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Abstract

We study constrained efficient aggregate risk sharing and its consequence for the

behavior of macro-aggregates in a dynamic Mirrlees’s (1971) setting. Privately ob-

served idiosyncratic productivity shocks are assumed to be independent of i.i.d. pub-

licly observed aggregate shocks. Yet, private allocations display memory with respect

to past aggregate shocks, when idosyncratic shocks are also i.i.d.. Under a mild re-

striction on the nature of optimal allocations the result extends to more persistent

idiosyncratic shocks, for all but the limit at which idiosyncratic risk disappears, and

the model collapses to a pure heterogeneity repeated Mirrlees economy identical to

Werning [2007]. When preferences are iso-elastic we show that an allocation is memo-

ryless only if it displays a strong form of separability with respect to aggregate shocks.

Separability characterizes the pure heterogeneity limit as well as the general case with

log preferences. With less than full persistence and risk aversion different from unity

both memory and non-separability characterize optimal allocations. Exploiting the

fact that non-separability is associated with state-varying labor wedges, we apply a

business cycle accounting procedure (e.g. Chari et al. [2007]) to the aggregate data

generated by the model. We show that, whenever risk aversion is great than one our

model produces efficient counter-cyclical labor wedges.
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1 Introduction

Following Wilson’s (1968) landmark contribution, much has been learnt about opti-

mal risk sharing. Absent asymmetric information the mutualization of private risks and

its consequences for the dynamics of private consumption as a function of aggregate con-

sumption are now well understood: conditional on aggregate consumption, an individ-

uals’ current consumption ought to be independent of past information, i.e., first best

allocations are memoryless.

If, however, there is private information with regards to idiosyncratic shocks, full in-

surance is no longer feasible. Contrary to the case with no private information, (con-

strained) optimal schemes are history dependent.1 Most of this latter literature focuses

on the case in which only private risk exists by making assumptions on the nature of id-

iosyncratic shocks that ultimately lead to the elimination of aggregate risk – Phelan [1994]

being a noteworthy exception.

In this paper we consider the interaction between aggregate shocks and private al-

locations which arises in a dynamic agency environment. Our prototype economy is a

dynamic Mirrlees economy with a finite number of productivity levels and i.i.d. aggre-

gate shocks. We assume that aggregate and private shocks are independent from one an-

other and explore the endogenously generated interconnections displayed by the efficient

allocations.

We show a strong form of dependence between aggregate shocks and private allo-

cations: allocations exhibit memory with respect to aggregate shocks. That is, today’s

allocation depends not only on current shock—as in Wilson [1968]— and on yesterday’s

idiosyncratic shock—as in Golosov et al. [2003]—but also on yesterday’s aggregate shock,

despite the fact that the latter is public and independent of idiosyncratic shocks. Our as-

sumptions on the nature of shocks rules out non-trivial interactions between aggregate

1Our knowledge of dynamic insurance in the presence of private information stems from a large litera-

ture, starting with the early contribution of Rogerson [1985] followed by the methodological advances found

in Green [1987], Spear and Srivastava [1987] and Thomas and Worrall [1990] which built our current un-

derstanding of fundamental issues of dynamic insurance schemes. The non-existence of non-degenerate

steady-states and the associated immiseration results are now well understood consequences of back loading

incentives that typically characterizes such environments.

2



and private risk due to the reasons found in Holmström [1982]. Namely, that the aggre-

gate state may serve as a signal about the agents’ private information. Instead, the ratio-

nale for our results is closer to Levin [2002], in the sense that the provision of incentives

may alter the marginal value of aggregate resources.2,3

We conduct some numeric exercises to: i) illustrate some of the results obtained ana-

lytically; ii) produce ’aggregate’ data used in a business cycle accouning exercise.4 Our

focus for this latter point is on the variation of the labor wedge with the economic cycle.

Chari et al. [2007], Shimer [2009], among others, have shown that the labor wedge as-

sociated with a representative agent economy varies counter-cylically along the business

cycle. Because incentives in our model are provided in the leisure/consumption margin

in a time and state varying fashion, our prototype economy is potentially useful for un-

derstanding state-dependent labor wedges. To summarize our findings, for risk aversion

greater than one, the data generated by our prototype economy has the same property

one finds in the data: a representative agent would have to be facing countercylical labor

wedges to make these choices. Although the results are reversed when risk aversion is

less than one and wedges are invariant when preferences are of the log type, our results

raise the possibility that countercylcical wedges may characterize efficient responses to

aggregate shocks.

It is also important to mention that, for wedges to vary with the aggregate state of

the economy, allocations must display a form of non-separability with respect to aggre-

gate shocks. This form of non-separability also plays an important role in our discussion

of memory: an allocation is memoryless only if it is separable in previous periods. Due

to the relationship between separability and memory, an allocation exhibits state-varying

wedges only if it displays memory. This will pose an important challenge for future cal-

2Here, the resource constraint induces an interdependence in the provision of incentives across agents

while in Levin [2002] the same type of interdependence arises due to an endogenous restriction on what may

be credibly promised to the pool of agents. We thank Vinicius Carrasco for pointing this out.
3In the class of utility function studied here, this reduces to the coefficient of risk aversion. As shown by

Demange [2008] it is possible to define an incentive premium that makes the marginal utility of consumption

for a representative consumer identical to the marginal value of resources for the society. Under our constant

relative risk aversion — CRRA — specification, the sign of this premium only depends on whether risk

aversion is greater or less than one. For log preferences this premium is zero.
4In the sense of Chari et al. [2007].
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libration exercises since interesting business cycle dynamics comes at the cost of an in-

creased dimensionality problem. Or taken from a different angle, this separability result

should be seen as an important cautionary note. Assumptions commonly used to elim-

inate history dependence—e.g., ln utility—are bound to eliminate interesting business

cycle variations.

Although our focus is on the labor wedge, we also analyze the asset pricing implica-

tions of our model. We first use the relevant pricing kernel as defined in Kocherlakota

[2005] to generate the price for a risk free asset and a stock, understood as a claim to ag-

gregate income. Next we use the aggregate data generated in our heterogeneous agent

economy as if it were a representative agent economy to try and price these assets.5 We

calculate the asset pricing errors that one incurs by using the representative agent formu-

lation of Lucas [1978] to price the assets of our model economy and emphasize the role of

idiosyncratic risk as opposed to pure heterogeneity in generating these errors.

Our model is capable of generating countercyclical risks premia. However, our over-

simplified numerical examples precludes a quantitative assessment of the model, which

is in contrast with Kocherlakota and Pistaferri [2007] or Kocherlakota and Pistaferri [2009]

which use real consumption and asset pricing data. Our dynamic agency model is poten-

tially useful for one to accommodate asset pricing anomalies.

Brief Account of Related Literature With regards to memory of aggregate shock, clos-

est to our work is Phelan [1994]. Using a perpetual life overlapping generations model,

with individuals’ preferences of the constant absolute risk aversion—CARA—type, Phe-

lan [1994] provides a full characterization of the steady state of a dynamic moral haz-

ard model with i.i.d. shocks and aggregate uncertainty. By eliminating income effects

through the CARA assumption and by killing the tendency for ever increasing inequality

through the use of an OLG formulation Phelan [1994] is able to find closed form solution

for optimal allocations. Although it is not the focus of his paper, Phelan [1994] shows that

memory of aggregate shock does characterize optimal allocation.

In our model we consider different levels of persistence of private shocks and focus,

instead, on a dynamic Mirrlees economy with agents whose preferences are of the con-
5Despite market incompleteness we shall see that we can use ’the’ pricing kernel instead of ’a’ pricing

kernel in the current setting. See Kocherlakota [2005].
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stant relative risk aversion—CRRA—type. Our numerical simulations indicate that the

presence of memory which characterizes an environment with i.i.d. private shocks—

reminiscent of Phelan [1994]—and the lack of memory which characterizes the pure het-

erogeneity case—explored by Werning [2007]—are not knife-edge results: there is a mono-

tonic relationship between private persistence and aggregate memory.

Because we consider a dynamic Mirrlees economy we are able to discuss how labor

supply, and, the labor wedge varies along the business cycle. Finally, by varying the coef-

ficient of relative risk aversion we can show the important role played by this parameter

in determining the direction of departure from separability in optimal allocations.

