additive difference model of Tversky (1969), which was proposed to explain

intransitive pairwise choice through the aggregation of criterion-by-criterion comparisons of

alternatives. For larger choice sets, and when Φ is the identity, this is the focus-weighted

model of Kőszegi and Szeidl (2012).

Example 3 - Costly self-control. Suppose a decision-maker’s long-run self can exert

costly self-control over multiple short-run selves, where the cost of such self-control depends

on how tempting the alternatives are. The aggregate utility of an alternative a in a choice set

A is given by ulr(a)− γ
∑

usr∈U [max
a′∈A

usr(a′)− usr(a)]ψ, where ulr and the usr’s correspond to

the long-run self and the short run selves, respectively, and γ, ψ are self-control parameters.

If there is only one short-run self, this model is the reduced-form version of Fudenberg and

Levine (2006)’s dual-self impulse control model.

Only rational choice can be explained by Example 1, regardless of the number of utility

functions being aggregated. Examples 2 and 3, however, belong to a literature on multi-self

or multi-utility decision-making which has surged in response to evidence against rational

choice behavior. Proposed models include May (1954), Kalai, Rubinstein and Spiegler (2002),

Fudenberg and Levine (2006), Manzini and Mariotti (2007), Green and Hojman (2009), and
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Kőszegi and Szeidl (2012) in economics, where selves are often seen as rationales or manifes-

tations of temptation and self control processes; Kivetz, Netzer and Srinivasan (2004) and

Orhun (2009) in marketing, where selves are different criteria for evaluating products; and

Tversky (1969), Shafir, Simonson and Tversky (1993) and Tversky and Simonson (1993)

in psychology, where selves are different motivational systems. A first feature of these pa-

pers is that they explain “irrational” choice behavior as arising from the aggregation of

multiple objectives.1 This accords with the view in psychology that “the singular self is

a hypothetical construct, an umbrella under which experiences are organized along various

dimensions” (Lachmann 1996). A second important feature is that, like in Examples 2 and

3, the contribution of a given self to aggregate utility may depend on the choice set; this

is related to the idea in psychology that the self “is fluid in that it shifts in different con-

texts” (Lachmann 1996). As seen from Example 1, both features may be needed to explain

irrational choice behavior.

The present paper studies a framework of utility aggregation that encompasses many

multi-self models in the literature, including Examples 1-3. An aggregator, or model of

aggregation, acts on a collection of utility functions (selves, rationales, or members of a group)

to assign an aggregate utility to each alternative in each choice set. The decision-maker has

a model of aggregation and a collection of utility functions which he uses to select, from each

choice set, the alternative which maximizes aggregate utility. The class of aggregation models

studied here has several basic features exemplified by Examples 1-3. First, the aggregate

utility of an alternative may depend on the choice set only through the set of utility levels

potentially attained by the different selves. Second, if two collections of utility functions

each assign higher aggregate utility to one alternative than another alternative, then the

aggregate utility under the combined collection of utility functions preserves that ranking.

Third, we study aggregators possessing some weak continuity properties ensuring that (1)

the cardinality or “intensity” of a self’s preference may affect choice and (2) aggregation is

non-dictatorial.2

1An expanded shortlist of the multiple-selves or multiple-utility literature includes Benabou and Pycia
(2002), Masatlioglu and Ok (2005), Evren and Ok (2007), and Chatterjee and Krishna (forthcoming). This
literature is also related to the application of social choice tools in multi-criteria decision problems, as
in Arrow and Raynaud (1986), and is related more generally to the theory of multiattribute utility (see
Keeney and Raiffa (1993)). Another approach, developed in Bernheim and Rangel (2007) and Salant and
Rubinstein (2008), allows for context-dependence by considering extended choice situations where behavior
can depend on unspecified ancillary conditions or frames. While information effects can explain some context
dependence (Sen (1993), Kochov (2007), Kamenica (2008)), they cannot explain many systematic violations
of IIA (Tversky and Simonson (1993)).

2Using cardinal information in the utility functions is a common feature of models of household and
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In this paper, choice behavior is captured by a choice function. We say that a choice

function is rationalized by a model of aggregation and a collection of utility functions if

the choice from each set is the unique maximizer of aggregate utility. We show that to

answer the question of how many utility functions would be sufficient to rationalize a choice

function under a given model of aggregation, one may simply multiply two numbers. The

first one is the choice function’s index of irrationality, as given by our proposed accounting

procedure for violations of IIA (independence of irrelevant alternatives). The second one is

a number inherent to the method of aggregation itself, called the proportionality constant

of the aggregator. The proportionality constant, which is independent of both the choice

function and alternative space in question, is found by examining the aggregator’s behavior

over an arbitrary three-element set. For utilitarianism, the proportionality constant is infi-

nite (irrational behavior cannot be explained); for Examples 2 and 3, as well as a class of

scale-invariant aggregation models, we show that the proportionality constant is uniformly

bounded by five (at most five reasons are needed to justify each mistake); for another class of

aggregation models having a “populist” flavor, we show that the proportionality constant is

one (at most one reason is needed to justify each mistake). Given any model in our class, our

results thus identify a lower bound on the set of choice functions that can be rationalized

with a fixed number of utility functions. Our results thus identify models for which it is

important to impose a priori restrictions on the number of selves (such as positing a “dual

self” model) or the number of attributes of a good which are under consideration — else

the theory may not have any testable implications. This need not be the case outside the

class of models studied here: for example, the models ofManzini and Mariotti (2007) and

de Clippel and Eliaz (2012) can explain only certain types of irrational behaviors even when

using arbitrarily many rationales.

In the models treated by this paper, it can happen that the choice is not the most

preferred alternative according to any of the utility functions, but is the best compromise,

in the sense that it maximizes aggregate utility. Because of this feature, it may be difficult

to tell a priori whether it is possible to construct a rationalization of a choice function.

A corollary of our results is a universal procedure for constructing a rationalization (of any

choice function), using any method of aggregation having a finite constant of proportionality.

intrapersonal decision-making, where the intensities of preferences should be comparable and may play an
important role. Without cardinal information, it would be hard, for example, to model a home-buyer who
believes neighborhood safety is more important than proximity to work, but would be willing to trade a
small enough degree of safety for a shorter commute.
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1.1 Related literature

A different concept of rationalization in studied by Kalai, Rubinstein, and Spiegler (2002),

who connect the complexity of a rationalization — which they measure by the number of

selves — to the size of the space of alternatives (as opposed to the number of IIA violations).

They say that a collection of strict preference relations rationalizes a choice function if the

choice from each set is optimal for at least one of the preference relations. In this view, each

(ordinal) self serves as a dictator for some subset of choices. They find that to explain a choice

function defined on an alternative space with n elements, it suffices to posit n different selves.

An ordinal and dictatorial model as above would not satisfy the properties of the models

studied here. However, one may reinterpret the Kalai et al. (2002) framework as a model of

aggregation using this paper’s definition of rationalization, where each utility function in the

model is assigned some choice sets over which it is the sole contributor to aggregate utility

(i.e., dictator). Under that interpretation, to rationalize a particular choice function, one

would have to assign to each utility function the sets over which it acts as dictator, which

amounts to modifying the method of aggregation itself. By contrast, this paper is interested

in studying the set of behaviors rationalizable by a fixed aggregator.3 Because the aggregator

is fixed, and utility functions may have some contribution to aggregate utility for every choice

set (through a potentially complex functional form), constructing a rationalization for models

within our framework is a more complicated matter than in Kalai et al. (2002). In contrast to

their main result, for any given model of aggregation, our universal method for constructing a

rationalization uses the same number of selves for any choice function which has n violations

of IIA according to our index – independently of the size of the space of alternatives.

Our results complement those in the household choice literature, such as Browning and

Chiappori (1998) and Chiappori and Ekeland (2006). That literature differs in several ways

from the present setting. In view of evidence that household demand cannot arise from the

maximization of a single utility, they examine microeconomic implications of Pareto-efficient

choice, where each member of the household is a utility maximizer. Given a household de-

mand function over m goods (which may be viewed as an incomplete choice function), they

ask when there exist n utility functions {ui}ni=1 and a continuously differentiable function µ

of prices and income such that the demand arises from the weighted utilitarian maximization

of
∑

u∈U µ(price,income)u(·) given the budget set (i.e., weights and preferences vary indepen-

dently). Browning and Chiappori (1998) show that if there are n goods, then any demand

3Under another interpretation, they would never have to modify the model of aggregation if it always
required as many selves as there are choice sets. But then the number of selves is fixed at 2n − n− 1.
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data can be explained by an (n− 1)-person household. Chiappori and Ekeland (2006) show

that to explain a given demand function using n people, it is necessary and sufficient that the

rank of a certain matrix in a pseudo-Slutsky matrix decomposition be n−1, though without

further restrictions there can be a continuum of explanatory n-person models. While the

above papers assume that the modeler does not know the household’s weighting rule, the

current paper addresses the question of rationalization with a fixed aggregator. Moreover,

the weight a utility function receives in the present framework depends on utility levels but

not directly on price or income; hence weights and preferences cannot vary independently in

our framework.

There are several recent contributions to the literature on multi-self decision-making

which mostly focus on a different set of questions. Of these, most related is Green and

Hojman (2009), who also study a class of aggregation methods. Because they model a DM

as a probability distribution over all possible ordinal preference rankings, their framework

is difficult to compare to models of multi-self decision-making with a discrete number of

cardinal selves, but is related to models in the voting literature (e.g., Saari 1999). Extending

results from that literature, they show that if choice is determined by a voting rule satisfying

a monotonicity property, then their model can explain any choice behavior.4 The rest of their

paper focuses on welfare analysis. Bernheim and Rangel (2007) and Chambers and Hayashi

(2008) also focus on welfare analysis given choices contradicting rational decision-making.

Other related work includes Manzini and Mariotti (2007), Masatlioglu and Nakajima (2007)

and Cherepanov, Feddersen and Sandroni (2010), who consider sequential application of

multiple rationales to eliminate alternatives, a process they show can rationalize certain

choice functions.

1.2 Organization of the paper

In Section 2 we formalize the basic framework of utility aggregation, the class of models

studied here, and our concept of rationalization. In Section 3 we describe our index of

irrationality. We begin by introducing our results in Section 4 for the special class of scale

invariant models of aggregation. Our rationalizability result, as well as a sketch of proof

describing our general procedure for constructing rationalizations, are given in Section 5.

We present several extensions in Section 6. An extension of our notation for the basic

4This paper’s result on rationalization is independent of their monotonicity theorem.
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framework and results to include type-dependent aggregation is presented in Supplementary

Appendix A.

2 Framework

An individual’s (or group’s) choice behavior is observed with respect to a finite space of

alternatives X. Let P (X) be the set of nonempty subsets of X. The individual’s choice

function c : P (X) → X identifies the alternative c(A) ∈ A chosen from each A ∈ P (X). A

rationalization of a choice function consists of two components, a collection of utility functions

U and an aggregator f that combines these utilities into an aggregate utility function, in a way

that possibly depends on the choice set. Viewed as a multi-self model, these utility functions

represent a decision-maker’s conflicting motivations or priorities. The aggregator corresponds

to the method of sorting out different priorities to come to a decision. To simplify notation,

in the main text we restrict attention to a simplified framework in which the aggregator

treats all utility functions symmetrically. However, in Supplementary Appendix A we allow

nonanonymous aggregation and extend the main results to asymmetric aggregators which

treat utility functions differently based on a “type.” That feature arises in some models

of multi-self decision-making, such as with long and short-run types of selves (for instance,

consider Example 3). The extension to types requires more cumbersome notation but no

conceptual innovation.

