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Abstract _ 

We prove the asymptotic validity of bootstrap confidence bands for the influence curve 
from its usual estimator (the sensitive curve). The proof is based on the use of Gill's (1989) 
generalized delta method for Hadamard differentiable operators. The scope and applicability 
of this result are also discussed. 
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1. INTRODUCTION AND BACKGROUND 

It is well-known that, in many cases of practical interest, the estimators can 
be considered as restrictions of functionals defined on the space :F of distri­
bution functions. In fact, this idea goes back to the origins of mathematical 
statistics since it is implicit in the early notion of consistency proposed by 
Fisher. In precise terms, let Tn = Tn(Xll ... , X n) be (for all n = 1,2, ... ) an 
estimator taking values in ~, defined on random samples X I, ... ,Xn from 
a univariate distribution. The sequence {Tn } is said to be generated by a 
functional T : :Fo C :F ~ ~, iffor all n and for each sample Xl,"" X n , we 
have Tn(X}, . .. ,Xn) = T(Fn), where Fn is the empirical distribution associ­
ated with Xl,' .. ,Xn • Many usual estimators fulfil this condition; this is the 
case, for instance, of M- and L-estimators [see, e. g. Huber (1981 )]. By :Fn 

we will represent the set of empirical distributions of order n in :F, that is, 
the set of discrete probability measures in :F whose atoms have probabilities 
equal to 1/n or to a multiple of 1/n. Obviously, the domain :Fo of T has to 
include :Fn for all n E N. 

In this setting, a natural idea is to use the differentiability properties 
of the functional T in order to get statistical results for the sequence {Tn }. 

The works of von Mises (1947) and Kallianpur and Rao (1945) are pio­
neering contributions on this topic but, in fact, the use of differentiation 
techniques only became really popular in the late sixties coinciding with the 
rapid development of the robustness theory. An important example is the 
so-called influence function, T'(F; x) (of a functional T at a distribution 
F E :F), which is nothing but the partial derivative of T along the direc­
tion corresponding to the degenerate distribution hx (for each x), that is, 
T'(F; x) =lim(.....o+ [T((l- f)F + fhx ) - T(F)]/f [see Hampel (1974), Hampel 
et al. (1987)]. If we assume that the sequence {Tn}of estimators generated 
by T is consistent, in probability under G (for each G), to T( G) then T'(F; x) 
represents (for small values of f) the approximate value of asymptotic bias 
introduced by a contamination of type (1 - f)F + fhx at the distribution F. 
Some quantitative measures of robustness (gross-error sensitivity! local-shift 
sensitivity! rejection points) are also defined from the influence curve. 

However, in order to get a deeper insight into the meaning of the influence 
function, we need to impose (on T) further differentiability assumptions, 
stronger than the mere existence of T'(F; x). This situation is similar to 
that of the classical analysis for functions f : ~p -- ~; the true significance 
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of the gradient 'Vf (which is the analog of the influence function) arises 
when we assume that f is differentiable since, in this case, 'Vf defines the 
best linear local approximant of f. 

The general concept of differentiability, for operators or functionals, is 
inspired on the same idea: let Qand 'D be normed spaces and let V : Q ---+ 'D 
be an operator. We will say that V is differentiable at G E Q, with respect 
to a collection S of subsets of Q, if there exists a linear and continuous map 
DV(G;.) : Q ---+ 'D (which we will call the differential of V at G) such that 
for ~ in some neighbourhood of zero, 

V(G +~) = V(G) + DV(G;~) + R(G + ~), 

where the remainder R satisfies 

lim R(G +t~) = 0, 
t-O t 

uniformly in ~ E S, for every SE S. 
The most interesting particular cases correspond to the following choices 

of S: S = all singletons of Q, S = all compact subsets of Q, and S = all 
bounded subsets of Q. They lead, respectively, to the concepts of Gateaux, 
Hada mard (or compact) and Frichet differentiability. 

The application of these concepts (borrowed from the functional analysis) 
to statistical functionals T : :F ---+ ~, presents an obvious hurdle: :F is not a 
normed space. A simple device to overcome this difficulty is embedding :F in 
the space Q =P(F - H) : F, H E :F, >.. E 'R}, endowed with the supremum 
norm. 

The statistical functionals can be often extended in a natural way to the 
space Q (or appropriate subspaces of it). In such cases the use of the above 
notions of differentiability is a very useful tool which allows to consider the 
influence function from a different perspective. Moreover, if the functional 
T is Frechet (or Hadamard) differentiable at F and the differential can be 
expressed in the form 

DT(F;~) = 1: \lI(x)d~(x), 

then it is not difficult to prove [see Boos and Serfling (1980)] that \11 (x ) coin­
cides with the influence curve, and the sequence {Tn } of estimators generated 
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by T is asymptotically normal with asymptotic variance

1: T'(F; x)2dF(x). 