More recently Scheuer [2009] and Demange [2008] study the interaction between risk

sharing and moral hazard. Both Scheuer [2009] and Demange [2008] models are static,

which means that they cannot address memory. We must also mention the numerical ex-

ercises conducted by Golosov et al. [2006] in a two period Mirrlees economy with aggre-

gate risk. Golosov et al. [2006] do not exploit models that generate memory of aggregate

shocks, nor do they emphasize the behavior of aggregate variables. Also related are the

numerical exercises found in Kocherlakota [2005]. The emphasis in this case is on optimal

taxes on capital returns.

The idea of using our normative framework to produce empirical predictions is in

the spirit of Townsend [1993]. The underlying idea is that many different institutional

arrangements are capable of inducing a given allocation. The fact that we do not see

labor income taxes vary at the frequency required by the model does not mean that other

forma or informal arrangements may generate these state-varying wedges. One lesson

we take from mechanism design is that we should focus on allocations first, and maybe

exclusively in the case of positive questions–e.g.,Ligon et al. [2002], Attanasio and Pavoni

[2008].

Although most of the literature of the so-called Dynamic Public Finance literature is

normative, in recent years, a relatively large body of research has arisen on the Macroeco-

nomics implications of private information.6 Representative of this literature are Kocher-

lakota and Pistaferri [2007, 2008b, 2009] who explore the asset pricing implications of these

models. There are some reasons why our model is capable of generating non-trivial de-

6See Sleet [2006] for a brief account.
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partures from the representative agent CCAPM. First, although idiosyncratic and aggre-

gate shocks are independent, the same is not true for allocations. Second, to implement

efficient allocations, agents must have restricted access to financial markets, a point that

is crucial for an incomplete markets model to generate any type of interesting asset pric-

ing behavior; a point emphasized by Cochrane [2001]. We differ from Kocherlakota and

Pistaferri [2007, 2008b, 2009] in that we do not take a partial characterization of the equi-

librium and try to match the data, an exercise in the spirit ot Hansen and Singleton [1983].

Instead, we generate the data from a fully specified model in the spirit of Mehra and

Prescott [1985]. Contrary to this last work we do not callibrate the model, but use a very

simplified setting to understand ’qualitative’ properties of the data it generates.7

The rest of the paper is organized as follows. Section 2 describes a general setting

that encompasses both economies that we investigate. The Atkeson and Lucas [1992]

framework is studied in section 2.1 while the Mirrlees [1971] setting is covered in section

3. The macro implications of our model are considered in 4. Numerical exercises are

conducted in section 5. Section 6 concludes the paper.

2 Basic Setting

The economy is inhabited by a continuum of measure one of ex-ante identical individ-

uals, each living for T periods. Agents have preferences defined on a consumption set X ⊆
RT

+. In every period, agents are subject to idiosyncratic shocks, θt ∈ Θ = {θ(H), θ(L)},
with θ(H) > θ(L), which affects not only their welfare but also the way they rank dif-

ferent streams {xt}T
t=1 ∈ XT of the relevant bundle. We use θt = (θ1, ..., θt) to denote a

history of idiosyncratic shocks up to period t. For any θt+τ and θt, we say that θt+τ � θt if

the first t + 1 entries of θt+τ are equal to θt.

Given a history of shocks, θT, individuals rank deterministic streams {xt}T
t=1 ∈ XT,

according to
T

∑
t=1

βt−1U
(
xt, θt) ,

7This is a crucial difference that, in some sense, makes our point very different. Recall that the Equity

Premium Puzzle is as assessement of a quantitative failuer of the CAPM. Our exercises aim not at producing

any reliable quantitative assessment.
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where U (., θ) : R2
+ → R is a smooth, strictly increasing and strictly concave function, for

all θ ∈ Θ.

These idiosyncratic shocks are not the only source of uncertainty in this economy. In

each period, an aggregate shock represented by a random variable zt ∈ Z ≡ {z, z}, with

z > z > 0, affects the economy’s technology. Let also zt = (z1, ..., zt) denote the history of

aggregate shocks. We assume the aggregate shocks to be i.i.d. and distributed according

to π(z). πt(zt) is the product measure induced on ZT.

Conditional on zt, idiosyncratic shocks, θt, are drawn from independent distributions

µt defined over Θt. We assume that a law of large numbers applies so that, at period t,

state zt, the cross-sectional distribution of agents coincides with the ex-ante distribution

µt. We use µt
(
θt|θt−1) to denote the period t conditional distribution, following history

θt−1.

Idiosyncratic shocks are private information while aggregate shocks are publicly ob-

served.

An allocation is x ≡ {xt}T
t=1, with xt : Zt × Θt → RL

+ for each t, where xt(θt, zt) is a

(θt, zt)−measurable function that denotes the bundle allocated to an agent with history

θt at period t, when aggregate history is zt. Agents’ preferences are represented by a von

Neumann-Morgenstern utility function,

E

[
∑

t
βt−1U

(
xt(θ

t, zt), θt
)]

= ∑
t

βt−1 ∑
zt

∑
θt

µt
(
θt)πt(zt)U

(
xt(θ

t, zt), θt
)

. (1)

Technology is represented by a transformation function G : RL
+ × Z → R. We say that

an allocation x is resource feasible if

G
(
∑θt µt

(
θt) xt(θ

t, zt), zt

)
≤ 0, for all t, zt. (2)

A benevolent planner maximizes individuals’ expected utility. From a period 1 per-

spective this is equivalent to our assuming that the government maximizes a utilitarian

social welfare function.

Due to the presence of private information, we write the planner’s program as a mech-

anism design problem. Throughout the analysis we assume that the planner is endowed

with a commitment technology. This will allow us to restrict implementation to direct

7



revelation mechanisms, in which agents are asked to report their types at each period,

and are assigned corresponding bundles.

Define a reporting strategy, σ = {σt}T
t=1, as a sequence of mappings σt : Zt ×Θt → Θ,

which associate to every history
(
zt, θt) an announcement θ̂. Two things are worth men-

tioning here. First, since individuals cannot lie about the aggregate state of the economy,

reports are restricted to idiosyncratic shocks. Announcement strategies may, nonetheless,

depend on zt. Second, we assume that the agent only announces the current shock, θt,

in period t, and not the history θt. Alternatively the mechanism could be described by

requiring the agent to announce θt instead. However, given that we assume perfect recall

by the government, strategies that do not respect the condition σt(θt) = (σt−1(θt−1), θ′)

for some θ′ are ruled out. As a consequence, asking θt each period is without loss of gen-

erality; our choice being due to notational simplicity. The set of all admissible strategies

is represented by Σ. We also use σTT =
{

σTT
t
}T

t=1 to denote the truth-telling strategy

σTT
t
(
θt) = θt for all t.

Let U (x, σ) be the utility derived from an agent choosing reporting strategy σ given

allocation x, i.e.,

U (x, σ) ≡ E
[
∑t βt−1U

(
xt
(
σt(θt, zt), zt) , θt

)]
.

An allocation x is incentive compatible if

U
(

x, σTT
)
≥ U (x, σ) , for all σ ∈ Σ. (3)

We shall (partially) characterize the solution to the problem of maximizing (1) subject

to (2) and (3) for a dynamic Mirrlees economy—Section 3. However, we first consider a

taste shock example—Section 2.1— which will allow us to illustrate some of the concepts

and issues to be discussed in our main setup. Before moving on, it is worth emphasizing

that under our assumption that the sets of all possible shocks is finite, and assuming for

the moment T < ∞, existence and uniqueness of this solution is trivially verified for both

models.

2.1 A Preference Shock Example

Consider a two period version of Atkeson and Lucas [1992] with aggregate shocks.

Individuals care only about consumption; xt = ct ∈ R+. An allocation, x, is therefore
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a θ̂t−measurable mapping from history of announcements, θ̂t, to a consumption stream,

c = {ct}2
t=1 ∈ X ⊆ R2

+. In each period, individuals are exposed to taste shocks that

determine their temporary utility of consumption in each period. That is, individuals

preferences are of the form

U (c, θ) =

{
θc1−ρ/ (1− ρ) , if ρ > 0, ρ 6= 1,

θ log c , if ρ = 1,

where θ is the taste parameter. For the moment let taste shocks be i.i.d.

The way in which the aggregate shock, zt, determines the total amount of resources

the economy is given by the feasibility condition: an allocation, c, is, feasible if and only

if:

G
(
∑θt µ

(
θt) c(θt, zt), zt

)
= ∑θt µ

(
θt) c(θt, zt)− zt ≤ 0, for all t, zt.

As a benchmark case, consider the first best allocation,

cFB
t (θt, zt) = ztθ

1
ρ

t E
[
θ

1
ρ

]−1
.