Formally, given the space of alternatives X, a utility function u : X → R describes the

utility level allocated to each alternative x ∈ X.5 A collection of utility functions U is an

unordered list of utility functions. By definition of an unordered list, a collection U can

have multiple identical utility functions, and there is no order hierarchy over members of

the list. Formally, for a given grand set of alternatives X, a collection U is an element of

U(X) = ∪∞n=1Un(X), where Un(X) is the set of all unordered lists of length n of utility

functions over X. The number of utility functions in U is denoted by |U |, or simply n when

no confusion would arise.

5Though aggregation in this framework is cardinal, the model has the “ordinal” feature that there can
be many “equivalent” representations of an aggregator in this context. In particular, if f rationalizes the
choice function c using the collection U , then so does any increasing transformation of f . Similarly, if f
rationalizes c using the collection U , then f ◦h−1 rationalizes c using the collection h◦U , where h : R→ R is
invertible on the appropriate domain. That is, given any representation U and f , one can obtain an equivalent
representation by applying a monotone transformation of utilities in U , if a corresponding transformation is
applied to the aggregation function f as well.
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An aggregator f specifies an aggregate utility for every alternative a in every choice

set A, given a (finite) grand set of alternatives X and any collection U defined over these

alternatives.6 Formally, the domain over which the aggregator f is defined is

{a,A,X,U |X ∈ X , U ∈ U(X), A ∈ P (X), a ∈ A},

where X is the set of conceivable finite spaces of alternatives. To simplify notation, we

will write f(a,A, U) whenever doing so would not cause confusion. Since the choice set A

is one of the arguments of the function, f aggregates the utilities in the collection U in a

possibly context-dependent way. An aggregation rule may be seen as a particular theory

of how members of the collection are activated by choice sets: the aggregator determines

the weight each utility function receives on the choice set as a function of its utility levels

over the alternatives. We say that a model of aggregation f rationalizes a choice function if

there is a collection of utility functions such that for every choice set, the alternative that

maximizes aggregate utility is the one selected by the choice function.7

Definition 1. A choice function c : P (X) → X is rationalized by an aggregator f if there

is a collection U such that for every choice set A ∈ P (X), c(A) is the unique maximizer of

f(a,A, U) within A.

In this paper, we study a class of aggregators that contains many multi-self models

proposed in the literature – those which are monotonic transformations of an additively

separable form, in which the weight each utility function receives depends on the set of

utility levels it attains on the choice set. Formally, the class of models F contains all models

of the form

f(a,A, U) = h(
∑
u∈U

g(a, {u(a′)}a′∈A)),

where h is an increasing transformation, and where g – which evaluates each alternative a ∈ A
based on the set of utility values u takes on A – satisfies the following two properties. First,

g satisfies consistency : g(a, {u(a′)}a′∈A) ≥ g(b, {u(a′)}a′∈A) whenever u(a) ≥ u(b). This is

a minimal consistency requirement, ensuring that g preserves the ranking of u. Second, g

satisfies neutrality : g(a, {u(a′)}a′∈A) = g(π ◦ a, {u(π ◦ a′)}a′∈A) for any permutation π : X →
6We could permit aggregators with restricted domains: for convex R̂X ⊂ RX , let Un = ×n

i=1R̂X .
7The underlying model f encodes additional information, such as the ranking of unchosen alternatives in

each set, that might be observable using a larger data set than that provided by a choice function. However,
using only simple revealed preference on the choice from a menu, only the best choice from each set (i.e.,
the choice function) is elicited in light of the potential menu-dependence of choices.
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X. This says the treatment of alternatives depends on utilities, not names. As described in

the Appendix, models in the class F satisfy six axiomatic properties on which our results

are based.

The class of models F contains many familiar examples. The model of utilitarianism

in Example 1 is one such instance, as is the generalization of the additive difference model

of Tversky (1969) in Example 2.8 If Φ in that model is increasing, utility functions with a

greater intensity of preference over the set A receive greater weight in the aggregate util-

ity, as in the focus-weighted model of Kőszegi and Szeidl (2012) (where each utility func-

tion corresponds to a dimension of a good, and Φ is the identity). If Φ is decreasing, the

model may be seen as a context-dependent version of the models of relative utilitarian-

ism in Karni (1998), Dhillon and Mertens (1999), and Segal (2000), where a DM’s weight

in society is normalized by her utility range over the grand set of alternatives. Exam-

ple 3, the dual-self model of Fudenberg and Levine (2006), does not exactly fit into the

class F because the utility function corresponding to the long-run self in the functional

form ulr(a)− γ
∑

usr∈U [max
a′∈A

usr(a′)− usr(a)]ψ is treated differently than the short-run selves;

however, the summation corresponding to the short-run selves is in F , as is the part corre-

sponding to the long-run self. Our results extend in this case and others with nonanonymous

aggregation; see Supplementary Appendix A. Finally, we mention below some other models

in F which are equivalent or closely related to ones in the existing literature.9

Example 4 - Loss aversion of Tversky and Kahneman (1991), with endoge-

nous reference point. The aggregate utility of an alternative a in a choice set A is

m

(∑
u∈U u(a)

)
+
∑

u∈U `

(
u(a)−r({u(a′)}a′∈A)

)
, where r(·) determines the reference point

against which u(a) is evaluated for each utility function u; m(·) captures the impact of abso-

lute valuations on aggregate utility; and the loss aversion function `(·) satisfies the properties

proposed by Tversky and Kahneman (1991): steeper disutility from losses than utility from

gains, and weakly diminishing sensitivity.

The above model has been applied in various forms. Kivetz et al. (2004) consider goods

8Tversky (1969) accounts for potentially intransitive pairwise choice behavior by positing utilities
V1, v2, . . . , vn and an odd φ : R → R such that x � y if and only if

∑n
i=1 φ(vi(xi) − vi(yi)) > 0. Ob-

serve that a is preferred to b in the pair {a, b} if and only if
∑

u∈U Φ(|u(a)− u(b)|)(u(a)− u(b)), where each
summand is an odd function of u(a)− u(b).

9Two additional aggregators are studied in Supplementary Appendix 7. where we show how to rationalize
two simple choice procedures discussed in Kalai et al. (2002): the median procedure and the second-best
procedure. In particular, Kalai et al. (2002) show that within their framework, the number of selves needed
to rationalize these choice procedures becomes unbounded as the alternative space grows large. We show
they can be rationalized in our framework with two selves, regardless of the size of the alternative space.
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(e.g., laptops) which have defined attribute levels (e.g., processor speed) and posit utility

levels (“partworths”) for a given attribute. Their contextual concavity model specifies r(·) ≡
min(·), m(·) ≡ 0, and `(·) ≡ (·)ρ for some concavity parameter ρ. Similarly in Orhun (2009),

each u can be interpreted as the valuation of alternatives under some attribute. Orhun (2009)

finds the optimal product line for a model corresponding to the case where m is linear, ` is

the standard kinked-linear loss aversion function (that is, `(x) = x for x > 0, `(x) = λx for

x < 0 and some λ > 1), and r is a weighted average of valuations.

Example 5 - Nash bargaining solution with an endogenous disagreement point.

The aggregate utility of an alternative a in a choice set A is
∏

u∈U(κ+u(a)−mina′∈A u(a′)),

where κ is any positive constant to ensure each term is strictly positive.

Example 5, which specifies the worst outcome as the disagreement point, is similar to

Kaneko and Nakamura (1979), although they assume the utility of the worst outcome is the

same in all choice sets. A more general theory of context-dependent disagreement points in

the bargaining solution is offered by Conley, McLean and Wilkie (1997).

These and other models in F share some prominent characteristics. First, as in many

existing models of household and multi-self decision-making (and in expected utility), ag-

gregation depends on cardinal information in the utility functions. Building on cardinality,

these models offer the possibility of compromise. This is a defining feature of the models

of household choice, which are interested in efficient outcomes arising from an unmodeled

bargaining process. As opposed to Kalai et al. (2002), but in accordance with others (e.g.,

Tversky (1969), Tversky and Kahneman (1991), Kivetz et al. (2004), Fudenberg and Levine

(2006), Green and Hojman (2009)), the utility functions in these models have some contri-

bution to aggregate utility on every choice set.10 Finally, the weight allocated to a utility

function may depend on how it evaluates the options in the choice set. For example, in

Fudenberg and Levine (2006), a long-run self must exert more costly self control when more

appealing options are available. Such models can also capture the behavior in Shafir et al.

(1993), where the primary rationales for purchasing depend on the attributes of available

products. As seen from Example 1 (utilitarianism), the weights allocated to utility functions

must depend on the choice set in some way in order to generate irrational behavior.

10Psychologists believe that a fluid form of compromise among selves is necessary for healthy behavior.
This is as opposed to disassociated selves (i.e., overly autonomous selves), or a high self-concept differentiation
(a lack of interrelatedness of selves across contexts) both of which are connected to pathological or unhealthy
behavior; see Power (2007), Donahue, Robins, Roberts and John (1993), and Mitchell (1993).
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3 An index of irrationality

What kinds of behavior can an aggregator rationalize? Consider one of the simplest types of

aggregators, the model of utilitarianism: f(a,A, U) =
∑

u∈U u(a). The only choice function

that utilitarianism can rationalize is rational choice, that is, choice which satisfies the Inde-

pendence of Irrelevant Alternatives (IIA). IIA requires that if a ∈ A ⊂ B and c(B) = a then

c(A) = a. This says that if an alternative is chosen from a set, then it should be chosen from

any subset in which it is contained. It is well known that a choice function can be rational-

ized as the maximization of a single preference relation if and only if it has no violations of

IIA. A non-utilitarian model of aggregation, however, might be able to rationalize a choice

function that violates IIA. To identify choice functions that deviate from rationality but are

rationalizable, this paper provides an index of irrationality based on IIA violations.

The number of IIA violations can be determined straightforwardly for choice functions

over three-element sets; e.g., if the choice over pairs is transitive but the second-best element

according to the pairs is selected from the triple, there is one violation of IIA. For a larger

set of alternatives, there are different plausible ways to determine whether a set (or more

precisely, the choice from that set) causes an IIA violation. Consequently, there are different

ways to define the number of violations. One possible measure would be based on the

following characterization of an IIA violation.

Characterization 1. A set A causes an IIA violation given c(·) if there exists a set B ⊃ A

such that c(B) ∈ A \ {c(A)}.

To illustrate, consider X = {w, x, y, z} and the choice function c(·) given by:

c({w, x, y, z}) = w,

c({w, x, y}) = c({w, y, z}) = y, c({w, x, z}) = w, c({x, y, z}) = x,

c({w, x}) = c({w, z}) = w, c({w, y}) = c({y, z}) = y, c({x, y}) = c({x, z}) = x.

The sets {w, x, y}, {w, y, z}, and {w, y} are IIA violations under this characterization, be-

cause IIA dictates that if c({w, x, y, z}) = w then the choice from those sets should be w.

However, notice that choosing y from {w, y} is consistent with IIA in view of the fact that

y is chosen from {w, x, y} and {w, y, z}. Consequently, one might want to view A as an IIA

violation only if its choice contradicts that of the first superset having an IIA implication

for A. This idea is formalized below.

