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1 Introduction

Plurality games without cost of voting are a typical example of a game struc-
ture in which, also for generic preferences, there is a infinite number of Nash
equilibria and where a concept like Nash equilibrium is completely inadequate.’
Moreover, also perfect, and even proper, equilibrium falls far short of the tradi-
tional concepts in this area that call for “sophisticated voting”.

In this note we prove that these facts are not anymore true with positive
cost of voting.

Under plurality rule each voter can vote for any candidate or abstain. The
candidate receiving the largest total amount of votes wins the election. Any
voter receives a payoff from the election of a candidate, and, unless he abstains,
pays a positive cost. We prove that, in the class of plurality games with positive
cost of voting above described, the number of Nash equilibria is generically finite.
Furthermore, all the equilibria are regular, hence stable sets as singletons. This
implies that “sophisticated voting” cannot eliminate them.

The motivation to undertake this analysis is twofold. First of all, a basic
tool in applying non-cooperative game theory is to have finiteness of the set
of equilibrium distribution. Since the conjecture that equilibrium distribution
is generically finite for every game-form has been proved to be incorrect (see
Govindan and McLennan, 2001), one has to prove such a result for each class of
games, and we prove it for the game-form arising from plurality costly voting.
Second, the result that all the equilibria are regular directly implies that they
cannot be eliminated by the usual refinements based either on perturbation of
utilities or on perturbation of strategies, and hence the Nash solution concept
appears to be completely adequate, differently from the case of plurality games
without cost of voting. We describe the model in Section 2, and we present the
results in Section 3.

2 The Model

Let K = (1,...,k) be the finite set of candidates and N = (1,...,n) the finite
set of voters. Under plurality rule every voter has k + 1 pure strategies, namely
voting for each candidate or abstaining. Given a pure strategy vector, the
candidate receiving the largest amount of votes is elected, while in case of a tie
we assume an equal probability lottery among the winners. Hence, the set of
candidates K and the set of voters NV define a family of games; each game in this
family is identified by the utility vectors {M}z N where v} = (u’l, . u}c) and
each u! represents the player 4’s utility for the election of candidate ¢, and by the
vector of costs of voting § = (6, ...,6™). Hence, every plurality game with costly
voting with n voters and k candidates can be seen as a point (u,§) € R x R

Because voting for any candidate costs 6i, for every mixed strategy combination

LObviously, the election of any candidate can be a Nash equilibrium outcome, if there are
at least three voters.



o, the expected payoff of player i is simply

U'(0) =06'(ch 1)+ > ple|o)ul

ceEK

or in vector notation
U' (o) = (p(o),u') = 8'(1 — o7,

where p(c | o) is the probability that candidate c is elected under o, of is the
probability that ¢ abstains and p (o) = (p(1|0),p(2|0),...p(k|0)).

In the following Ky = K U {0} denotes the strategy space of each player and
we will use a superscript to indicate the voter and a subscript to denote the
pure strategy, i.e. o* is the probability that player i votes for ¢ while o} is the
probability that he abstains.

3 The Result

In this section we prove that for generic plurality games with cost of voting every
Nash equilibrium is regular, in the Harsany’s definition.? Our proof follows the
lines of De Sinopoli (2001) where it is proved that, without cost of voting,
generically, all the equilibria which induce a mixed distribution over candidates
are regular. To prove our result, we extensively use the vector m° (U*i) that
expresses the difference in the probability distribution of the electoral outcomes
if player i votes for ¢ € K or if he abstains, under the fixed strategy o~ of the
others.

Definition 1 7 (67*) = p(o,c') — p(o,0).

The next results (see De Sinopoli, 2001) on the vector 7€ (o_i) are quite
obvious.

Lemma 2 (a) Y nf (07) =0;
kK ‘
(B) w& (07") > 0 and for every k # ¢, 7% (c7%) < 0.

C

Furthermore, the fact that voting is costly immediately implies:

Lemma 3 Vo' € BR (O'_i) , Jé >0 = (n° (U_i) 7ui> > 0.