Four important features of this allocation are noteworthy. The allocation is: i) inde-

pendent of θt−1; ii) increasing in θt, iii) independent of zt−1 and; iv) linear in zt.

With private information, things change substantially. Because temporary utility is

defined in terms of a single good (consumption) in this setting, private information is

revealed only through intertemporal trade-offs. For an allocation to be incentive compati-

ble, more transfers today must generate lower expected transfers tomorrow, thus creating

persistence of allocations, even though shocks are i.i.d. This is in opposition to i.

The last two features: independence with respect to zt−1, and linearity in zt are the

ones we shall focus on. Note that, because aggregate shocks are public information and

independent across periods, one might expect these properties to still characterize (con-

strained) efficient allocations. As we shall see, this is not true, in general. First, however,

some definitions.

Definition 1 If an allocation is such that in period t there are functions η : Z → R+ and x̃ :

Θt × Zt−1 → RL
+ such that xt(θt, zt) = x̃t(θt, zt−1)η(zt) we say that it is separable at t.

9



For our purposes it will also be important to define a function that displays this prop-

erty in all periods.

Definition 2 If an allocation is separable at t for all t we say it is separable.

Separability is a property of allocations which will play a role in the discussions that

follow. In the current setting, for example, first best allocation are characterized by a

particular form of separability in which η(zt) = zt.

Finally, one last definition.

Definition 3 If an allocation is such that, is independent of zt−1 for all t, zt, x(θt, zt), i.e., it is of

the form x̂(θt, zt), then we say it is memoryless.

Note that the definition only applies to memory of past aggregate shocks. It is still

the case that the allocation may, and will at the optimum, depend on past idiosyncratic

shocks.

We define w(θ1, z1, z) as the expected utility promised to an individual that announces

θ1 in aggregate state z1 if period 2 aggregate state in period 2 is z. Define

w (θ1, z1) ≡ ∑
z2�z1

π
(
z2)w

(
θ1, z2) ,

= (1− ρ)−1 ∑
θ2�θ1

∑
z2�z1

π(z2)µ(θ)θc∗2(θ
2, z2)1−ρ.

Truthful revelation is obtained by trading-off current consumption for utility promises.

Therefore, no revelation of private information takes place in the last period.8

Utility promises will take, in this case, the form

w (θ1, z1) ≡ (1− ρ)−1E (θ) ∑
z2∈Z

π(z2)c∗2(θ1, z1, z2)
1−ρ.

In the last period, all that is inherited from period one is a set of utility promises, which

must be fulfilled. Using c∗ to denote the (constrained) optimal allocation, we have that,

8Take any fixed θ′, θ′′ ∈ Θ and any (θ̄, z̄2) ∈ Θ × Z2, then consider σ = (σTT
1 , σ2) where σ2(θ, θ′, z̄2) =

θ′′ and σ = σTT otherwise, then c2(θ̄, θ′, z̄2) ≥ c2(θ̄, θ′′, z̄2). Analyzing the reverse deviation we get that

c(θ̄, θ′, z̄2) = c2(θ̄, θ′′, z̄2). We, then, realize that c2 can be represented as a function c′2 : Θ× Z2 → R+.
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conditional on period 1 promises, consumption in period 2 displays optimal risk sharing

relative to the aggregate shock, i.e., for any (θ1, z1, θ′1, z′1) , c∗2 (θ1, z1, .) and c∗2 (θ
′
1, z′1, .) are

perfectly correlated.

Also, utility promises fully determine the period 2 consumption distribution,

c∗2 (θ1, z1, z2) = z2
w∗ (θ1, z1)

1
1−ρ

∑θ1∈Θ µ1 (θ1)w∗ (θ1, z1)
1

1−ρ

.

Note that the last period allocation is separable, and there is perfect aggregate risk

insurance, conditional on previous utility promises. Consumption in period 2 is perfectly

correlated across agents and its distribution is determined exclusively by period 1 distri-

bution of utility promises.

The direct relationship between utility promises in period 1 and consumption levels

in period two imply that we can roll back the resource constraints from the last period

by deriving the feasible subset of promises. This procedure allows us to characterize and

solve the planner’s problem as a static one.

Solving this static planning problem one finds that, for ρ 6= 1:

i) first period consumption is not separable on aggregate shock z1, i. e., there exist no

functions c̃ (θ1) and η (z1) such that c∗1 (θ1, z1) = c̃ (θ1) η (z1), and;

ii) second period consumption depends on period 1 aggregate shocks, i.e., c2 : Z2 ×
Θ2 → R+ cannot be independent of z1.

Endowment shocks in period 1 could be accommodated by increasing proportionately

each agent’s consumption, but this is not optimal. Indeed, were we to use a proportional

increase, the marginal rate of substitution between consumption in the two periods would

vary in a non-linear fashion with z—except in the case ρ = 1—which would ultimately al-

ter the incentives/insurance trade-off. Therefore, even though previous aggregate shocks

are independent of present information structure of the economy, current consumption

distribution may depend on the history of the economy. Finally note how separability in

the first period and lack of memory are closely associated, a point we make more force-

fully in the Mirrlees economy.

We have assumed idiosyncratic shocks to be i.i.d. Next, we provide a brief heuristic

account of how the dependence on aggregate shocks may be influenced by persistence.
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Persistence Let E[θ′|θ] denote the expected value of second period taste parameter θ′

conditional on one’s having realized θ in period 1. We can re-write preferences as

θ

{
c1−ρ

1
1− ρ

+
E[θ′|θ]

θ ∑ π(z)
c2(z)1−ρ

1− ρ

}
The marginal rate of substitution between future and current consumption is, then,

π(z)
dc2(z)

dc1

∣∣∣∣
Ū
=

θ

E[θ′|θ]

(
c2(z)

c1

)ρ

.

Note that θ(H)/E[θ′|θ(H)] ≥ θ(L)/E[θ′|θ(L)], with strict inequality for less than full

persistence. In other words, a form of single-crossing is valid here whenever there is

some idyosincratic risk. Monotonicity in θ is thus sufficient for implementation. It is

also apparent from the expression above that, the higher the persistence, the smaller the

difference between marginal rates of substitution between individuals.

Because there are no transfers at the (constrained) optimum, there is no dependence

on history; in particular, on aggregate history. There is a sense in which this result is

of limited interest, however: memory with respect to aggregate shocks only disappears

when the allocations are the ones that individuals obtain if no transfers occur in any pe-

riod. This will not be the case in the Mirrlees economy for which insurance is possible

even in the last period through the consumption/leisure trade-off.

3 Mirrlees Economy

Consider a dynamic Mirrlees economy, where agents temporary preferences defined

as a function of consumption, c, and effort, l, are of the form u (c) − v (l), where u (.)

strictly increasing and concave and v (.), strictly increasing and convex.

The parameter θ is associated to an individual’s productivity. An agent with produc-

tivity θ produces y = lθz efficiency units with effort l if the aggregate state is z. The tech-

nology is once again linear. One efficiency unit of labor produces one unit of consump-

tion.9 As in Mirrlees [1971], we redefine choice variables. Instead of (c, l) we consider

x = (c, y), where c is consumption and y denotes efficiency units of work.
9To map technology exactly in the terms of Section 2 we would instead define ỹ = lθ and let

G
(
∑ µ(θ)c(θ, z), ∑ µ(θ)ỹ(θ, z), z

)
= ∑ µ(θ)c(θ, z)−∑ µ(θ)ỹ(θ, z)z ≤ 0.
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The Social Planner’s problem (program P0) is

max ∑
t

βt−1 ∑
θt

∑
zt

πt(zt)µt
(
θt) [u

(
c(θt, zt)

)
− v

(
y(θt, zt)

θtzt

)]
(4)

subject to

∑
θt

µt
(
θt) [c(θt, zt)− y(θt, zt)

]
≤ 0 (5)

and

∑
t

βt−1 ∑
θt

∑
zt

πt(zt)µt
(
θt) [u

(
c(θt, zt)

)
− v

(
y(θt, zt)

θtzt

)]
≥

∑
t

βt−1 ∑
θt

∑
zt

πt(zt)µt
(
θt) [u

(
c
(
σ(θt, zt), zt))− v

(
y
(
σ(θt, zt), zt)

θtzt

)]
(6)

for all σ ∈ Σ.