Characterization 2. A set A causes an IIA violation given c(·) if there exists a set B ⊃ A

10



such that c(B) ∈ A \ {c(A)} and for every A′ such that A ⊂ A′ ⊂ B, we have c(A′) 6∈ A.

Under Characterization 2, only {w, x, y} and {w, y, z} are violations in the example above;

in view of those choices, IIA dictates picking y from {w, y}. Thus, the second characterization

goes further than the first in viewing each choice set A causing a violation as a regime

change; that is, as having IIA implications in all subsets of A in which c(A) is contained. As

evidenced by the following example, one could take the characterization of IIA violations as

regime changes even further:

c({w, x, y, z}) = w,

c({w, x, y}) = c({w, x, z}) = w, c({w, y, z}) = y, c({x, y, z}) = x,

c({w, x}) = c({w, z}) = w, c({w, y}) = c({y, z}) = y, c({x, y}) = c({x, z}) = x.

IIA implies that if w is chosen from {w, x, y, z}, then it should also be chosen from {w, y, z}
and {w, y}. At the same time, the choice of y from {w, y} is implied by the choice of y

from {w, y, z} (which itself contradicts the choice of {w, x, y, z}), but not by the choice of w

from {w, x, y}. Under Characterization 2, {w, y} is considered a violation – even though y is

implied by the IIA violation {w, y, z}, there is no choice set in between {w, y} and {w, x, y}.
Consider now the view that each IIA violation is a regime change which has implications

for all subsets in which the choice is contained. Then, the choice of y from {w, y, z} implies

that y should be chosen from any subset of {w, y, z} in which it is contained – in particular,

y should be chosen from {w, y}. Moreover, no other regime change has a contradictory

implication for {w, y}. Consequently, under the following characterization, which refines the

previous two, the only set causing a violation is {w, y, z}. The characterization is iterative,

starting from X, then examining sets of size |X| − 1, etc., until reaching sets of size two.

Characterization 3. The set X does not cause an IIA violation. Inductively, for a set

A ⊂ X, let V(A) be the set of smallest supersets of A which cause an IIA violation and

whose choice is contained in A. Then we say that A causes an IIA violation if

(1) There exists B such that A ⊂ B, c(B) ∈ A \ {c(A)} and for every A′ such that

A ⊂ A′ ⊂ B, c(A′) 6∈ A; and

(2) If V(A) 6= ∅ then there exists B′ ∈ V(A) such that c(B′) 6= c(A).

Condition (1) is simply Characterization 2. The refinement in condition (2) ensures a

set is not considered a violation if its choice is implied by the previous regime changes. For
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any choice function, the number of sets causing an IIA violation is smallest under Charac-

terization 3 and highest under Characterization 1. We define the index of irrationality as

follows.

Definition 2 (Index of Irrationality). The index of irrationality of a choice function c(·) is

given by II(c) = #{A ∈ P (X) | A causes an IIA violation under Characterization 3}.

Because the results in this paper determine how many utility functions would be sufficient

to explain a choice behavior with a given index of irrationality, the result is tighter the smaller

is the index of irrationality used. Another possible measure would be the minimal number of

sets where the choice function must be changed to make it rational; this measure, however,

is not comparable with our own – it can be either larger or smaller than the index above.11

4 Scale-invariant models

We begin by introducing our results for a special class of models in F which satisfy a scale-

invariance property. Models in F are ordinally equivalent to the form
∑

u∈U g(a, {u(a′)}a′∈A)).

We say that f ∈ F is in the class of models F∗ if g(a, {αu(a′)}a′∈A) = φ(α)g(a, {u(a′)}a′∈A)

for any α ∈ R and some invertible and odd φ : R → R. This says the unit in which pref-

erence intensity is measured does not affect rankings. This class includes utilitarianism as

well as various menu-dependent variations. As previously noted, utilitarianism explains only

rational choice behavior. This section shows that being able to explain only a limited set of

behaviors is a nongeneric feature of aggregators in this class.

Consider the following model of reference-dependent aggregation in F∗.

Example 6 - Simple reference dependence. The aggregate utility of an alternative a

in a choice set A is
∑

u∈U(u(a) − mean u(A))ρ, where ρ is an odd integer and mean u(A)

is a geometric or arithmetic mean over the set {u(a′)}a′∈A. This is a reference-dependent

variation of the CRRA form, where the origin is shifted.

The reference dependence in Example 6 permits that model to rationalize a much wider

array of behaviors than can utilitarianism. To understand why, let us first examine choice

11Indeed, suppose that pairwise choices exhibit the transitive ranking a preferred to b preferred to c. Under
this paper’s measure, there is one violation of IIA if c({a, b, c}) = b, which is defeated once in the pair {b, c},
and two violations of IIA if c({a, b, c}) = c, which is defeated twice. The alternative measure counts one
violation either way. To see that the alternative measure can also be larger, consider the choice function in
the example above. The alternative measure counts two violations, while this paper’s measure counts one.
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behavior over only three alternatives. There are three possible kinds of irrational choice

functions defined over a three-element set. One possibility is transitive choice, where the

second-best element (from the transitive ranking) is chosen from the triple; another is tran-

sitive choice, where the worst element is chosen from the triple; and the third is intransitive

choice. Using the model in Example 6, it is easy to construct rationalizations for all three

of these behaviors.

The first part of the following theorem shows that if a model of aggregation in F∗ can

rationalize the last two irrational behaviors over a triple of alternatives, then it can rationalize

any choice function defined over any space of alternatives. The second part of the theorem

shows that a generic aggregator in F∗ (including Example 6) can rationalize any choice

behavior with a uniform bound on the number of utility functions needed. To describe the

sup metric through which genericity is defined, note that by scale invariance, there is a

natural bijection between (1) aggregators in F∗ applied to pairs and triples of elements, and

(2) the set of pairs of operators Ω = {O1, O2 | O1 : ∆2 → R2, O2 : ∆3 → R3}, where ∆2,∆3

are the 2- and 3-dimensional simplices, respectively. The distance between two such pairs

(O1, O2) and (O′1, O
′
2) is defined as maxi=1,2 supx∈Ri |Oi(x)−O′i(x)|.

Theorem 1. Let X be a finite grand set of alternatives. Then:

(i) Fix any aggregator f ∈ F∗ and three alternatives x, y, z ∈ X. If f can rationalize

both (1) intransitive choice over x, y, z and (2) transitive choice over x, y, z where the

worst pairwise element is best in the triple {x, y, z}, then f can rationalize any choice

function c defined over X.

(ii) The set of aggregators in F∗ that can rationalize any choice function c using at most

1 + 5 · II(c) utility functions is open and dense.

The proof of this theorem appears in the Appendix, and is discussed in the next section.

Theorem 1 formalizes the sense in which only being able to explain rational choice behavior

is fragile. Once even a small amount of irrationality can be explained (only two types of irra-

tional behavior out of the three possible types of irrational behavior over three alternatives),

an additive and scale-invariant model can rationalize any choice behavior with sufficiently

many utility functions. Moreover, the ability to explain any behavior is generic in this class,

with at most five “good reasons” needed for every “mistake” made. Note that the result gives

a lower bound on the set of behaviors a generic aggregator in F∗ can rationalize, thereby

providing a linear connection between the complexity of the observed behavior (as measured
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by the number of IIA violations) and the degree of freedom in the model (as measured by

the number of utility functions). Given n utility functions, a generic aggregator in F∗ can

rationalize any choice function c, defined on any finite grand set of alternatives X, that

exhibits an index of irrationality of at most n−1
5

. Thus, in spite of having a structured form,

essentially any aggregator in F∗ can rationalize any choice function with sufficiently many

utility functions. In other words, a model of decision-making satisfying the above properties

must put a priori restrictions on the number of individuals or selves in order to generate a

refutable theory.

Given a model of aggregation and any triple of alternatives, it is very easy to check

whether the model can rationalize the two irrational behaviors described in part (i) of The-

orem 1. But the proof of Theorem 1 also reveals a simple sufficient condition for checking

whether a model f is of the generic type in part (ii). It suffices to find a single utility

function defined over a triple {x, y, z} for which f “stretches” utility differences over pairs,

f(x, {x, z}, u)−f(z, {x, z}) 6= f(x, {x, y}, u)−f(y, {x, y}, u)+f(y, {y, z}, u)−f(y, {y, z}, u);

and for which f ’s evaluation of alternatives in the triple is not fixed by the pairwise rankings,

f(x, {x, y, z}, u) − f(y, {x, y, z}, u) + f(x, {x, y, z}, u) − f(z, {x, y, z}, u) 6= f(x, {x, y}, u) −
f(y, {x, y}, u) + f(x, {x, z}, u) − f(z, {x, z}, u). For example, the utility function u(y) =

4 > u(z) = 2 > u(x) = 1 shows that the model in Example 4 using an arithmetic

mean is in the generic class. By contrast, utilitarianism and generalizations of the form

f(a,A, u) = u(a) +h(A), where the choice set cannot change intensity of preference within a

set, fail the sufficient condition (and, in fact, explain only rational choice). The proof shows

that the sufficient condition is satisfied generically. Nonetheless, it is not necessary – even

aggregators that fail to satisfy the condition may be able to rationalize all choice behaviors.

As seen from our upcoming results, the model of Example 2 using linear Φ can rationalize

any behavior with five utility functions per IIA violation, but fails the sufficient condition.

5 A rationalization theorem and procedure

In this section we present our main result, which determines how many utility functions

would be sufficient to explain a choice function based on its index of irrationality. Before

doing so, we begin with an illustrative example.
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5.1 Illustration

Recall the model in Example 2, where the aggregate utility of an alternative a ∈ A is

f(a,A, U) =
∑
u∈U

Φ(max
b∈A

u(b)−min
b∈A

u(b))u(a)

for some monotonic function Φ. Let us suppose Φ is increasing, and examine how this

aggregator behaves on an arbitrary three-element set of alternatives {a, b, c}. In particular,

consider the following collection of utility functions U = (u1, u2, u3, u4, u5) defined on {a, b, c}
(in each column, the alternative on the left receives the utility number to its right):

u1 u2 u3 u4 u5

b 2

c 1

a 0

b 2

a 1

c 0

c 2

b 1

a 0

a, c 2

b 0

a 2

b, c 0

It is easy to verify that the aggregator selects a from the choice set {a, b}. Observe that

f(a, {a, b}, U) = 4Φ(2) + Φ(1) and f(b, {a, b}, U) = 2Φ(2) + 3Φ(1). Hence f(a, {a, b}, U) >

f(b, {a, b}, U) since Φ(2) > Φ(1). For any other choice set, the aggregator assigns equal

utility to all alternatives:

f(a, {a, c}, U) = f(c, {a, c}, U) = 2Φ(0) + Φ(1) + 2Φ(2),

f(b, {b, c}, U) = f(c, {b, c}, U) = 3Φ(1) + 2Φ(2),

f(a, {a, b, c}, U) = f(b, {a, b, c}, U) = f(c, {a, b, c}, U) = 5Φ(2).

That is, under the collection U , alternative a receives strictly higher aggregate utility than

b in the choice set {a, b}, and there is complete indifference in all other choice problems.

We will call such a collection U defined on a three-alternative set {a, b, c} a triple-basis

for this aggregator f . As we now show, triple-bases can serve as basic building blocks for

rationalizations of choice functions on arbitrary spaces of alternatives. Recall the example

choice function c(·), defined on X = {w, x, y, z}, from Section 3:

c({w, x, y, z}) = w,

c({w, x, y}) = c({w, x, z}) = w, c({w, y, z}) = y, c({x, y, z}) = x,

c({w, x}) = c({w, z}) = w, c({w, y}) = c({y, z}) = y, c({x, y}) = c({x, z}) = x.