This is, perhaps, the most important point in connection with the influence 
curve: under standard conditions the asymptotic variance can be expressed 
in terms of T'(F; x). In particular, the estimates of the influence curve are 
potentially useful in the estimation of the asymptotic variance [see Presedo 
(1991 )]. 

The choice between Hadamard or Frechet differential in each particular 
application is usually guided by technical considerations. In general terms, 
Frechet differential is more natural and easier to handle. Some applications 
can be found in Kallianpur and Rao (1955), Boos and Serfling (1980), Clarke 
(1986), Parr (1985) and Arcones and Gine (1992). Nevertheless, the com­
pact differentiation has, in principle, a broader applicability since it imposes 
a weaker (less restrictive) condition; it is, in fact, the weakest notion of dif­
ferential which is still manageable in the sense offulfilling the chain rule. For 
applications, see Fernholz (1983), Esty et al. (1985) and Gill (1989). 

In this paper we use Hadamard differential to prove (in Section 2 below) 
the validity of bootstrap confidence bands for the standard estimator of the 
influence curve. The basic tools used in the proof are the results on bootstrap 
of empirical processes [see Gine and Zinn (1990)] and the generalized delta 
method established by Gill (1989). Section 3 contains some final remarks. 

2. BOOTSTRAP CONFIDENCE BANDS FOR THE INFLUENCE CURVE 

\Ve consider now the problem of estimating the influence curve T'(F; x) 
from a random sample Xl,' .. , X n of F. Three estimators have been con­
sidered in the literature: the sensitivity curve, the empirical influence curve, 
and the jackknife approximation [see Hampel et al. (1987), p. 92]. The first 
one is perhaps the most popular: it is defined by 

_ T((l - ~)Fn-l + ~t5x) - T(Fn_l )sc ( )n x - 11n . 

Curiously enough, the asymptotic properties of this estimate have received 
little attention; maybe the reason is that the influence curve is often used for 
descriptive aims, in order to get a general idea of the behavior of the sequence 
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Tn associated with T. However, if we want to use T'(F; x) for quantitative 
purposes (calculation of the asymptotic variance or the gross-error sensitiv­
ity, for instance), we need to have precise statements of consistency for the 
estimates of the influence curve. 

Our target here is to obtain bootstrap confidence bands for T'( F; x) from 
the estimator SCn(x). To be more concrete, we want to calculate (at least 
approximately) the sampling distribution of the statistic ) 

Dn = sup,Jn1 SCn(x)-T'(F;x) I.:r; 

We will use bootstrap methodology, that is, we will approximate the distri­
bution of Dn under F by that of its bootstrap version 

D~ = sup,Jn ISC~(x) - SCn(x) I,:r; 

under Fn, where SC~(x) denotes the sensitivity curve SCn(x) calculated 
from the bootstrap sample Xi, ... , X~_l (whose empirical distribution is 

'J
represented by F:_ I ), which is drawn by resampling from the original data 

Xl,'" ,Xn - l . 
The validity of such an approximation is established in Theorem 1 below. 

First, we introduce an auxiliary family of functionals defined by 

TAG; t) =T[(1 - t)G + tb:r;] , t ~ o. 

Observe that 

T'(F; x) = ~ T:r;(G; t) It=o 

'JIn the sequel, the derivative ftTx(G; t) will be denoted by T;(G; t). Thus, 
T'(F;x) = T~(GjO). 

THEOREM 1. Let D('R)(= D[-oo + 00)) be the space of cadlag (i.e. ) 
right continuous with left-hand side limits) functions endowed with the 11 . 1100 
(essential supremum) norm. Let T : :F ~ n be a statistical functional with 
associated influence functional T'(F; x). Assume that for each F E :F, we 
have 

.) 

5 

, 
.) 



(i) there exist constants C E ~ and 7J > ! such that for all empirical 
distribution Fn close enough (in the weak topology) to F , 

1 
for all 0 < t < ­ a.s. -n 

(ii) the influence function T'(Fi') belongs to D(ft) (in particular, it is 
bounded), 

(iii) the influence functional T'(Fj') can be extended to the vector space 
9 (the linear span of F, defined above) and the transformation (from 9 to 
D(ft)) : H f--lo T'(H;·) is continuously Hadamard differentiable. 

Then, the statistic Dn can be bootstrapped, in the sense that its bootstrap 
version D~ converges weakly a.s. to the same limit as Dn does. 