It is a general feature of repeated screening and moral hazard problems that alloca-

tions keep track of individuals’ private shocks histories. This allows the principal to go

beyond repeating the static optimal allocation by linking future allocations to present type

reports.10

This whole argument is false for the aggregate shock for one simple reason: it is ob-

servable. Since the aggregate state of the economy is assumed to be known by everyone,

and is unrelated with idiosyncratic shocks, there is no obvious reason to believe that the

optimal allocation will present history dependence with respect to this variable. Our first

result makes this point clear by providing an example in which such dependence does

not exist.

Proposition 1 Let u = ln then there exist functions c̃t(θt) and ỹt(θt) such that ct(θt, zt) =

c̃t(θt)zt and yt(θt, zt) = ỹt(θt)zt.

As it turns, the definition of variables we adopted is more convenient.
10The extreme poverty result presented in Atkeson and Lucas [1992] and Phelan [1998] is a long run conse-

quence of this feature of optimal allocations. At each period, the cross-sectional distribution of consumption

and labor inherits the heterogeneity of previous period and brings a new source of variation, since you have

to generate further distortions to separate agents with different types at the current period. With i.i.d. private

shocks, an assumption frequently adopted in the literature, the extra dispersion in allocations is independent

of previous heterogeneity. This pattern generates ever increasing inequality across agents.
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Proof. Let u(c) = ln(c) and consider the following transformation of variables c̃(θt, zt) =

c(θt, zt)/zt and ỹ(θt, zt) = y(θt, zt)/zt. In this case we can write program P0 as

∑
t

βt−1 ∑
zt

πt(zt) ln zt + max ∑
t

βt−1 ∑
θt

∑
zt

πt(zt)µt
(
θt) [ln c̃(θt, zt)− v

(
ỹ(θt, zt)

θt

)]
subject to

∑
θt

µt
(
θt) [c̃(θt, zt)− ỹ(θt, zt)

]
≤ 0

and

∑
t

βt−1 ∑
θt

∑
zt

πt(zt)µt
(
θt) [ln c̃(θt, zt)− v

(
ỹ(θt, zt)

θt

)]
≥

∑
t

βt−1 ∑
θt

∑
zt

πt(zt)µt
(
θt) [ln c̃

(
σ(θt, zt), zt)− v

(
ỹ
(
σ(θt, zt), zt)

θt

)]
for all σ ∈ Σ. Note that zt only appears additively in the objective function, which shows

that, with some abuse in notation, c̃(θt, zt) = c̃(θt), ỹ(θt, zt) = ỹ(θt) .

The main normative goal of this paper is to find out whether this result applies more

generally. As we shall see, absence of memory is a very particular result. An heuristic

account of why this property fails to be optimal in general, i.e., of why memory is relevant,

goes as follows. Take the general dynamic Mirrlees economy, and define the temporary

utility gap, associated with strategy σ at history (θt, zt), ∆σ(θt, zt), as

∆σ(θt, zt) = U
(

c(θt, zt),
y(θt, zt)

θtzt

)
−U

(
c
(
σ(θt, zt), zt) ,

y
(
σ(θt, zt), zt)

θtzt

)

Consider, then, the specific case ∆σ(θt−1, θ̄, zt−1, z) =

U
(

c(θt−1, θ̄, zt−1, z),
y(θt−1, θ̄, zt−1, z)

θ̄z

)
−U

(
c(θt−1, θ, zt−1, z),

y(θt−1, θ, zt−1, z)
θ̄z

)
,

and assume that the constraint associated with the one period deviation at history (θt−1, θ̄, zt−1, z)

binds. In this case, the difference between the continuation utilities must be equal to

∆σ(θt−1, θ̄, zt−1, z). If the allocations do not display memory, continuation utilities can-

not depend on zt, in this case, either ∆(θt−1, θ̄, zt−1, z′) = ∆σ(θt−1, θ̄, zt−1, z), or the same

constraint cannot bind in the alternative state z′. This imposes a strong restriction on the

possibilities for the planner, and will generate sub-optimal allocations, in general.
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We will now formalize these ideas. We start by deriving an intertemporal restriction

on allocations that will play an important role in what follows. The result is akin to the

inverese Euler equation derived by Kocherlakota [2005]. Because there is no technology to

transfer resources across periods, however, the following lemma simply relates allocations

along different paths.

Lemma 1 At the optimum,

∑
θt+1�θt

µ(θt+1|θt)
u′(c(θt, zt))

u′(c(θt+1, zt+1))
= ∑

θ̄t+1�θ̄t

µ(θ̄t+1|θ̄t)
u′(c(θ̄t, zt))

u′(c(θ̄t+1, zt+1))
,

for every, θt,θ̄t, zt and zt+1 � zt.

Proof. Let {c, y} be our candidate optimal allocation. We shall construct a new allo-

cation {ĉ, ŷ} as follows. We increase consumption in period t, public history zt, for the

agent with history θt in such a way that u(ĉ(θt, zt)) = u(c(θt, zt)) + ∆. Because aggregate

resources are fixed, this can only be done by reducing consumption for another individ-

ual, say, that with history θ̄t. This agent’s utility will be reduced by an amount ε. That is,

u(ĉ(θ̄t, zt)) = u(c(θ̄t, zt))− ε. For simplicity, consider µ(θt) = µ(θ̄). For small enough ∆,

the two are related by

ε =
u′(c(θ̄t, zt))

u′(c(θt, zt))
∆. (7)

For this reform not to have impact on incentives or on any individual’s utility, it must com-

pensate the change in utility for every continuation history. Hence, for every (θt+1, zt+1) �
(θt, zt),

u(ĉ(θt+1, zt+1)) = u(c(θt+1, zt+1))− ∆.

Similarly, for every (θ̄t+1, zt+1) � (θ̄t, zt),

u(ĉ(θ̄t+1, zt+1)) = u(c(θ̄t+1, zt+1)) + ε.

For every zt+1, the cost of such reform is

− ∑
θt+1�θt

µ(θt+1|θt)

u′(c(θt+1, zt+1))
∆ + ∑

θ̄t+1�θ̄t

µ(θ̄t+1|θ̄t)

u′(c(θ̄t+1, zt+1))
ε. (8)
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Substituting (7) in (8) it is then clear that, unless

∑
θt+1�θt

µ(θt+1|θt)
u′(c(θt, zt))

u′(c(θt+1, zt+1))
= ∑

θ̄t+1�θ̄t

µ(θ̄t+1|θ̄t)
u′(c(θ̄t, zt))

u′(c(θ̄t+1, zt+1))
,

there is a reform that preserves utility, preserves incentive compatibility and saves re-

sources.

To formally prove the result for a much used specification of preferences, let us now

specialize to the class of iso-elastic utility functions; i.e, constant relative risk aversion in

consumption and power disutility of labor effort,

u (c) =
c1−ρ

1− ρ
and v (l) =

lγ

γ
, (9)

for ρ > 0, ρ 6= 1 and γ > 1. For ρ = 1, u(c) = ln(c).

Under this iso-elastic preferences assumption, our first result relates memory to sepa-

rability.

At any given period, individuals care about the current allocation and how the current

report will affect their prospects in further periods. Lemma 1, above, states that, since it is

always possible to distort future consumption to separate individuals today, differences

in current consumption are preserved in the future in such a way as not to interfere with

future incentive compatibilities.

Proposition 2 With iso-elastic preferences, if period t consumption is not separable in zt, then

the allocation displays memory in t + 1.

Proof. If an allocation is not separable in t then, given any function η(z) such that

c(θt, zt) = c̃(θt, zt)η(zt) for some function c̃(θt, zt), there must be a pair θt, θ̄t such that

c̃(θt, zt)/c̃(θ̄t, zt) is a function of zt. Combining Lemma 1 and Lemma 2, however, gives

c̃(θt, zt)ρ

c̃(θ̄t, zt)ρ
=

E
[
c̃(θt, θ′, zt+1)ρ|θt, zt+1]

E
[
c̃(θ̄t, θ′, zt+1)ρ|θ̄t,zt+1

] . (10)

Since the left hand side depends on zt, so does the right hand side. Hence, either the

numerator or the denominator varies with zt, thus violating independence.
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One interesting and straightforward consequence of (10) result is the case in which

u (·) is a natural log. Consider u = ln, then, letting Y
(
zt) denote total production, we

have
ct
(
θ̄t, zt)

Y (zt)
=

∑θ′ µ
(
θ̄t, θt|θ̄t) ct+1

((
θ̄t, θt

)
,
(
zt, z

))
∑θt+1 µ (θt+1) ct+1 (θt+1, (zt, z))

=
E
[
ct+1|θ̄t, zt+1]
Y (zt+1)

.