15



This choice function’s index of irrationality is equal to one. Using the triple basis above, we

construct the following collection U{w,y,z} = (u1, u2, u3, u4, u5), defined on X:

u1 u2 u3 u4 u5

w, z 2

x 1

y 0

w, z 2

y 1

x 0

x 2

w, z 1

y 0

x, y 2

w, z 0

y 2

w, x, z 0

The above utility functions are constructed by letting the choice from {w, y, z}, which is y,

play the role of a in the triple-basis; letting the unchosen alternatives in {w, y, z}, which are

w and z, play the role of b; and finally, letting the alternatives not in {w, y, z}, which is only

x here, play the role of c.

Using U{w,y,z}, how does f evaluate the alternatives in each choice set A ⊆ X? Since x

has the same utility as c in the calculations above, it is easy to set that f(·, A, U{w,y,z}) is

constant for any set A containing x. Since the unchosen alternatives w, z in {w, y, z} are

given equal utilities, f(·, A, U{w,y,z}) is constant on {w, z}. Finally, since y plays the role of

a, and w, z play the role of b, the previous calculations imply that for any A ⊆ {w, y, z}
containing y, we have

f(y, A, U{w,y,z}) > f(ỹ, A, U{w,y,z}) for all ỹ ∈ A \ {y}.

Therefore, the utility functions in U{w,y,z} rationalize the choice from any set A ⊂ {w, y, z}
which contains y, and have no impact on any other choice set.

Since the collection U{w,y,z} has implications only for the IIA violation {w, y, z} and

its subsets, one needs an additional utility function to rationalize the remaining “rational”

choices. We construct a final utility function u∗ whose utility range is sufficiently small

to not overturn any strict preferences induced from U{w,y,z}, and which has the ranking

u∗(w) > u∗(x) > u∗(y) > u∗(z) derived from standard revealed preference; that is, from

observing w = c(X), x = c(X \ {w}), and y = c(X \ {w, x}). By construction, the utility

functions (u∗, U{w,y,z}) rationalize c(·).

5.2 Rationalizability result

Observe that the triple basis U given above would still be a triple-basis for the generalized

additive difference model if we were to scale all the utilities by a common constant. Loosely
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speaking, this means that for any δ, the utility functions in U can rationalize being indifferent

among all alternatives in subsets of {a, b, c} except for having a δ-amount of strict preference

within one pair. This is a property we term triple-solvability, and is formally defined below

for any model of aggregation.

Definition 3. Given a triple {a, b, c} and model of aggregation f , the collection U ∈ U({a, b, c})
is a triple-basis if f(a, {a, b}, U) > f(b, {a, b}, U) and f(·, A, U) is constant for all other

A ⊆ {a, b, c}. The aggregator f is triple-solvable with k utility functions if for every δ > 0,

there is a triple-basis U ∈ Uk({a, b, c}) with maxa,b∈A,A⊆{a,b,c},u∈U |f(a,A, u)− f(b, A, u)| < δ

Given an aggregator, it is easy to check for the existence of a triple-basis. Indeed, triple

bases can be found for the aggregators featured earlier.12 For scale-invariant aggregators,

which satisfy the property that measuring utilities in a different unit does not change the

ordering implied by the aggregator, checking the property is particularly simple, since it then

suffices to construct one triple-basis which can be scaled as needed. More generally, it is easy

to see from our construction that it suffices for there to be triple-bases using only |X| − 2

δ’s, where each is smaller than the amount of strict preference under the previous δ’s. It

turns out that triple solvability holds broadly among the class of aggregators featured here,

and in fact the class of aggregators F∗ generically satisfies this property. The fact that these

examples illustrate various models of multi-self decision-making proposed in the literature

suggests that this property, which can be checked simply by looking at choice behavior on

three-element sets, holds broadly. As our next result shows, this behavioral property has

strong implications for the explanatory power of a model.

Theorem 2. Suppose f ∈ F is triple-solvable with kf utility functions. Then, for any choice

function c, defined on any finite grand set of alternatives X, no more than 1+kf ·II(c) utility

functions are needed to rationalize c.

We sketch below the proof of Theorem 2, describing our general rationalization method.

Note that an alternative statement of the result is as follows: using n utility functions, f can

12Solvability of the simple reference dependence model will follow from the sufficient condition it satisfies.
For the case of the contextual concavity model of Kivetz et al. (2004), the following is a triple basis for any
ρ 6= 1: u1(a) = 4, u1(b) = 3, u1(c) = 1, u2(a) = 3, u2(b) = 1, u2(c) = 2, u3(a) = 3, u3(b) = 4, u3(c) = 1,
u4(a) = 1, u4(b) = u4(c) = 3, u5(a) = 2, u5(b) = 1, u5(c) = 3, u6(a) = 1, u6(b) = 2, u6(c) = 4. For the case of
loss aversion with kinked linear ` and parameter 2, the following is a triple basis (there is some rounding error):
u1(a) = −2.112, u1(b) = −1.275, u1(c) = 7.225, u2(a) = 0, u2(b) = 1.445, u2(c) = 1, u3(a) = 6, u3(b) =
7.225, u3(c) = 4, u4(a) = −4.766, u4(b) = −2.938, u4(c) = 0, u5(a) = 5, u5(b) = −5.981, u5(c) = 2.814.
For bargaining with endogenous disagreement point, the following is a triple basis (there is some rounding
error): u1(a) = 2.847, u1(b) = 1, u1(c) = 7.634, u2(a) = 0, u2(b) = 4.288, u2(c) = 1, u3(a) = 6, u3(b) =
−.129, u3(c) = 4, u4(a) = −4.651, u4(b) = −.949, u4(c) = 0, u5(a) = 5, u5(b) = −1.619, u5(c) = −15.8.
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rationalize any choice function c, defined on any finite grand set of alternatives X, whose

index of irrationality is at most n−1
kf

. Hence, the result also gives a lower bound on the set of

rationalizable behaviors for a fixed number of utility functions, providing a linear connection

between the index of irrationality of a choice function and the degree of freedom in the model

(as measured by the number of utility functions).

Note that for each aggregator f , the proportionality constant kf is independent of the

size of the alternative space X, and can be calculated using any triple of alternatives (it

is simply the number of group members in a triple basis). This means that the number of

utility functions that are sufficient to rationalize a choice function on the alternative space

X does not increase if the choice function is extended to a larger alternative space X̂ in

a manner such that no additional IIA violations are created. This formalizes the sense in

which the size of the rationalization depends directly on the complexity of the behavior and

not the size of the alternative space; the size of the alternative space matters only in the

sense that it bounds the number of IIA violations that are possible.

Sketch of proof: a universal rationalization method. Suppose f is triple-solvable

with kf utility functions. Given an arbitrary X and any choice function c defined on X,

the procedure works as follows. We examine all possible choice sets in X from smallest to

largest, first going through all choice sets of size two, then all choice sets of size three, etc.

We ignore any choice set that does not cause an IIA violation (under Characterization 3).

For each choice set A that does cause an IIA violation, the construction creates a group UA

defined on X, whose utility values match those of a triple basis: c(A) plays the role of the

preferred element in the pair, A \ {c(A)} plays the role of the unchosen element in the pair,

and X \ A plays the role of the third element. This implies that:

1. c(A) is selected under f ◦ UA from every subset of A in which it is contained; and

2. The group members in UA cancel each other out under f on every other choice set

(that is, on sets not containing c(A) or sets containing some element of X \ A)

The triple-basis used to generate UA is “indifferent enough” over the alternatives so that the

trickle-down effect of UA does not overturn the strict preference of previously constructed

utility functions (corresponding to other IIA violations). Finally, the construction creates an

extra utility function u∗, that is indifferent enough never to overturn any strict preferences
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from existing utility functions. Using standard revealed preference, u∗ allocates the highest

utility to c(X), the next highest utility to X \ {c(X)}, and so on.

This procedure constructs 1 + kf · II(c) utility functions which together rationalize c(·)
under the model f . The construction ensures that c(A) is selected from any set causing an

IIA violation; one need only check that constructed utility functions do not interfere with

choices associated with sets that do not cause IIA violations. To loosely illustrate the idea,

consider any nested sequence of choice sets that decreases by one alternative. Given X, or

any set which does not cause an IIA violation, all utility functions except u∗ are indifferent,

hence the preferences of u∗ prevail. For the first set of the sequence that contradicts the choice

from X, a triple-basis was created with utility functions which overrule u∗ and guarantee

that the choice from this set under c(·) is the unique f -maximizer (while the other triple-

bases created will be indifferent). Similarly, whenever along the sequence there is a set that

contradicts the choice of the previous set, another triple-basis was created that overrules all

utility functions created in association with larger sets.

It is easy to see that the proposed rationalization procedure can also be modified to

generate rationalizations of choice correspondences.

Theorem 1, for scale-invariant aggregators, is proved in five steps. The first is knowing

that if f is triple-solvable with k utility functions, we can rationalize any choice function c

with 1+k·II(c) utility functions. This is simply Theorem 2. The next step is showing that if a

certain matrix – constructed by permuting possible aggregate utility differences given various

rankings of three alternatives a, b and c – has a nonzero determinant, then the aggregator f is

triple-solvable. Next, we prove part (i) by showing that if the two types of irrational behaviors

can be explained, then the above matrix has nonzero determinant. To prove part (ii), we

first show that if the sufficient condition described after Theorem 1 is satisfied, then the

above matrix has nonzero determinant and the aggregator is triple-solvable with five utility

functions. Finally, we prove the sufficient condition is generically satisfied. For intuition on

why the bound is five, notice that checking whether a collection constitutes a triple basis

requires checking five aggregate utility differences: the aggregate utility difference between

any two pairs of alternatives within the set {a, b, c}, and the aggregate utility difference

between the alternatives within each of the three pairs {a, b}, {b, c}, and {a, c}. It turns out

that a generic model in F∗ “stretches” utility differences in a nonlinear, menu-dependent

fashion, and that under scale-invariance, having five utility functions provides enough degrees

of independence to ensure that a triple basis can be constructed.
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6 Extensions

6.1 Weakening solvability: one utility function per violation

While triple solvability is a property that is broadly satisfied, it can be seen from our con-

struction that our theorem would still hold under a weaker condition. It suffices that there

exist a collection which is arbitrarily close to being indifferent on all but one subset {a, b}
of a triple {a, b, c}. We formalize this idea in Supplementary Appendix A, where we extend

the notion of a triple-basis to an approximate triple-basis. For some aggregators, approxi-

mate triple-solvability can yield a triple-basis with drastically fewer utility functions. Indeed,

consider an aggregator of the form

f(a,A,X,U) =
∑
u∈U

h(max
a′∈A

u(a′))u(a),

where limx→∞ h(x)x = 0. Under such an aggregator, the presence of an alternative with a

very high utility level under one self means that self is given less say in the decision process

(a “populist”-type model). This can be used to create a single-member approximate triple-

basis u: let u(a) and u(b) such that f(a, {a, b}, {a, b, c}, u)− f(b, {a, b}, {a, b, c}, u) = δ (for

small enough δ this is always possible), and let u(c) be high enough so that u is ε-indifferent

between any two elements given sets containing c. Theorem 5 in Supplementary Appendix

A then implies that only one utility function is needed to rationalize each violation (or

alternatively, using n utility function, the aggregator can rationalize all choice functions

with index of irrationality up to n − 1. This means that for any choice function with one

IIA violation, only two selves are needed — which is clearly a tight bound. Note that there

are exponentially many choice functions with index of irrationality equal to one: starting

from any rational choice function c, choose an arbitrary A ⊂ X, modify the choice to any

a∗ ∈ A \ {c(A)}, and make a∗ the choice in all subsets of A containing a∗.