PROOF. As a previous step in the proof, we study the asymptotic be­
havior of T'(Fn;·) (a natural estimator of the influence curve). From Doob­
Donsker's theorem, 

.jTi(Fn - F) ~ BO(F), 

weakly in D(ft), where BO is the Brownian bridge on [0,1] considered as a 
random element [see, e.g. Pollard (1984, p. 97)]. The S - method [as in Gill 
(1989)] gives that 

(1) 

where DT'(Fj .) is the Hadamard differential of T'. From the general result 
by Gine and Zinn (1990) on bootstrap of empirical measures, we have that 

.jTi(F: - Fn) ~w BO(F), a.s. 

in D(ft) and, again from Gill (1989) and hypothesis (iii), it follows that 

a.s. (2) 

Note that (1) and (2) mean that the bootstrap works for the "plug-in" 
estimator T'(Fni') of the influence curve. The analogous result for the sen­
sitivity curve will be established if we prove that 

(3) 
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a.s. (4) 

Since 

vn(SCn(x) - T'(F;x)) = vn(T((l- ;)Fn- t ~ ;8:1:) - T(Fn-d _ T'(F;x)), 
1 n 

(5) 
by applying the Mean Value Theorem, (5) equals to 

vn(r~(Fn-t;tn) -r~(F;O)) = 

= vn(r~(Fn-l;O) -r~(F;O)) + vn(r~(Fn-l;tn) -r;(Fn_1 ;0)), 

for some tn E (0, ~). As seen before, by Gill's 8-method, the first term in the 
sum tends to DT'(F; ')BO(F) and by hypothesis (i), the second one tends to 
zero; so (3) follows. To get (4), it is enough to show that 

a.s. (6) 

Again, by applying the Mean Value Theorem in (6), the left hand side equals 
to 

11 (vn(r:(F~;t~) -r.'(Fnitn)) - vn(r:(F~;O) -r:(Fn;O)) 1100S; 

S; vn 11 (r:(F~; t~) - r:(F~; 0)) 1100 +vn IIr:(Fn;tn) - r:(Fn;0) 1l00S; 

~ C(t~TJ +t~) ---+a.a. 0 a.s. (7) 

Now, from (2) and (7), we get that 

a.s. (8) 
) 

Since 11 . 1100 is continuous with respect to its own topology, by using the 
Continuous Mapping Theorem [see, e.g. Pollard (1984), p.44], we conclude 
from (3) and (8) that Dn and D~ converge weakly a.s. to the same limit and 
the result follows. 
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Some remarks: 
(a) Hypothesis (i) is a not very restrictive regularity assumption. It is 

c� fulfilled, for instance, by the sample mean X as well as by any other statistic 
defined as a smooth function of X. 

(b) Assumptions (ii) and (iii) hold for the important class of L-estimators, 
whose influence curve has the expression [see, e.g. Huber (1981), p. 57] 

T'(F; x) = [roo h'(y)m(F(y))dy -I:(1 - F(y))h'(y)m(F(y))dy. (9)c 

Indeed, assuming that h' is integrable and m is continuously differentiable, 
one can check out that the expression for this influence curve given above is 
just a composition of continuously differentiable operators: observe that the 

c transformation F 1---+ J:oo h'(y )F(y )dy is linear and continuous and, hence, 
differentiable. Also, F 1-+ m(F(·)) is a differentiable map. 

As for the M-estimators, the form of their influence function is, under 
some regularity assumptions [see Deniau et al (1977)] 

T'(F' ) _ \If (x; T(F))c� ,x - 8 • (10)
- J 80 \If(y; 0) 10=T(F) dF(y) 

Hypotheses (i)-(iii) in the theorem could be checked for particular choices 
of \If. However, it doesn't seem straightforward to give a simple general 
condition on \If ensuring the validity of these hypotheses. 

c (c) In those cases where the influence function T'(F; .) is not bounded, 
Theorem 1 still holds in order to provide confidence bands on compact inter­
vals [-M, M]. It would suffice to replace V(ft) by the corresponding space 
V[-M,M]. 

,C 

3. FINAL REMARKS 

(a) From a methodological point of view, Theorem 1 presents the interesting 
I feature of providing a relatively simple application of Gill's (1989) generalized C 

delta method. Although, in principle, this method applies to estimators of 
type T(Fn ) (defined as restrictions of operators), the proof of Theorem 1 
shows that the applicability of this technique can sometimes be extended to 
more general cases by using standard differentiability arguments. 
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(b) In the proof of Theorem 1 arises, as an auxiliary tool, the plug- in 
estimator T'( Fn ; x). It is worth mentioning that this estimator could be of 
practical interest in those situations where the functional form of the influence 
function T'(F; x) is known in advance. This is the case, for example, of the 
M- and L-estimators mentioned above [see expressions (9) and (10)]. While 
the proof of Theorem 1 suggests that the plug-in estimator and the sensitivity 
curve are asymptotically equivalent, a higher finite-sample efficiency is to be 
expected for the first one. In any case, the detailed comparative study of 
the different estimators for the influence curve seems to be an interesting 
open problem. In particular, as indicated in the introduction, the influence 
curve is closely related with the asymptotic variance: so, every different 
estimator of the influence curve provides an estimator for the asymptotic 
variance. In particular, note that, as an application of Theorem 1, bootstrap 
confidence intervals could be obtained for the asymptotic variance o}(F) = 
J~oo T'(F; x?dF(x). 
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