The fact that the expectation in the right hand side of the expression above is condi-

tioned on zt+1 allows for a simple interpretation of the expression above. Namely, the

expected share of aggregate output an agent gets to consume in any aggregate state to-

morrow is equal to the share of current output that she consumes today. This means that,

two agents are entitled to different shares of total output today, they will necessarily re-

ceive different shares of total output for at least one realization of private shocks and this

will be true for all aggregate states.

More importantly for our discussion is the fact that, if the share of aggregate output

that an agent with private history θt is entitled to in aggregate state zt differs from the

share she would be entitled to had state ẑt realized, instead, then the expected share she

would be entitled to in state (zt−1, zt, z) would differ from the expected share she is going

to get in (zt−1, ẑt, z). The consequence of Proposition 2 is that, with logarithmic prefer-

ences, it is either the case that optimal shares are independent of z or allocations must

display memory with respect to aggregate shocks. Proposition 1 shows that it is the for-

mer, rather than the latter.

To check whether this result extends to other values of ρ, recall that our intuition was

based on how continuation utilities must accomodate variations in temporary utility gaps.

We were implicitly invoking a recursive structure that will not be present, in general, if we

do not impose any restrictions in the stochastic process governing the changes in skills.

Toward this goal we assume the following: µ(θt) is a Markov process,

µ(θt−1, θ, θ′|θt−1, θ) = µ(θ, θ′|θ), ∀θt−1,

and µ(θ|θ) ≥ 0.5.

We shall also restrict the rest of the analysis to the case T < ∞.

Finally, to use the approach of Fernandes and Phelan [2000] we assume that µ(θ|θ) ∈
[.5, 1) and postpone until Section 3.1the limit purre heterogeneity case, µ(θ|θ) = 1.
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For now, define w(θt−1, zt) as the expected continuation utility for an agent with his-

tory θt conditional on aggregate history zt+1,

w(θt−1, zt) = ∑
θt�θt−1

µt

(
θt|θt−1

) [
u
(
c(θt, zt)

)
− v

(
y(θt, zt)

θtzt

)
+β ∑

zt+1�zt

π(zt+1)w(θt, zt+1)

]
(11)

Similarly, let θ̄t−1 = (θt−2, θ̄) 6= (θt−2, θ) = θt−1. We may, then, define

ŵ(θt−1, zt) = ∑
θt�θt−1

µt

(
θt|θ̄t−1

) [
u
(
c(θt, zt)

)
− v

(
y(θt, zt)

θtzt

)
+β ∑

zt+1�zt

π(zt+1)w(θt, zt+1)

]
(12)

Following the steps of Fernandes and Phelan [2000] we can show—Lemma 4, in the

appendix—that any incentive compatible allocation must satisfy the one period incentive

constraint,

u
(
c(θt, zt)

)
− v

(
y(θt, zt)

θtzt

)
+ β ∑

zt+1�zt

π(zt+1)w(θt, zt+1) ≥

u
(

c(θt−1, θ̄, zt)
)
− v

(
y(θt−1, θ̄, zt)

θtzt

)
+ β ∑

zt+1�zt

π(zt+1)ŵ(θt−1, θ̄, zt+1) . (13)

Assume that the incentive efficient allocation does not exhibit memory, in which case,

neither w(θt, zt+1) nor ŵ(θ̂t, zt+1) depend on zt, and let u = ln. Under the transformation

of variables used in the proof of Proposition 1, the incentive constraint becomes

ln c̃(θt, zt)zt − v
(

ỹ(θt, zt)

θt

)
+ β ∑

zt+1�zt

π(zt+1)w(θt, zt+1) ≥

ln c̃(θ̂t, zt)zt − v

(
ỹ(θ̂t, zt)

θt

)
+ β ∑

zt+1�zt

π(zt+1)ŵ(θ̂t, zt+1)

It is easy to see that zt plays no role in providing incentives. Because z plays no role in the

redefined resource constraint and is additive in the objective function it does not change

the planner’s optimization problem.

Let us now consider the case ρ 6= 1, and recall that the disutility of labor is iso-elastic,

v(l) = lγ/γ. In this case, another convenient change of variables makes the resource
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constraint and the objective function independent of z. Namely, c(θt, zt) = c̃(θt, zt)η(zt),

and y(θt, zt) = ỹ(θt, zt)η(zt) where η(z) = z
γ

ρ+γ−1 .

Contrary to the ln case in which the transformation, η(zt), is additive in utility this

transformation is multiplicative, which will make matter for the incentive constraints.

Assume that the allocation is memoryless and using the suggested transformation of

variables, the one period incentive constraint becomes[
c̃(θt, zt)1−ρ

1− ρ
− ỹ(θt, zt)γ

θγ

]
−
[

c̃(θ̂t, zt)1−ρ

1− ρ
− ỹ(θ̂t, zt)γ

θγ

]
≥

β

{
∑

zt+1�zt

π(zt+1)ŵ(θ̂t, zt+1)− ∑
zt+1�zt

π(zt+1)w(θt, zt+1)

}
η(zt)ρ−1.

If this expression holds as an equality for both zt = z̄ and zt = z, because the right hand

side is independent of zt, the term in curly brackets in the left hand side must depend on

zt, which implies that period t allocation is not separable.

Proposition 2 shows that if an allocation is memoryless, then consumption must be

separable in consumption, if we can extend the result to the whole allocation (c(θt, zt), y(θt, zt)) =

η(zt)(c̃(θt, zt−1), ỹ(θt, zt−1)) then we have arived at a contradiction. Because c(θt, zt) =

η(zt)(c̃(θt, zt−1)), it is immediate to see that ∑ µ(θt)y(θt, zt)/η(zt) does not depend on zt.

Although this does not directly imply that y(θt, zt) = ỹ(θt, zt−1)η(zt), we can show that

this is exactly the case in our setting–Lemma ?? in the appendix.

The other implicit assumption in our argument is that the analogous constraint binds

in two different aggregate states of the world; i.e., there is at least one period t and one

private history, θt such that the same one period deviation binds at the optimum at both

states. This is a very weak condition, which does seem to be valid in general. Still, for

now we shall just assume that this is the case.11

Assumption A: At the optimum, for some t < T there is a history (θt−1, zt−1) such that

U(x(θt−1, θ, zt−1, z̄)) = U(x(θt−1, θ̃, zt−1, z̄)|θt−1, θ) and U(x(θt−1, θ, zt−1, z)) = U(x(θt−1, θ̃, zt−1, z)|θt−1, θ).

11It is also possible to show that for all histories (θt−1, zt) and all t, E[y(θt, zt)1−γ|θt−1, zt]/η(zt)
γ−1 is

independent of zt. For the case of more than two types per period, these two restricions need not imply the

result. However, if only neighborhood constraints bind at the optimum, that is, if the solution of the relaxed

problem–see Kapicka [2010], Farhi and Werning [2010]—solves the complete problem, then, the result is, once

again, valid.
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Under this assumption it is possible to prove the following result.

Proposition 3 Assume that ρ 6= 1 and that there is some idiosyncratic risk, then if Assumption

A is valid the optimal allocation exhibits memory of past aggregate shocks.

Proof. See Appendix.

If shocks are i.i.d., it is always the downward constraint that bind, which means that

Assumption A is not needed. Hence, the following corollary is an immediate consequence

of Proposition 3.

Corollary 1 Assume that ρ 6= 1 and idiosyncratic shocks are i.i.d., then the optimal allocation

exhibits memory of past aggregate shocks.

Proposition 2 states that, for an allocation to be memoryless in t it must be separable

in τ < t, not that a separable allocation is necessarily memoryless. We cannot, therefore,

infer from Proposition 3 whether the allocations associated with ρ 6= 1 are separable or

not. For that we shall rely on our numeric exercises. The next Proposition, however,

shows that separability always characterizes the period T allocation.

Proposition 4 The optimal allocation is separable in period T, i.e., there are functions η(zT),

c̃(θT, zT−1) and ỹ(θT, zT−1) such that c(θT, zT) = c̃(θT, zT−1)η(zT) and y(θT, zT) = ỹ(θT, zT−1)η(zT)

Proof. See Appendix.