6.2 Type-dependent aggregators

The examples of aggregators above all treat utility functions in the same way. However,

many models in the existing literature on multi-self decision-making propose methods of

aggregation that treat some selves differently than others. For example, Fudenberg and

Levine (2006) propose a dual-self impulse control model with a long-run self exerting costly
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self-control over a short-run self. One way to generalize this aggregator to any number of

selves would be to introduce multiple types of short-term temptations, represented by selves

usr1 , u
sr
2 ..., u

sr
n , as well as one long-run self ulr. Accommodating such type-dependent models

of aggregation in our framework requires an extension of the framework and some extra

notation, but no conceptual innovation. In particular, the definition of an aggregator must

be extended to include a set of possible types, and the definition of a self must be extended

to include a type. For ease of exposition, we restricted ourselves to the simplified framework

in the main text and present the extension of the framework in Supplementary Appendix A.

Our results carry over to the extended framework.

6.3 Systematic IIA violations

Our construction allocates an (approximate) triple-basis for every increment of the index

of irrationality. However, there can be IIA violations that are “in the same direction”

(that do not contradict each other). In this case, parts of the associated triple-bases in our

construction can be combined (or collapsed) together to yield tighter bounds. For example,

recall the triple-basis for the intensity-weighted aggregator, and fix some alternative a. Every

time the choice of a from some set causes an IIA violation, the triple-basis constructed has

a utility function u5 in which a is preferred to X \ {a}, all elements of which are indifferent

to each other. Under the intensity-weighted aggregator, all of the u5’s constructed when the

choice was a can be collapsed into a utility function.

This effect is particularly pronounced when the triple-basis has only one utility function,

as in the approximately triple-solvable aggregators introduced above. Consider the following

example: let x∗ ∈ X, and let �1 and �2 be strict orderings on X such that x �1 x
∗ and

x �2 x
∗ for every x ∈ X \ {x∗}, and y �1 x for x, y ∈ X \ {x∗} if and only if x �2 y.

Consider a decision-maker who selects the best element according to �1 from choice sets not

containing x∗, but selects the best element according to �2 from choice sets containing x∗.

This behavior describes, for example, a customer in a restaurant who chooses the tastiest

item from a menu if it does not contain onion rings, while choosing the healthiest item in

the presence of onion rings, because they are so greasy as to make the customer feel guilty

about his eating habits. The above behavior an index of irrationality of |X| − 2.13 However,

these IIA violations do not contradict each other: if the choice from set B contradicts the

choice from A ⊃ B, then there is no B′ ⊂ B such that the choice from B′ contradicts the

13In particular, the sets causing IIA violations are X \ {x∗}, X \ ({x∗} ∪ {c(X \ {x∗})}), etc. etc.
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choice from B. This can be used to merge all collections of selves into a single collection,

reducing the number of selves required to rationalize the customer’s choice function. Recall

the aggregator introduced in the previous subsection, which was shown to be approximately

triple-solvable with a single utility function. Our construction calls for (i) creating one utility

function which has the ranking in �2; and (ii) creating a utility function for all sets associated

with an IIA violation, such that the utility of x∗ is sufficiently high that the utility function

becomes close enough to indifferent in the presence of x∗, and among the other alternatives

allocates the highest utility to the choice from the given set. The latter utility functions can

all be collapsed into a single one which agrees with the ranking of �1 over X \ {x∗} (while

keeping the utility of x∗ at a level that makes it nearly indifferent in the presence of x∗).

Our construction implies the above choice function can be rationalized with two selves —

which is a tight bound.

7 Discussion

This paper proposes an index of irrationality and examines how many utility functions are

sufficient to explain choice behavior, under a large class of existing models of multi-self

decision-making. It should not be difficult to incorporate choice correspondences into our

results on rationalizability by extending our definition of IIA violations for choice functions

to count both violations of Sen’s α and Sen’s β (axioms that, when taken together, are

equivalent to rational choice behavior for correspondences). By examining more specific

models instead of the broad class of aggregation rules investigated in this paper, sharper

predictions on implied choice with a fixed number of utility functions may be possible. As

in Kalai et al. (2002), who study a dictatorial model, we provide an upper bound on the

number of utility functions required to rationalize a choice behavior. In contrast to their

setting, constructing a rationalization using models in the class studied here may be difficult

without the aid of the general procedure we provide. Apesteguia and Ballester (2010) have

shown that the problem of finding the minimal number of selves needed in the Kalai et al.

(2002) model is NP-complete, and we expect finding the minimal number that works in the

class of models studied here to be comparably hard. We leave this open problem, as well as

extending our framework to dynamic settings, to future research.
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Appendix

We prove our results for aggregators satisfying the following properties (it is straightfor-

ward to show that these properties are all satisfied by any f ∈ F). To introduce them, we

define one piece of notation: for any two collections of utility functions U,U ′ ∈ U(X), we

denote by 〈U,U ′〉 the combined collection (u1, . . . , u|U |, u
′
1, . . . , u

′
|U ′|) ∈ U(X).

P1 (Neutrality). For any permutation π : X → X, f(π(a), π(A), U ◦ π−1) = f(a,A, U).

P2 (Consistency). For any u ∈ RX , u(a) ≥ u(b) if and only if f(a,A, u) ≥ f(b, A, u).

P3 (Reinforcement). If f(a,A, U) ≥ f(b, A, U) and f(a,A,X, Û) ≥ f(b, A, Û) then

f(a,A, 〈U,U ′〉) ≥ f(b, A,X, 〈U,U ′〉), with strict inequality if one of the above is strict.

P4 (Continuity to near-indifferent additions). If f(a,A, U) > f(b, A, U), then for any k ∈ Z
there exists δ > 0 such that f(a,A, 〈U,U ′〉) > f(b, A, 〈U,U ′〉) for any U ′ ∈ Uk(X) with

maxa,b∈A,A⊆X,u′∈U ′ |f(a,A, u′)− f(b, A, u′)| < δ.

P5 (Profile equivalence). U(a) = U(â) implies f(b, A ∪ {a}, U) = f(b, A ∪ {â}, U) ∀ b ∈ A.

P6 (Independence of unavailable alternatives). For any X,X ′ ∈ X such that A ⊆ X ∩X ′,
and UX ∈ U(X) and UX′ ∈ U(X ′) that agree on A (i.e., UX′(a) = UX(a) for all a ∈ A), the

aggregator satisfies f(·, A,X, UX) = f(·, A,X ′, UX′).

Proof of Theorem 2

For an arbitrary choice function c we will construct a collection of 1+k ·II(c) members which

will be shown to rationalize c. This implies the claim in the theorem. In particular, we will

construct k members for each set with which an IIA violation is associated, and an extra

member for X. Let I1 = {A1
1, ..., A

1
i1
} be the subsets of X such that there is an IIA violation

associated with the set, but there is no proper subset of the set with which an IIA violation

is associated. For j ≥ 2, let Ij = {A1
1, ..., A

1
ij+1
} be the subsets of X such that there is an

IIA violation associated with the set, but there is no proper subset of the set outside
j−1⋃
l=1

Il

with which an IIA violation is associated. Let j∗ be the largest j such that Ij 6= ∅.

We will now iteratively construct a group of k members for each set associated with an

IIA violation, starting with sets in I1. Consider any group of k members Ū1 = (ū11, . . . ū
1
k)
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that solves the triple {a, b, c} (the existence of such a triple follows from triple-solvability).

For every A ⊂ I1, construct now the following group UA = (uA1 , . . . u
A
k ):

uAi (x) =


ū1i (a) if x = c(A)

ū1i (b) if x ∈ A, x 6= c(A)

ū1i (c) if x 6∈ A

for every i = 1, ..., k. Suppose now that UA is defined for every A ∈
j⋃

k=1

Ik for some j ≥ 1.

Let Uk be the group Uk = (UAk
1 , ..., UAk

ik ), for k = 1, ..., j. Let Ûj = (U1, ..., Uj). By P4, there

exists δ > 0 such that for any δ-indifferent group of k members U ′,

f(a,A,X, Ûj) > f(b, A,X, Ûj) implies f(a,A,X, (Ûj, U
′)) > f(b, A,X, (Ûj, U

′)).

Then by P3 and P6, we know

f(a,A,X, Ûj, Ũ1, ..., Ũm) > f(b, A,X, Ûj, Ũ1, ..., Ũm) implies

f(a,A,X, (Ûj, Ũ1, ..., Ũm, U
′)) > f(b, A,X, (Ûj, Ũ1, ..., Ũm, U

′))

for any Ũ1, ..., Ũm group of (exactly) indifferent members. Let now Ij+1 = {A1
1, ..., A

1
ij+1
} be

the subsets of X such that there is an IIA violation associated with the set, but there is

no proper subset of the set outside Ij with which an IIA violation is associated. By triple-

solvability with k members, there is a δ-indifferent group of k members Ū j+1 = (ūj+1
1 , . . . ūj+1

k )

that solves the triple {a, b, c}. For every A ∈ Ij+1, construct now the following group

UA = (uA1 , . . . u
A
k ):

uAi (x) =


ūj+1
i (a) if x = c(A)

ūj+1
i (b) if x ∈ A, x 6= c(A)

ūj+1
i (c) if x 6∈ A

for every i = 1, ..., k. Let Uj+1 be the group (Uj, U
A1

1 , ..., U
A1

ij+1 ).

The above procedure generates a group k · II(c) members in j∗ steps. Then by P3 and P4

there is δj∗ > 0 such that for any δj∗-indifferent u, f(a,A,X,Uj∗) > f(b, A,X, Uj∗) implies

f(a,A,X, (Uj∗ , u)) > f(b, A,X, (Uj∗ , u)). Finally, construct one more member the following

way: let a1 = c(X) and ak = c(X \ {a1, a2, . . . ak−1}) for 2 ≤ k ≤ n. Construct u∗ : X → R
such that u∗(a1) > u∗(a2) > · · · > u∗(an) and u∗ is δj∗-indifferent. We show Uc ≡ (Uj∗ , u

∗)

rationalizes c under aggregator f .
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Observation 1. For any set A with which there is an IIA violation associated, by the

construction of UA and by P1 and P5, f(a,B,X, UA) = f(b, B,X, UA) ∀ a, b ∈ B and B such

that either B \A 6= ∅ or c(A) /∈ B, and f(c(A), B,X, UA) > f(b, B,X, UA) = f(b′, B,X, UA)

∀ b, b′ ∈ B \ {c(A)} and B such that B \ A = ∅ and c(A) ∈ B.