2More precisely, we use the modified version of regularity, as proposed in van Damme
(1991). The definition of van Damme differs from Harsanyi’s one in requiring that the strategy
used as reference point is contained in the support of the equilibrium, while Harsanyi uses
the first strategy for each player. However Harsanyi assumes, in the various proofs, that his
reference point belongs to the support of the equilibrium, hence he actually works with the
same definition. For the definition of regularity and its properties we refer to van Damme
(1991).



Let Cy;,B; C Ko, C =[] C; and B = [[ B;. Let IR(C, B) denotes the set

of games that have an irregiﬂar equilibriumzwith support C and with pure best
replies (PBR) B.

Fix C, B such that () £ C C B (obviously, if C and B do not satisfy these
conditions, ITR(C, B) is empty).

Let N2 be the set of players for which 0 € B; and let us consider a pure strat-
egy vector v, € B such that v! =0ifi € N?. Let L; = {ci €eKy:c e Bi\vi}.

Consider a game (u,0) which has an equilibrium ¢ with C(o) = C and
PBR(o) = B. Then the following equalities hold:

[U* (0,c") = U (0,0L)] =0 Vi€ N, Ve' € L. (1)
Denoting l; = #L; = #B; — 1, 1 = Y_ I; and n® = NB, define the following
i=1

subvectors of (u,d) € R x RY 0 ouye € %"_”b, which specifies the utility
that a player i ¢ NPgets if the candidate that he votes for in v, is elected,
Uy € %”k_l_""‘"b, which specifies each voter’s utility for the candidates voting
for whom it is not a best reply, and u® € !, which specifies each player i’s
utility for the candidates in L;. To simplify the notation, let u* = (uy, Uy, 0)-
Clearly (u,d) = (u*,u®).

Given o, v, and u*, (1) is a linear system of | equations in ! unknowns, the
u®. Since for every player i we have [; equations, the system can be written as:

IS (U*i) uw = —IIF (U*i) u* 4 5 Vi e NP
IS (U*i) u = —II* (U*i) u* Vig¢ N8

where II2 (0*’) and u® are, respectively, a square matrix and a column vector

of dimension [;, while —IT? (U*i) u*? is a column vector. The whole system has
the following matrix representation:

I (o) u® = —ITf (o) u* + (2)
where & is the obvious column vector.
The system in (2) has an unique solution if the square matrix II2 (o) of
dimension [ is not singular. The following lemma proves this.

Lemma 4 The matriz 11 (o) has a strictly positive determinant, hence it is
not singular.

Proof. The matrix II$ (o) is block diagonal, where each block coincides
with a matrix II? (o_i). Hence, if each IT? (o_i) has a strictly positive deter-
minant, I3 () is not singular. As mentioned, II (¢7) is a square matrix of
dimension [;. The (¢, m) entry of the square matrix IT (O'_i) is the probability
that candidate m is elected if player ¢ votes for ¢ minus the probability that m
is elected if i plays vi, with ¢, m € L;. By definition:

3

w5 (O'_i) =p (U, ci) —p (O’,’Ui) =7° (J_i) — 7V (O'_i)



where, with abuse of notation, 7% (07%) = 0. Then the (c,m) entry of the
matrix II (U*i) is:
112 (o_i) = (Gem + bm) c,m € L;

cm

where: ) i )
Qo = o, (O'_Z) and b,, = —m (0'_7')

Lemma 2 implies that the matrix A = (acp,) is an improper Minkowsky-matrix
and Lemma 3 implies that all the diagonal elements of A are strictly positive.
The next step is to show that the matrix A is dominant diagonal. To this end,
let us define the following functions:

Sc (d) = aeede — Z |em| dm = Z Qe €€ L;

meL;/c meL;