3.1 The Pure Heterogeneity Limit

In this section we address the pure heterogeneity case: µ(θ′, θ|θ′) = 1 for θ′ = θ,

µ(θ′, θ|θ′) = 0 for θ′ 6= θ. In this case there is no uncertainty beyond the productivity one

is born with, and we solve the Utilitarian planner’s problem. This is a particular case of

Werning [2007]. Indeed, if µ (θ′, θ|θ′) = 1, for θ = θ′, then, the Planner’s problem is

max ∑
θ

µ (θ)∑
t

βt−1 ∑
zt

πt(zt)

[
u
(
c(θ, zt)

)
− v

(
y(θ, zt)

θzt

)]
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subject to

∑
θ

µ (θ)
[
c(θ, zt)− y(θ, zt)

]
≤ 0

and

∑
t

βt−1 ∑
zt

πt(zt)

[
u
(
c(θ, zt)

)
− v

(
y(θ, zt)

θzt

)]
≥

∑
t

βt−1 ∑
zt

πt(zt)

[
u
(
c(θ̄, zt)

)
− v

(
y(θ̄, zt)

θzt

)]
for θ, θ̄ = θ(H), θ(L).

It is important to note that there are only two incentive compatibility constraints,

which are independent of time and aggregate state. We associate to the IC constraints

the multipliers φ
(
θ̄|θ
)

and φ
(
θ|θ̄
)
. The first order conditions associated with ct(θ, zt) and

yt(θ, zt) are [
1 + ∑̄

θ

[
φ
(
θ̄|θ
)
− φ

(
θ|θ̄
)]]

ct
(
θ, zt)−ρ

= λ
(
zt) ,[

1 + ∑̄
θ

[
φ
(
θ̄|θ
)
− φ

(
θ|θ̄
) θγ

θ̄γ

]]
yt
(
θ, zt)γ−1

(θzt)
γ = λ

(
zt) .

Hence, ct
(
θ, zt) = λ

(
zt)−1

ρ κ (θ) and yt
(
θ, zt) = (θzt)

γ
γ−1 λ

(
zt) 1

γ−1 ω (θ), for some κ

and ω. Substituting this in the resource constraints,

∑ µ (θ)

[
λ
(
zt)−1

ρ κ (θ)− (θzt)
γ

γ−1 λ
(
zt) 1

γ−1 ω (θ)

]
= 0,

which means that λ
(
zt) = az

− γρ
ρ+γ−1

t . Therefore,

ct
(
θ, zt) = c̃ (θ) z

γ
ρ+γ−1
t , yt

(
θ, zt) = ỹ (θ) z

γ
ρ+γ−1
t .

Separability thus characterizes this pure heterogeneity case. As we shall se in the next

section this has important consequences for the possibility of heterogeneity generating

any type of interesting business cycle behavior.
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4 Macro Consequences of Private Memory

Although most of the New Dynamic Public Finance Literature has been of a normative

nature, there has been some recent attempts to derive testable implications from these

models–e.g., Sleet [2006],Kocherlakota and Pistaferri [2007], Kocherlakota and Pistaferri

[2008a], Kocherlakota and Pistaferri [2009], Ales and Maciero [2008], etc. The underlying

idea is that many different, and sometimes informal, institutions can implement optimal

allocations which meanst that one cannot ’a priori’ rule out the possibility that current

institutions are producing constrained efficient outcomes.

When focus is shifted from specific policies to allocations, one possible path is to use

partial characterizations of optimal allocations to create testable restrictions in the ob-

served data. This type of approach has been the focus of an important literature that

has made intensive use of micro data–e.g, Townsend [1994], Ligon et al. [2002] etc.12 An

alternative path, the one we shall follow here, is to derive the macro consequences of

these models. By macro consequences we simply mean the consequences for aggregate

variables and prices. In taking this path we follow the lead of Kocherlakota and Pistaferri

[2007] and Kocherlakota and Pistaferri [2009] who have used the pricing kernel associated

with a dynamic Mirrlees economy to try and price the excess return of equity over risk

free bonds and the conditional return on forward exchange rate. We follow this agenda

by addressing the business cycle behavior of the labor wedge.

Chari et al. [2007] have shown how equilibrium allocations for disaggregated model

economies may in many circumstances be viewed as equilibrium allocations for a repre-

sentative agent economy with suitably defined time-varying wedges. This observation

is used to identify which particular wedges are more important to generate the observed

behavior of macroeconomic aggregates for a representative agent along the business cy-

cle; a procedure they have named Business Cycle Accounting. They find that for a dis-

aggregated model to account for the business cycle behavior of macroeconomic aggre-

gates it must generate a countercyclical wedge in the associated representative consumer

economy. We check in our numeric exercises is to check through numerical simulations

whether our model is capable of generating countercyclical wedges for the associated rep-

12A very interesting application of this approach is found in Townsend [1993] analysis of medieval village

economies.
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resentative consumer economy.

We also use our model to measure the potential pricing errors associated with using

a representative agent consumption capital asset pricing model a la Lucas [1978] to try to

account for the asset price data generated by our model economy.

4.1 The Labor Wedge

Chari et al. [2007] emphasize the role played by the so-called labor wedge in gener-

ating the observed pattern of ’choices’ for the representative agent through the business

cycles. Many potential explanations for these wedges are considered in Shimer [2009]. We

ask whether the underlying informational problems that characterize a repeated Mirrlees

economy may offer an alternative explanation. We shall try and see if they may generate

the qualitative movements of the labor wedge.

A dynamic Mirrlees economy may potentially allow one to take the real business cycle

literature idea that fluctuations are optimal responses to real technological shock one step

further and ask whether state-varying labor wedges are optimal (constrained efficient, in

this case) responses to real shocks in a world where asymmetric information precludes

full insurance. Chari et al. [2007] and Shimer [2009] point out to the fact that the labor

wedge increases in economic downturns and decreases in good times.

The current model is particularly promising in this regard for it endogenously gen-

erates wedges at an individual level. Whether these individual wedges imply a time-

varying labor wedge for the representative agent, and whether this variation follows the

pattern found in the data is one of the questions we try to answer in our numeric exercises.

It is important to emphasize that we are not siding with the strand of the literature

that views tax shocks as causes of business cycle, which would naturally explained the

observed correlation between recessions and labor wedge. Instead, in our model state

varying wedges (are they to exist) are optimal responses to real shocks in a second best

world.

We start by defining the aggregate variables we are going to use. Aggregate consump-

tion is C(zt) ≡ ∑ µ(θt)c(θt, zt), while output is Y(zt) ≡ ∑ µ(θt)y(θt, zt). Because there is

no aggregate savings in our economy, C(zt) = Y(zt) for all zt. To derive the economy’s
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productivity, W(zt), we need first to define aggregate hours,

L(zt−1, z) ≡ ∑
θt−1

∑
θ

µ(θt−1, θ)
y(θt−1, θ, zt−1, z)

θz

and, finally, W(zt) = Y(zt)/L(zt).

We shall endow the representative agent with the same preferences as individuals.

Hence,13

W(C(z), Y(z), W(z)) =
C(z)1−ρ

1− ρ
− Y(z)γ

γW(z)γ
.

Note also that without taxes, the representative agent’s optimal labor/consumption

choice would be given by W(z)γC(z)−ρ = Y(z)γ−1. Naturally, there are taxes, both in the

model and in the real world, and this equality should not be observed in practice. We

shall, then, define the labor wedge,

τ(z) = 1−W(z)−γY(z)ρ+γ−1,

where we have used the fact that C(z) = Y(z).14

Separability and The Labor Wedge We have seen that if we are in a pure heterogeneity

case or if u(c) = ln c then optimal allocations are of the form c(θ, zt) = c̃(θ)η(zt), and

y(θ, zt) = ỹ(θ)η(zt).

In this case, Y(zt) = η(zt)∑ µΘ(θ
t)ỹ(θt). Hours, are, then

L(zt) =
η(zt)

zt
∑ µ(θ)

ỹ(θ)
θ

,

while the estimated productivity is

W(zt) =
Y(zt)

L(zt)
= zt

∑ µ(θ)ỹ(θ)
∑ µ(θ)ỹ(θ)/θ

.

Deriving the wedge is now a simple task

τ(zt) = 1−
{

∑ µ(θ)ỹ(θ)/θ

∑ µ(θ)ỹ(θ)

}γ {
∑ µ(θ)ỹ(θ)

}ρ+γ−1 ,

13In the spirit of a calibration exercise in which instead of allowing for free parameters, we take them from

micro data. See Chari et al. [2009].
14footnote discussing some aggregation issues
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where we used the fact that η(zt)ρ+γ−1zγ
t = 1.

As is clear from the right hand side of the expression above, the labor wedge is in-

variant with respect to z. We had already shown that when allocation is separable labor

wedges for each individual do not vary with z. This does not imply that the aggregate

wedge will not vary. Changes in the distribution of income could generate such variation

through composition effects, but this is not the case.