We will now show that the choice induced by f from any choice set is equal to the choice

implied by c. First, note that this holds for X, since by Observation 1, f(a,X,X,UA) =

f(b,X,X,UA) for every a, b ∈ X and every A with which there is an IIA violation as-

sociated. Moreover, f(c(X), X,X, u∗) > f(a,X,X, u∗) ∀ a ∈ X \ {c(X)} by P2. Then

repeated application of P3 implies f(c(X), X,X, Uc) > f(a,X,X,Uc) ∀ a ∈ X \ {c(X)}.
Next, consider any A ( X which causes an IIA violation. Suppose A ∈ Ij. Observa-

tion 1 implies that for any B ∈ (
j⋃
l=1

Il) \ A, f(a,A, UB) = f(a′, A, UB) ∀ a, a′ ∈ A, and

f(c(A), A,X, UA) > f(a,A,X,UA) ∀ a ∈ A. Then repeated implication of P3 implies

f(c(A), A,X, Uj) > f(a,A,X,Uj) ∀ a ∈ A. By construction then f(c(A), A,X, Uc) >

f(a,A,X,Uc) ∀ a ∈ A. Finally, consider a set A that does not cause an IIA viola-

tion. One reason why this could happen is that condition (2) does not hold. This means

V(A) 6= ∅ and for every B′ ∈ V(A), c(B′) = c(A). Let j∗ be the smallest j such that

for some A′ ∈ Ij, A ⊂ A′ and c(A′) ∈ A. Then the construction of Uc implies that

f(c(A), A,X, Uc) > f(a,A,X,Uc) ∀ a ∈ A, and the proof is complete. Therefore, assume

that condition (2) holds but condition (1) does not hold. There are several cases.

Case 1: For all a ∈ A, there is no B ⊃ A such that a = c(B). Then by construc-

tion u∗(c(A)) > u∗(a) ∀ a ∈ A \ {c(A)}. Moreover, by Observation 1, f(a,A,X,UB) =

f(a′, A,X, UB) ∀ a, a′ ∈ A and B with which an IIA violation is associated. Repeated use

of P3, together with P2, implies f(c(A), A,X, Uc) > f(a,A,X,Uc) ∀ a ∈ A.

Case 2: There is a unique a ∈ A such that for some B ⊃ A, c(B) = a. First we note

that a = c(A) is necessary, otherwise A would have caused an IIA violation. There are two

subcases:

Case 2a: For every B such that B ⊃ A and c(B) = a, B did not cause an IIA violation.

This means that for all B ⊃ A, c(B) 6∈ A \ {c(A)}. So just like in Case 1, u∗(c(A)) > u∗(a)

∀ a ∈ A \ {c(A)}, and f(a,A,X,UB) = f(a′, A,X, UB) ∀ a, a′ ∈ A and B with which an IIA

violation is associated. Hence, f(c(A), A,X, Uc) > f(a,A,X,Uc) ∀ a ∈ A.

Case 2b: There is B ⊃ A with c(B) = a such that B caused an IIA violation. Consider

any smallest such B, and suppose B ∈ Ij. By Observation 1, for any A ∈
j⋃
l=1

Il either
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f(c(A), A,X, UB) > f(a,A,X,UB) ∀ a ∈ A, or f(a,A,X,UB) = f(a′, A,X, UB) ∀ a, a′ ∈ A.

But then repeated application of P3 implies that f(c(A), A,X, Uj) > f(a,A,X,Uj) ∀ a ∈ A.

By construction, f(c(A), A,X, Uc) > f(a,A,X,Uc) ∀ a ∈ A.

Case 3: There exist at least two elements in A that have each been chosen in some superset.

First, note that one of those elements must be c(A), otherwise A would have caused an IIA

violation. Let {bi}i be the set of elements other than c(A) such that bi ∈ A and bi = c(Bi)

for some Bi ⊃ A. Drop any bi’s such that Bi ⊃ Bm for some m and call the remaining set

{bj}. Because A did not cause an IIA violation and (2) holds in this case, it must be that

for each bj there is A′j such that A ⊂ A′j ⊂ Bj and c(A′j) ∈ A. Because Bj does not contain

any Bk, we know c(A′j) = c(A). For each j there may be multiple such A′j’s; consider only

the maximal A′j with respect to the minimal Bj. Now by maximality, for any A′′ such that

A′j ⊂ A′′ ⊂ Bj, c(A
′′) 6∈ A. If there is A′′ such that c(A′′) ∈ A′j, then c(A′′) 6= c(A), by

maximality of A′j. If (2) holds for A′j then A′j causes an IIA violation with respect to the

first such A′′; if (2) does not hold for A′j then Bj cannot be an IIA violation and the set of

smallest supersets containing A′j whose choice is in A′j and causes a violation, all have choice

equal to c(A). If for every A′′ it is the case that c(A′′) 6∈ A′j, then once again A′j either (2)

holds and A′j causes an IIA violation with respect to B, or (2) does not hold, Bj cannot be

an IIA violation, and the set of smallest supersets containing A′j whose choice is in A′j and

causes a violation, all have choice equal to c(A). Either way, we added members to ensure

the choice c(A) for every A′j. This means that a should be the choice from A unless for some

set B′ between some A′j and A we have c(B′) ∈ A \ {a} and members were added. But such

a set cannot exist by minimality of the Bj’s.

Proof of Theorem 1

Let X = {a, b, c} and take any f ∈ F∗. For compactness, we use the notation x1 =

f(a, {a, b, c}, X, U)−f(b, {a, b, c}, X, U), x2 = f(b, {a, b, c}, X, U)−f(c, {a, b, c}, X, U), x3 =

f(a, {a, c}, X, U) − f(c, {a, c}, X, U), x4 = f(b, {b, c}, X, U) − f(c, {b, c}, X, U), and x5 =

f(a, {a, b}, X, U)− f(b, {a, b}, X, U).

Lemma 1. If x3 6= x4 + x5, and if any one of the three equations 2x1 + x2 − x3 − x5 = 0,

x1 + 2x2 − x3 − x4 = 0, or x1 − x2 + x4 − x5 = 0 fails, then the aggregator is triple-solvable

(with kf at most 2 + 3|U |).

Proof. The first column in the table lists the aggregate values for the group U . But by

neutrality, we know that if we can generate the values in column 1, we can also generate the
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values in the 2nd column using the permutation (bc)(a) over the alternatives, generate the

values in the 3rd column using the permutation (ab)(c) over the alternatives, and so on. By

using profile equivalence to evaluate each of the values f ◦ u and f ◦ u′ each generated by

a single member u and u′, with the rankings given in the 6th and 7th headers, respectively,

we can also generate the values in those respective columns.

1 : U 2 : (bc)(a) 3 : (ab)(c) 4 : (abc) 5 : (acb) 6 : a ∼ b � c 7 : a � b ∼ c

x1 x1 + x2 −x1 x2 −x1 − x2 0 x1

x2 −x2 x1 + x2 −x1 − x2 x1 x1 0

x3 x5 x4 −x5 −x4 x1 x1

x4 −x4 x3 −x3 x5 x1 0

x5 x3 −x5 x4 −x3 0 x1

Then, determinants of three possible 5 × 5 matrices, each composed of five of the columns

above, may be calculated to obtain:

Det(1|3|5|6|7) = x21(x1 + 2x2 − x3 − x4)(2x1 + x2 − x3 − x5)(x3 − x4 − x5),

Det(1|2|5|6|7) = x21(2x1 + x2 − x3 − x5)(x3 − x4 − x5)(x1 − x2 + x4 − x5),

Det(2|3|4|6|7) = −x21(x1 + 2x2 − x3 − x4)(x3 − x4 − x5)(x1 − x2 + x4 − x5).

To prove the result, it suffices to show that there exists U such that defining x1, x2, . . . , x5

as above, one of the determinants above must be nonzero. If one of those determinants is

nonzero, then we have find a vector (c1, c2, c3, c4, c5) such that the nonsingular matrix times

(c1, c2, c3, c4, c5) is equal to (0, 0, 0, 0, β) for some β 6= 0. Using scaling, each ci can be pulled

in so that the U corresponding to the i-th column is multiplied by ci. The resulting group is

a triple-basis (and therefore we can get triple solvability through scaling that triple-basis).

The proof is completed in light of the linear dependence of the equations 2x1 +x2−x3−
x5 = 0, x1 + 2x2 − x3 − x4 = 0, and x1 − x2 + x4 − x5 = 0: if any one of these fails, there

must be a second which fails too.

Lemma 2. Suppose there exists U ∈ U({a, b, c}) such that x3 6= x4+x5 and f ◦U rationalizes

choice where the worst element in the transitive pairwise ranking is best in the triple. Then

either 2x1 + x2 6= x3 + x5 or x1 + 2x2 6= x3 + x4.
14

14The above is also true for one type of second-best choice from the triple: a �P b �P c on the pairs,
and b �T c �T a on the triple. If there is U such that f ◦ U rationalizes this behavior, then x3, x4, x5 > 0
and x1 ≤ 0, x2 > 0. Observe that 2x1 + x2 < 0 since this is fa(U) − fb(U) + fa(U) − fc(U). Therefore,
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Proof. By neutrality and symmetry of the condition x3 − x4 − x5 6= 0, there are two types

of choice behaviors we must examine to prove the result:

Case 1: a �P b �P c on the pairs, and c �T b �T a on the triple. That is, x3, x4, x5 > 0,

with x1 ≤ 0 and x2 < 0. But then 2x1 + x2 6= x3 + x5, since the LHS is negative and the

RHS is positive.

Case 2: a �P b �P c on the pairs, and c �T a �T b on the triple. That is, x3, x4, x5 > 0,

with x1 ≥ 0, x2 < 0. If we can find U such that f ◦U rationalizes this behavior, then observe

that x1 + 2x2 is negative. Hence x1 + 2x2 6= x3 + x4 because the RHS is positive.

Say that f ∈ F∗ is non-degenerate if for some utility function u on X = {a, b, c}, we

have x3 6= x4 + x5 and 2x1 + x2 6= x3 + x5 using U = {u}. We formally establish that for

any fixed scaling function φ(α) the property that an additive, neutral and scale-invariant

aggregator f ∈ F∗ is not degenerate holds generically. In order to define a topology on F∗,
we transform the latter set of aggregators to a convenient representation. Note that for a

fixed scaling function, specifying the aggregated utilities of n alternatives for members in the

n-dimensional simplex determines the aggregated utilities of n alternatives for all possible

members over n alternatives, since any member is a scalar multiple of exactly one member

from the simplex. Hence, with respect to a grand set of alternatives with three elements,

there is a natural bijection β between additive and scale-invariant aggregators, and the set

of pairs of operators

Ω = (O1, O2|O1 : ∆2 → R2;O2 : ∆3 → R3),

where O1 determines how a member’s utilities get aggregated in pairs, and O2 determines

how a member’s utilities get aggregated in the triple. Define metric d on Ω such that the

distance between (O1, O2) and (O′1, O
′
2) is defined as maxi=1,2 supx∈Ri |Oi(x)−O′i(x)|.

Lemma 3. Given the topology induced by d, the pairs of operators in Ω that are associated

with non-degenerate aggregators in F∗ is open and dense relative to Ω.

Proof. For ease of exposition, let

Γl1(f, v) = f(a, {a, c}, v)− f(c, {a, c}, v),

Γl2(f, v) = f(a, {a, b}, v)− f(b, {a, b}, v) + f(b, {b, c}, v)− f(c, {b, c}, v),

2x1 + x2 6= x3 + x5, as the RHS is positive.
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Γl2(f, v) = f(a, {a, b, c}, v)− f(b, {a, b, c}, v)] + [f(a, {a, b, c}, v)− f(c, {a, b, c}, v),

Γl2(f, v) = [f(a, {a, b}, v)− f(b, {a, b}, v)] + [f(a, {a, c}, v)− f(c, {a, c}, v)],

for every v ∈ F∗. Note that Γji (v) stands for side j of the equation in condition i in the

definition of a degenerate aggregator, given aggregator f and a member v.