We have to show that a d* > 0 exists such that s, (d*) > 0V ¢ € L;. By lemma

2(«) we know that Y aepm is equal to zero and by Lemma 3 we know that
meK

>~ acmuy, > 0. Hence for every € > 0, > acmeur, > 0. For e sufficiently

mecK meK

close to zero: 1+cul, >0 Vm € K. Choose an £ that satisfies these conditions:
d*=1+zu'> 0 and s.(d*) >0 Vc € L;. In fact

sc(d) > ) aom(1+2ul,) >0 Vee L
meK

where the first inequality follows from lemma 2(3) and the positivity of each

1+Zul,, and the second one from lemma 2(a) and the positivity of > acméul,.
mecK
This proves that the matrix A has a (positive) dominant diagonal and implies

that all the principal minors of A are strictly positive. The matrix A is then
an M-matrix, in the definition of Ostrowsky (1955, p.95). In Ostrowsky (1955,
p.97) the following result is contained: if @ is an n X n M-matrix then:

lgij +d;| > |gij| >0 ford; >0 (j=1,...,n)
This result with the fact that b,, > 0 (Lemma 2()) implies the claim. m

Now we can prove our main result.

Theorem 5 For generic plurality games with cost of voting, any Nash equilib-
rium is reqular.

Proof. To prove the proposition it is enough to prove that, for every pos-
sible C' and B, the set IR(C, B) is a semi-algebraic set of dimension less than
n(k+1). Lemma 4 implies that given an equilibrium ¢ with support C' and pure
best replies B, a “reference” strategy v, € C and the corresponding subvector
u*, we can uniquely reconstruct the entire vector (u, §).



For C, B such that () £ C C B, let us define the following set:

Let ESB be the graph of the correspondence that associates to each game in
R x R, its equilibria with support equal to C' and pure best reply B, i.e.,
E®B = {(u,0,0) | (u,8) € R™* x %, ,C(0) = C,PBR(0) = B, 0 € NE(u,6)}
Let ES*P be the projection of ESB on the strategy space and on those coordi-

nates of the utility vector not corresponding to L;, i.e. Ef’B = proj(zn o meEC’B-

The above construction implies that there is a function T’ C.Bx . Ef B, pnk
N7, that maps (u*,0) into u = (u*,u°), defined by:

u* =u*

w® = (I (o))" (—Hjﬁ‘ (o) u* + S) .

The map T8+ is smooth as it involves additions, subtractions, multiplications
and only a division by the determinant of IIS (o), which is greater than zero
by lemma 4. Furthermore, the sets EZB and Rk x R, as well as the map

T B+ are semi-algebraic. Hence, the result is trivial if C is strictly included in
B, since, in this case, by Bochnak et. al. (1987, Th. 2.8.8), we have:

TC B .

dim (TP (ESP)} < dim ESP = #C —n+n(k+1) — #B+n <n(k+1)

(i.e. having fixed C' and B, dim (X" | C') = #C — n and dim(L) = #B — n).
Hence, we need to prove the statement for the case B = C.

In this case the equilibrium is quasi-strict and, hence, it is regular if and only if
it is not singular the Jacobian of the map F' (o | C,v,) defined by

Fi (0| Cyv.) =0l [U' (0,¢") —U' (0,01)] Vi€ N, Ve € Ly

Obviously, the Jacobian of T %+ does not change if we cross out the rows and
the columns corresponding to “candidates” not belonging to L. The correspond-
ing map 793 is implicitly defined by F (o | C,p) = 0. Then, by Lemma 4, the
equilibrium is regular if and only if the Jacobian of T%"5+ is not singular. The
semi-algebraic version of Sard’s Theorem, cf. Bochnak et. al. (1987, Th. 9.5.2,
p.205), assuring that the set of critical values of 775+ is a semi-algebraic set of
dimension strictly less than n(k + 1), completes the proof. m

The next corollary, which is an immediate consequence of the above theorem,
summarizes our main findings.

Corollary 6 For generic plurality games with cost of voting:
a) The set of Nash equilibria is finite.
B) Any Nash equilibrium is a stable set (Mertens, 1989).
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