An important consequence of this observation is that simply allowing for heterogene-

ity will not do. We need partially insured private risks to generate variation in wedges.

Moreover, separability also obtains when ρ = 1, according to Proposition 1. The fact that

for risk aversion equal to one wedges are invariant through the business cycle raises the

possibility that if it is to vary for ρ 6= 1 it may correltate with differnt signs with the cycle

depending on whether ρ > 1 of ρ < 1–see our discussion in Section 3.

Finally note that Proposition 2 establishes that an allocation that is non-separable dis-

plays memory. We have seen that memory characterizes allocations when ρ 6= 1 and there

is idiosyncratic uncertainty. What we would want to know is whether we can guarantee

non-separability in general. Of concern are allocations of the type x(θt, zt) = x̃(θt)H(zt)

with H(zt) = ∏t,zt
η(zt). Such allocation displays memory and is separable. To under-

stand why this type of allocation should not beoptimal, note that the cost function is

strictly concave, so increasing the volatitlity of promised utility is costly. The optimal

allocation strikes a balance between efficiency in previous periods in which case the sep-

arable allocation is desirable and the volatility it generates in future allocations if ρ 6= 1.

4.2 Asset Pricing

Kocherlakota and Pistaferri [2007] and Kocherlakota and Pistaferri [2009] have shown

how the pricing kernel associated with a dynamic Mirrlees economy is compatible with

the behavior of excess returns in foreign and domestic markets. Using the fact that the

pricing kernel is a function of the cross-sectional harmonic mean of marginal consumption—

as derived by Kocherlakota [2005]—they use cross-sectional consumption data to esti-

mate the preference parameters associated with a CRRA specification for three economies.

Kocherlakota and Pistaferri [2009] show that a low coefficient of relative risk aversion is

needed to account for the equity premium found in the data, while Kocherlakota and
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Pistaferri [2007] find similar low coefficients can account for the forward exchange rate

premium.

A natural next step in this agenda is to calibrate such models to generate pricing data

compatible with the underlying primitives of the economy.15 It, thus, becomes impor-

tant to understand how private information regarding idiosyncratic shocks interact with

public aggregate ones to generate optimal allocations from which the pricing kernels are

derived. This paper considers very simple two period economies that display these ele-

ments to explore how the dynamic nature of incentives induces persistence in allocations

with respect to aggregate shocks. Hence, we are not doing a true calibration exercise, but

pointing out the potential results to expect from such exercises.

First, to focus on asset pricing, we may define the ’representative agent’s pricing ker-

nel’, Λ(zt+1) = C(zt+1)−ρ/C(zt)−ρ. Following the idea of using parameters estimated

from micro-data to calibrate the model, we may compare Λ with the true pricing kernel,

Q(zt|zt−1) =

[
∑

θt�θt−1

µΘ(θ
t|θt−1)

c(θt, zt)ρ

c(θt−1, zt−1)ρ

]−1

. (14)

Using the pricing kernel Q(zt|zt−1) we can also derive the return of a risk free assets

and the expected return of stocks.16

As we have shown, last period allocation exhibits a form of separability with respect

to last period shock that has interesting consequences for the form the kernel varies with

last period’s shock. Another interesting feature has to do with the fact that heterogeneity

per se has consequences for the magnitude of the pricing kernel, but not with the way in

which it varies with the states of nature.
15Grossly speaking, while their exercises is akin to Hansen and Singleton [1982], which looked at some of

the moment restrictions that needed to prevail in equilibrium, a calibration exercise would be akin to Mehra

and Prescott [1985], which callibrated the full economy to see if the model was capable of generating the

behavior of asset prices anywhere near what is seen in the data. Although we have not offered a serious

attempt to callibrate the economy, our qualitative results are suggestive of the possibilities to arise when such

an exercise is attempted.
16We take the economy’s GDP to represent the stock’s dividends. This idea has been recently criticized by,

among others, advocates of long run risks as being the relevant cause of most problems with the Consumption

Capital Asset Pricing Model, e,g, Bansal and Yaron [2004].
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More generally, consider (14). Pre-multiplying by µ(θt−1) and summing across θt−1

yields

c(θt−1, zt−1)ρQ(zt|zt−1) =

[
∑

θt�θt−1

µ(θt|θt−1)c(θt, zt)ρ

]1/ρ

.

Separability and Asset Pricing Separability necessarily arises either when there is no

idiosyncratic risk or when preferences are of the log type. In the pure heterogeneity case,

Q(zt|zt−1) =
η(zt−1)

ρ

η(zt)ρ
, (15)

which is the pricing kernel associated with a representative consumer economy. So simply

adding heterogeneity does not alter the predictions of the CCAPM, hence, it cannot solve

its empirical shortcomings.

As we have seen in Section 3, when u(c) = ln(c), allocations take the form (c(θt, zt), y(θt, zt)) =

(c̃(θt), ỹ(θt))zt, the return on the risk free asset is

Q(zt|zt−1) =

[
∑

θt�θt−1

µ(θt|θt−1)
c̃(θt)

c̃(θt−1)

]−1
zt−1

zt
.

Now, stock returns are given by

C(zt)

Q(zt|zt−1)
= zt−1

[
∑

θt�θt−1

µ(θt|θt−1)
c̃(θt)

c̃(θt−1)

]−1

∑
θt

µ(θt)c̃(θt),

which is independent of zt.

5 Numeric Exercises

In this section we conduct numerical exercises that help illustrate some of the prop-

erties that we have derived in Section 2. This exercise is similar to the one presented in

Golosov et al. [2006], in which a two period Mirrlees economy with government spending

shocks, that are public information. However, they have a different focus and only char-

acterize how last period shocks affect optimal labor tax wedges. More precisely, Golosov

27



et al. [2006] do not allow public shocks in the first period, which would allow them to

address the persistence issues that is the focus of our work.

Kocherlakota [2005] provides a numerical example that is similar to ours in many

ways, but analyzes the impact of individual shock persistence and the size of the public

shocks on capital taxation, which is the main focus of his paper. He does not mention

labor tax nor the possibility of persistent effects of aggregate shocks.

In our exercises we fix γ = 2, θ (L) = 1, θ (H) = 2, µ1 (L) = µ1 (H) = .5, π1 (z) =

π1 (z) = .5, z = 1 and z = 2. Our measure of persistence, α∈ [0, 1], is the value of the

non-unit eigenvalue of the transition matrix for idiosyncratic shocks.17 The probability of

maintaining the same productivity in the next period, i. e., µ (θ, θ|θ) for all θ is directly

associated with our measure in this two type context. In particular, because we vary

µ (θ, θ|θ) in [0.5, 1], our persistence measure ranges between 0 and 1: where 0 persistence

is i.i.d. case and 1 is the case of pure heterogenity.

We analyze how relevant individual shock persistence is on the allocation and what is

driving the non-existence of persistence of aggregate shocks effects in the model for the

pure heterogeneity case.

The first set of figures shows how consumption, output and marginal tax rates vary in

each state for low and high type agents according to how persistent is the shock. For this

set of figures we have chosen ρ = 5

Not unexpectedly, consumption is increasing in aggregate productivity for all agents.

Also, in both states, agents who realize a high type have more consumption than agents

who realize a low type. Low productivity individuals face a positive marginal tax rate,

while high productivity individuals face a 0 marginal tax rate (we, thus, omit marginal

tax rates for high types from the figures). This reproduces the classic result of a static

Mirrlees economy, and indicates that only downward constraints bind at the optimum for

both states.

Our emphasis in those figures is on the way allocations vary with persistence. It is

apparent that while consumption for low productivity individuals decrease with persis-

tence, it increases with persistence for a high productivity agent. The more persistent

17We use the term transition matrix in the traditional sense for Markov chains. In our case the Markov

nature of idiosyncratic shock is trivial.
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a shock is, the less one gains from backloading incentives. For the exact same reason,

income displays the opposite behavior, although it varies with persistence much less sig-

nificantly than income. A consequence of this behavior for consumption and income is

that temporary utility declines with persistence for low productivity individuals and in-

creases for high productivity individuals. It happens so dramatically that for very low

levels of persistence the temporary utility is higher for the low productivity individu-

als.18 Of course, for this type of utility reversion to take place in an incentive compatible

way, promised utilities behave in the exact opposite way.