1. Openness. Suppose that for aggregator f there is a member u over a triple such that

neither of the equalities in the definition of a degenerate aggregator hold with equality. Note

that u cannot be an indifferent member. Let εi = Γli(f, v) − Γri (f, v) for i ∈ {1, 2}, and let

ε = max(|ε1|, |ε2|). Next, for every i, j ∈ {a, b, c} such that i 6= j, let αij be such that

αij(u(i), u(j)) ∈ ∆2. Note that the terms αij are uniquely defined. Similarly, let αabc be

such that αabc(u(a), u(b), u(c)) ∈ ∆3. Let α = max(|αab|, |αac|, |αbc|, |αabc|). Since u is not an

indifferent member, α > 0. Then for δ < ε
8α

it holds that Γli(f
′, v) 6= Γri (f

′, v) for i ∈ {1, 2}
for every f ′ such that |β(f)− β(f ′)| < δ, since each term given f ′ in the above inequalities

can differ from the corresponding term given f by at most ε
8
.

2. Denseness. Let δ > 0. Consider a member u ∈ ∆3 over {a, b, c} such that u(a) > u(b) >

u(c). For every i, j ∈ {a, b, c} such that i 6= j, let αij be such that αij(u(i), u(j)) ∈ ∆2. Let

α = max(|αab|, |αac|, |αbc|). If for an aggregator f neither of the equalities in the definition

of a degenerate aggregator hold, then the aggregator is by definition non-degenerate, hence

there is trivially a point in the δ-neighborhood of β(f) that corresponds to a non-degenerate

aggregator. Otherwise let ε ∈ (0, δ
α

) be such that ε 6= |Γli(f, v)− Γri (f, v)| for i ∈ {1, 2}.

Consider now any f ′ ∈ F∗ for which (i) for triples, f ′ is equivalent to f ; and (ii) for a

pair {x, y}, given any utility function v over {x, y} for which v(x) ≥ v(y), f ′(x, {x, y}, v) =

f(x, {x, y}, v) and f ′(y, {x, y}, v) = f(y, {x, y}, v) if v(x)−v(y) < u(a)−u(c), but f ′(x, {x, y}, v) =

f(x, {x, y}, v) + ε and f ′(y, {x, y}, v) = f(y, {x, y}, v) if v(x)− v(y) ≥ u(a)−u(c). In words,

with respect to members for which the utility difference between the elements of the pair is

at least u(a)−u(c) the aggregated utility is ε > 0 higher than what f yields for the preferred

alternative (while it is the same for the other alternative) - otherwise f ′ is equivalent to f . By

construction, |β(f ′)−β(f)| < δ. Also note that Γl1(f
′, v) = Γl1(f, v) + ε, Γr1(f

′, v) = Γr1(f, v),

Γl2(f
′, v) = Γl2(f, v), and Γr2(f

′, v) = Γr2(f, v) + ε. Then ε 6= |Γli(f, v)− Γri (f, v)| for i ∈ {1, 2}
implies that Γli(f

′, v) 6= Γri (f
′, v) for i ∈ {1, 2}. Hence, f ′ is non-degenerate.

Theorem 1 then follows from Theorem 2, Lemma 1, Lemma 2 and Lemma 3.
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Arrow, Kenneth J. and Hervé Raynaud, Social Choice and Multicriterion Decision-
Making, Cambridge, Massachussetts: The MIT Press, 1986.

Benabou, Roland and Marek Pycia, “Dynamic Inconsistency and Self-Control: A
Planner-Doer Interpretation,” Economics Letters, 2002, 77, 419424.

Bernheim, Douglas and Antonio Rangel, “Beyond Revealed Preference: Choice Theo-
retic Foundations for Behavioral Welfare Economics,” Working Paper, 2007.
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Kőszegi, Botond and Adam Szeidl, “A Model of Focusing in Economic Choice,” Working
Paper, 2012.

Kivetz, Ran, Oded Netzer, and V. Srinivasan, “Alternative Models for Capturing the
Compromise Effect,” Journal of Marketing Research, 2004, 41, 237–257.

Kochov, Asen, “The Epistemic Value of a Menu and Subjective States,” Working Paper,
2007.

Lachmann, Frank M., “How Many Selves Make a Person?,” Contemporary Psychoanalysis,
1996, 32, 595–614.

Manzini, Paola and Marco Mariotti, “Sequentially Rationalizable Choice,” American
Economic Review, 2007, 97, 1824–1839.

Masatlioglu, Yusufcan and Daisuke Nakajima, “Theory of Choice By Elimination,”
Working Paper, 2007.

and Efe Ok, “Rational Choice with Status Quo Bias,” Journal of Economic Theory,
2005, pp. 1–29.

May, Kenneth O., “Intransitivity, Utility, and the Aggregation of Preference Patterns,”
Econometrica, 1954, pp. 1–13.

31



Mitchell, Stephen, Hope and Dread in Psychoanalysis, New York: BasicBooks, 1993.

Orhun, Yesim, “Optimal Product Line Design When Consumers Exhibit Choice Set De-
pendent Preferences,” Marketing Science, 2009, 28, 868–886.

Power, M.J., “The Multistory Self: Why the Self is More Than the Sum of Its Autoparts,”
Journal of Clinical Psychology, 2007, 63, 187–198.

Saari, Donald G., “Explaining All Three-Alternative Voting Outcomes,” Journal of Eco-
nomic Theory, 1999, 87, 313–355.

Salant, Yuval and Ariel Rubinstein, “Choice with Frames,” The Review of Economic
Studies, 2008, 75, 1287.

Segal, Uzi, “Let’s Agree That All Dictatorships Are Equally Bad,” Journal of Political
Economy, 2000, 108, 569–589.

Sen, Amartya K., “Internal Consistency of Choice,” Econometrica, 1993, 61, 495–521.

Shafir, Eldar, Itamar Simonson, and Amos Tversky, “Reason-Based Choice,” Cogni-
tion, 1993, 49, 11–36.

Simonson, Itamar, “Choice Based on Reasons: The Case of Attraction and Compromise
Effects,” Journal of Consumer Research, 1989, 16, 158–174.

and Amos Tversky, “Choice in Context: Tradeoff Contrast and Extremeness Aver-
sion,” Journal of Marketing Research, 1992, pp. 281–295.

Tversky, Amos, “Intransitivity of Preferences,” Psychological Review, 1969, 76, 31–48.

and Daniel Kahneman, “Loss Aversion in Riskless Choice: A Reference-Dependent
Model,” Quarterly Journal of Economics, 1991, 106, 1039–1061.

and Itamar Simonson, “Context-Dependent Preferences,” Management Science,
1993, 39, 1179–1189.

32



Supplementary Appendices, Not for Publication

This document contains supplementary appendices to “Rationalizing Choice with

Multi-Self Models” by Ambrus and Rozen. The main paper is referenced through-

out as AR.

A Non-anonymous aggregators

We extend our framework to incorporate aggregators that treat different group members

in a non-anonymous manner, and show how our main result extends to this more general

class of aggregators. The description of a member is extended by an abstract type, and

the definition of an aggregator is extended to include a set of possible types. The abstract

set of types could include, for example, “long-run” and “short-run” selves, or selves caring

about different types of objectives, such as the “parental” and “work” selves mentioned in

Section 1.

An aggregator F = (T, f) specifies a set of possible types T and a function f that

specifies the aggregate utility for every alternative a in every choice set A, given any (finite)

grand set of alternatives X and any collection of selves S defined over X and T . A single

member s is given by a pair (u, t). For each positive integer n, we denote by Sn(X,T ) the

set of all collections of members (unordered lists) defined with respect to X and T , and let

S(X,T ) = ∪∞n=1Sn(X,T ). We will denote a particular collection of members by S, and refer

to the members in the group as s1, ..., sn. To denote the number of members in S, we use

the notation |S| or simply n when no confusion would arise.

This extension allows us to consider asymmetric aggregators.

Example 1 (Asymmetric contextual concavity model). Interpret each member as corre-

sponding to a product attribute, for which the preference belongs to a certain type. The class

of preferences is parametrized by a concavity index. The contextual concavity aggregator in

Kivetz et al. (2004) is given by

f(a,A,X, S) =
∑
s∈S

(u(a)−min
a′∈A

u(a′))ρ(t),

where ρ : T → R gives the concavity parameter for a type-t member.
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Since collections of selves are still defined as unordered lists, by construction aggregators

in this framework treat selves of the same type symmetrically. Hence, asymmetries can enter

only through different specified types. In particular, the framework constructed in the main

text can be viewed as a special case of the extended framework proposed above, when the

set of possible types is a singleton. Axioms P1-P6 can be generalized in a straightforward

manner to the extended setting. Since the only changes required in the generalization are

notational (all statements applying previously to selves now apply to the extended notion of

a member), we omit restating the axioms in the extended framework. The main theorem is

unchanged. The definition of a triple-basis is unchanged, as is the theorem:

Theorem 3. Suppose f satisfies P1-P6 and is triple-solvable with kf selves. Then, using n

selves, f can rationalize any choice function c, defined on any finite grand set of alternatives

X, that exhibits at most n−1
kf

IIA violations.

Consider a different type of example.

Example 2 (Costly self-control aggregators). Fudenberg and Levine (2006) propose a dual-

self impulse control model with a long-run self exerting costly self-control over a short-run

self. The reduced-form model they derive has an analogous representation in our framework,

with two selves: the long-run self, with utility given by ulr (the expected present value of

the utility stream induced by the choice in the present), and the short-run self, with utility

function usr (the present period consumption utility).15 Using our terminology, the reduced

form representation of their model assigns to alternative a the aggregate utility ulr(a)−C(a),

where term C(a) depends on the attainable utility levels for the short-run self and is labeled as

the cost of self-control. For example, using Fudenberg and Levine (2006)’s parametrization,

C(a) = γ[max
a′∈A

usr(a′)− usr(a)]ψ.

One way to generalize this aggregator to any number of selves would be to introduce

multiple short-term temptations, represented by selves usr1 , ..., u
sr
n , and to define the aggregator

f(a,A,X, S) = ulr(a)−
∑
s∈S

γ[max
a′∈A

usr(a′)− usr(a)]ψ.

Here, the long-run self is treated differently than the rest.

15The long-run self’s utility is equal to the short-run self’s utility plus the expected continuation value
induced by the choice. If the latter can take any value, then ulr is not restricted by the short-run utility usr.
If continuation values cannot be arbitrary (for example they have to be nonnegative) then usr restricts the
possible values of ulr, hence U has a restricted domain. In Fudenberg and Levine (2006) the utility functions
also depend on a state variable y. Here we suppress this variable, instead make the choice set explicit.
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As in the above generalization of Fudenberg and Levine (2006), it may be the case that

a multi-self model places restrictions on how many selves of each type can appear. If types

are restricted, the description of the model should also include a set of possible collections of

types C, given by a subset of the set of all possible unordered n-long lists of elements of T ,

for every n ∈ Z+. The aggregator f need only specify the aggregate utility arising for any

collection of selves S defined over X and T for which the implied collection of types is in C.

Our results can be extended in a variety of ways to accommodate such restrictions.

The most straightforward one imposes an assumption on the set C (which is satisfied in

Example 2). Assume the existence of a type t and a collection of types T̂ such that appending

any number of t-types to T̂ results in a collection of types in C. In the generalized costly

self-control aggregator above, the short-run type being t and the singleton set of a long-run

type as T̂ satisfy this requirement. Let T nt denote the collection of n t-types. An aggregator

f is expandable with t ∈ T from T̂ ∈ C if (T̂ , T nt ) ∈ C for every n ∈ Z+. For an aggregator

that is expandable with t from T̂ we can define triple-solvability with k type-t selves from T̂

as the existence of a collection of selves consisting of |T̂ | exactly indifferent selves over the

triple whose type-composition is as in T̂ and k δ-indifferent selves of type t, such that the

above collection of types constitutes a triple-basis for every δ > 0.

Given the above definitions, the following result is obtained.

Theorem 4. Suppose f is triple-solvable with k type-t selves from T̂ . Then, using n selves,

f can rationalize any choice function c, defined on any finite grand set of alternatives X,

that exhibits at most n−1−|T̂ |
k

IIA violations.

Because the aggregation term for a short-run self is the negative of the symmetric contex-

tual concavity aggregation, it is immediate that the generalized costly self-control aggregator

defined above is triple-solvable according to the extended definition.

B Examples rationalizing common choice procedures

Example 3 (The Median Procedure). The median procedure is a simple choice rule defined

in Kalai et al. (2002). There is a strict ordering � defined over elements of X, and the DM

always chooses the median element of each A ⊆ X according to � (choosing the right-hand

side element among the medians from choice sets with even number of alternatives).
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To rationalize this behavior, we consider the following aggregator.

f(a,A,X,U) =
∏
u∈U

(u(a) + max
a′∈X

u(a′)−med
a′∈A

u(a′)),

where med
a′∈A

u(a′) is the median element of the set {u(a′)}a′∈A, with the convention that in

sets with an even number of distinct utility levels, the median is the smaller of the two

median utility levels. The geometric aggregation implies that in case of selves having exactly

the opposite preferences, the aggregated utility of an alternative from a given choice set is

maximized when it is closest to the median element of the utility levels from the choice set.

Indeed, we claim that with the above aggregator, two selves can be used to rationalize the

median procedure. Let a1, a2, ..., aN stand for the increasing ordering of alternatives in X

according to �, and define u1(ai) = i + ε and u2(ai) = N + 1 − i for all i ∈ {1, ..., N}.
It is easy to see that for small enough ε > 0 it is indeed one of the median elements of

any choice set that maximizes f , since the sum of u1(a) + max
a′∈X

u1(a
′) − med

a′∈A
u1(a

′) and

u2(a) + max
a′∈X

u2(a
′) − med

a′∈A
u2(a

′) is constant across all elements of X, and the aggregated

utility is defined to be the product of the two terms.

This rationalization is relatively simple and intuitive: the above selves are defined such

that the DM is torn between two motivations, one in line with ordering �, and one going

in exactly the opposite direction. Moreover, the geometric aggregation of these preferences

drives the DM to choose the most central element of any choice set.

There are many variants of the above aggregator that given two selves with diametrically

opposed interests do not select exactly the median from every choice set, but have a tendency

to induce the choice of a centrally located element from any choice set. In general, if f is

menu-dependent and aggregates the utilities of selves through a concave function, the choice

induced by f exhibits a compromise effect or extremeness aversion, as in the experiments

of Simonson (1989): given two opposing motivations, an alternative is more likely to be

selected the more centrally it is located. If, on the other hand, f is menu-dependent and

convex, then it can give rise to a polarization effect, as in the experiments of Simonson and

Tversky (1992): the induced choice is likely to be in one of the extremes of the choice set.

Hence, our model can be used to reinterpret experimental choice data in different contexts,

in terms of properties of the aggregator function.

Another simple procedure Kalai et al. (2002) study is Sen (1993)’s second-best procedure.
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Example 4 (Choosing the second best). Consider the following procedure: there is some

strict ordering � defined over elements of X, and the DM always chooses the second best

element of any choice set, according to �. We will show that there is an aggregator that can

rationalize the choice function given by the above procedure no matter how large X is, using

only two selves. For any self u on X, and any A ⊂ X, let l(u,A) be the lowest utility level

attainable from A according to u. Moreover, let g : X × P (X)×X ×RX → R be such that

g(a,A,X, u) =

{
u(a)−max

b∈X
u(b) if u(a) = l(u,A)

u(a) otherwise.

That is, g penalizes the worst elements of a given choice set, by an amount that corre-

sponds to the best attainable utility in X. Define now the following aggregator: for any

U = {u1, ..., un} ∈ U(X), let f(a,A,X,U) =
n∑
i=1

g(a,A,X, ui). That is, f is a utilitarian

aggregation, with large disutility associated with alternatives that are worst for some selves in

the choice set. We claim that the following two selves rationalize the second-best procedure

with f . Let a1, a2, ..., aN stand for the increasing ordering of alternatives in X according

to �, and define u1(aj) = j and u2(aj) = N + N+1−j
2N

for all j ∈ {1, ..., N}. Note that

the incremental utilities of u1 when choosing a higher �-ranked element are larger than the

incremental disutilities of u2. Hence this self determines the preference ordering implied by

the aggregated utility, with the exception of the choice between the best alternative and the

second-best alternative for u1 in the choice set. This is because the best alternative for u1 is

the worst one for u2, and the extra disutility associated with this worst choice for u2 over-

comes the incremental utility for u1. This rationalization has the simple interpretation of a

conflict between a greedy self and an altruistic self.

In contrast, Kalai et al. (2002) show that in their framework, in which exactly one self

is responsible for any decision, as the size of X increases, the number of selves required to

rationalize either of the above procedures goes to infinity. Kalai et al. (2002) also discuss the

idea that when multiple rationalizations are behavior, one with the minimal number of selves

is most appealing. While dictator-type aggregators do not provide an intuitively appealing

explanation for the median procedure, aggregators in our framework can rationalize the

above procedures in simple and intuitive ways.

Note that the aggregators and selves in these examples together rationalize very specific

types of behavior. However, a given aggregator might act differently on a different collection

of selves. For example, if the two selves did not have exactly opposing preferences in the

37



example rationalizing the median procedure, the aggregator might not choose a centrally

located alternative in every choice set. Hence AR studies the set of behaviors that an

aggregator can rationalize (with different possible selves).

C Approximate triple-solvability

For some aggregators a tighter upper bound can be given for the minimum group size needed

to rationalize a choice function, by weakening the triple-solvability requirement. It suffices

for triple-solvability to hold only approximately, which can yield a triple-basis with a smaller

group size. For ease of exposition, we state this property for additively separable aggregators.

Definition 4. We say Û ∈ U({a, b, c}) is a (δ, ε)-approximate triple-basis for f with respect

to {a, b, c} if f(a, {a, b}, {a, b, c}, Û) = f(b, {a, b}, {a, b, c}, Û) + δ and |f(x,A, {a, b, c}, Û)−
f(y, A, {a, b, c}, Û)| < ε for all other A ⊆ {a, b, c} and x, y ∈ A.

That is, a group U is a (δ, ε)-approximate triple basis for f if given choice set {a, b} the

aggregated utility of U for a is exactly δ higher than the aggregated utility of b, while U is

ε-indifferent among all alternatives given every other choice set.

We say that an aggregator f is approximately triple-solvable with k members if there is

δ > 0 such that exists a (δ, ε)-approximate triple-basis with k members for every δ < δ and

ε > 0. That is, for approximate triple-solvability we do not require that the group in the

triple basis is exactly indifferent between all elements in choice sets other than {a, b}, only

that they can be arbitrarily close to being indifferent. Theorem 2 can then be modified as

follows.

Theorem 5. Suppose f satisfies P1-P6 and P9, and is approximately triple-solvable with kf

members. Then, for any finite set of alternatives X, and any choice function c : P (X)→ X

that exhibits at most n−1
kf

IIA-violations, f can rationalize c with n members.

Proof. The only difference compared to the proof of Theorem 2 is in the construction of the

rationalizing group. Recall the definition of (Ij)j=1,...,j∗ from the proof of Theorem 2. Let

δ1 ∈ (0, δ). Define iteratively δj for j ∈ {2, ..., j∗ + 1} such that δj ∈ (0,
δj−1

IIA(c)+1
). Define

a member uX such that uX is δj∗+1-indifferent and the preference ordering of the self is

c(X) � c(X \ {c(X)}) � ... Let

δ∗∗ = min
x 6=y∈X, A3x,y

|f(x,A,X, uX)| − |f(y, A,X, uX)|.
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Finally, let ε ∈ (0, δ
∗∗

|X|). Then for every j ∈ {1, ..., j∗) and A ∈ Ij construct a group

UA ∈ U(X) the following way: take a (δj, ε)-approximate triple-basis U , and define UA by

defining, for each ui ∈ U , a member uAi ∈ UA by

uAi (x) =


ui(a) x = c(A)

ui(b) x ∈ A \ {c(A)}

ui(c) x ∈ X \ A.

Proving the group consisting of uX and UA for each A ∈
j∗⋃
j=1

Ij rationalizes c is analogous to

the proof in Theorem 2.

D Relaxing P6

Our main results can be extended to aggregators violating P6, that is, to aggregators that

depend in a nontrivial way on alternatives unavailable in a given choice set. However, the

appropriate definition of triple-solvability is more complicated.

The main complication arising in the absence of P6 is that triple-solvability needs to be

defined on a general X, as opposed to just a triple {a, b, c}. It is convenient to introduce the

following notation: for any triple {a, b, c}, any basic set of alternatives X ⊃ {a, b, c}, and any

self u defined on {a, b, c}, define the set E(u,X) = {û : X → {u(a), u(b), u(c)}|û(x) = u(x)

∀ x ∈ {a, b, c}}. In words, E(u,X) is the set of extensions of u from {a, b, c} to X for

which each element in X/{a, b, c} receives the same utility as either a or b or c. Similarly,

for any U = (u1, ..., um) ∈ U({a, b, c}), let E(U,X) = {(û1, ..., ûm)|ûi ∈ E(ui, X) for all

i ∈ {1, ...,m}}.

Definition 5. We say U ∈ U({a, b, c}) is a universal triple-basis for f if for any X ⊃
{a, b, c} the following holds: for all Û ∈ E(U,X), f(a, {a, b}, X, Û) > f(b, {a, b}, X, Û), and

f(·, A,X, Û) is constant for all other A ⊆ {a, b, c}.

A universal triple-basis solves the triple {a, b, c} whenever the utilities of unattainable

elements don’t differ from utilities of elements in {a, b, c}, for all members in the triple-basis.

An aggregator f is universally triple-solvable if the following condition is satisfied.
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Condition (Universal triple-solvability of f) There exists a triple {a, b, c} and k ∈ Z+

such that for every δ > 0 there is a δ-indifferent U ∈ Uk({a, b, c}) constituting a universal

triple-basis for f with respect to {a, b, c}.

It is easy to see that for aggregators satisfying P6, universal triple-solvability is equivalent

to triple-solvability. If f satisfying P1-P5 is universally triple-solvable with k members, then

the same construction can be applied as in the proof of Theorem 2 to obtain an analogous

lower bound on the set of choice functions that f can rationalize with a given group size.

The proof of this result is analogous to the proof of Theorem 2 and hence omitted.

Theorem 6. Suppose f satisfies P1-P5 and is universally triple-solvable wrt to X with kf

members. Then, using n group members, f can rationalize any choice function, on any grand

set of alternatives X, that exhibits at most n−1
kf

IIA-violations.
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