The second set of figures is intended to show the presence of memory. We compare,

in percentage terms, consumption in each possible second period state with consumption

in the first period. That is, for each type θ2 and each second period aggregate state z2, we

calculate c(θ2, z̄, z2)/c(θ2, z, z2). Consumption growth declines with persistence for those

who realized high productivity in the first period and increases with persistence for those

who realized a low type.

Allocations display memory of previous aggregate shocks, in our simple model. Sec-

ond period consumption depends on first period aggregate shock. Better aggregate states

in the past are associated with smaller differences in consumption of low and high type,

which points out to the fact that the value of backloading incentives in the first period

is higher in bad economic states. Given the extreme variations in aggregate productivity

that we have assumed, memory is apparent. For more realistic variations in aggregate

productivity, memory does not seem to be quantitatively relevant.

In the third set of figures we show how backloading varies with persistence and across

states of nature. To define backloading we borrow from the concept of seed values in Fer-

nandes and Phelan [2000]’s auxiliary problem. Assume that the individual has learnt his

type. What is the expected utility that she gets from the government utility maximization

problem? This is the seed value. The measure of backloading we shall use here assumes

that we calculate this starting one period ahead and assuming that nothing happened in

the first period, which we call the ’one step ahead seed’. The seed and the one step ahead

seed coincide up to a constant in the infinite horizon case, but will differ, in general, for

a finite horizon. Our backloading measure is calculated by taking the difference between

18To make it sound a little less paradoxical, recall that the utility for a low type is higher in the first best.
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this ’one-step-ahead seed’ and the utility promise made after the first period in the actual

mechanism.

This measure is very easy to illustrate in our two period example. The ’one step ahead

seed’ is simply the utilitarian optimum with the relative measures of the two types given

by the probabilities associated with each different type. One important characteristic with

this measure is that it compares the optimal utility promise with another feasible one. As

a consequence, this one step ahead seed can also be used to bound the expected utilities

associated with the optimal allocations.

As expected, our backloading measure is positive for the high productivity individual,

which means that he defers some of his utility to the second period, and negative for

the low productivity individual, meaning that he borrows from future utility. Another

interesting although anticipated aspect is that backloading decreases in absolute value

with persistence.

What is more of a novelty is the way in which backloading varies across states of

nature for the two different levels of risk aversion. While backloading is more intense

in the high state for ρ = 5 it is less intense for the ρ = 1/2. As a consequence, more

redistribution is made using temporary utility in the high state for ρ = 1/2. The practical

consequence is shown in the next set of figures which compare marginal tax rates for the

two cases in the first period. It is apparent that marginal tax rates are larger in the low

state for ρ = 5 and smaller for ρ = 1/2.

The last set of figures deals with the macro consequences of our micro facts. The single

most important aspect is that labor wedges vary with output in the first period, provided

that persistence is not full.

As we have shown they do not vary with current (although they do vary with pre-

vious) output in the second period, but it does vary with past aggregate shock. When

ρ = 1/2 the labor wedge varies in the opposite direction from what has been docu-

mented; see ?. That is, wedges are pro-cylcical. When, however, ρ = 5, labor wedges

are countercyclical, in agreement with the stylized facts about business cycles.

Finally, with regards to asset pricing the representative agent mis-prices both, the risk

free bond and the stock if persistence is not full. The amount of mis-pricing does not

seem to be very important when compared to the absolute size of the returns we are
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considering. Once again, differences in the behavior of a representative consumer when

compared to our model depends on the existence of idiosyncratic risk. Finally note that

the model does generate state varying risk premia, but very similar to what we would

observe with a representative agent.

6 Conclusion

Our numeric exercises show that a countercyclical labor wedge may characterize con-

strained efficient allocations in a dynamic Mirrlees economy. One important aspect of our

findings is that we have imposed complete independence between private and aggregate

shocks. All movements in labor wedges are, thus, endogenously generated.

Asset pricing implications of our economy do not seem to diverge too much from the

aggregate consumer’s one. This result, which is in contrast with Kocherlakota and Pista-

ferri [2007], Kocherlakota and Pistaferri [2008a] and Kocherlakota and Pistaferri [2009],

should be taken with some caution. First, as we have emphasized in the previous para-

graph, the distribution of productivity is independent of aggregate shock, in our model.

Second, we take dividends to be a claim to GDP, a procedure that has been under increas-

ing criticism.

The model presented in the numeric example is very simple with only two periods and

states of the world. There is still much to be done to advance our comprehension of the

intricate relationship between constrained optimal insurance under aggregate uncertainty

and its macroeconomic implications.

This should not be an easy task. As we have shown here, the business cycle move-

ments of labor wedge—at least in the separable iso-elastic preference case— depend on a

form of non-separability that is associated with the presence of memory with respect to

aggregate shocks. In other words, for the model to endogenously produce any interesting

business cycle pattern, constrained efficient allocations must depend on aggregate shocks

in a non-trivial fashion. This type of memory makes it harder to generate a stationary

environment where a solution to a fully dynamic model can be handled with well known

computational techniques.19

19There are some possibilities, though. Using a perpetual life framework, Phelan [1994] focused on show-
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Ours is just another step toward evaluating the potential gains from assessing the

importance of endogenous market incompleteness in understanding macroeconomic pat-

terns. Although our preliminary findings are not quantitatively meaningful, one inter-

esting lesson we get from them is that counter-cyclical business cycle wedges and risk

premia need not suggest inefficiencies in a second best world.
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A Proof of Proposition 3

The first step of our proof is to define a cost minimization program that the efficient

allocation must solve. We then show that, associated with this program is an auxiliary

problem—a finite version of Fernandes and Phelan [2000]—which has a nice recursive

structure which will be used to partially characterize the efficient allocations.

Toward this goal, using Lemma 1, define Qt(zt+1|zt) through

Qt(zt+1|zt) ≡
[

∑
θt+1�θt

µ(θt+1|θt)
u′(c(θt, zt))

u′(c(θt+1, zt+1))

]−1

.

Now consider the cost minimization problem (program P1)

min ∑
zt

Qt(zt)∑
θt

µt
(
θt) [c(θt, zt)− y(θt, zt)

]
subject to

∑ βt−1 ∑
θt

∑
zt

πt(zt)µt
(
θt) [u

(
c(θt, zt)

)
− v

(
y(θt, zt)

θtzt

)]
= w(θ0, z1)
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and

∑
t

βt−1 ∑
θt

∑
zt

πt(zt)µt
(
θt) [u

(
c(θt, zt)

)
− v

(
y(θt, zt)

θtzt

)]
≥

∑
t

βt−1 ∑
θt

∑
zt

πt(zt)µt
(
θt) [u

(
c
(
σ(θt, zt), zt))− v

(
y
(
σ(θt, zt), zt)

θtzt

)]

for all σ ∈ Σ, where Qt(zt) = ∏t
τ=1 Qτ+1(zτ+1|zτ), Q1(z1) = 1 and w(θ0, z1) is the ex-

pected utility associated with an individual with ’seed’ value θ0. Note that we have start

the economy after the realization of first period shock, z1.

Lemma 2 At the optimum, there are no idle resources in any period t, and any state zt.

Proof. Assume that there are idle resources at a given state zt. Split them across agents

in such a way that utility is increased by the same amount for all agents. This reform

is incentive compatible since preferences are additively separable between consumption

and effort. This contradicts welfare maximization.

Lemma 3 If allocation {c, y} solves P0 it also solves P1.

Proof. From Lemma 2, period by period, flow utility is attained in the most efficient, i.e.,

cost saving, way with {c, y}. Thus any possible gain should come from redistribution of

resources across periods. But, Q1(zt) was constructed in the exact way as to make any

possible gains from intertemporal transfers to disappear.

Given the ’price’ process Q1(zt), program P1 has a nice separable structure that we

shall exploit. Hence, in what follows, we shall focus on program P1.

Lemma 4 An allocation is incentive compatible if and only if it satisfies inequalities (13).

Proof. Because our proof is a simple adaptation of Theorem 2.1 in Fernandes and

Phelan [2000] we shall just sketch its steps. First we show that if an allocation satis-

fies (13) then, following any history of past announcements σ
(
θt−1, zt−1) and true his-

tory (θt−1, zt−1), the allocation is incentive compatible after history and announcements((
θt−1, zt−1) , σ

(
θt−1, zt−1)). Suppose that this is not the case, then, following some

((
θt−1, zt−1) , σ

(
θt−1, zt−1))
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it is possible to find a continuation ςt = (θ̃t, ..., θ̃t+s, ...) that yields higher expected utility

than telling the truth. But, in this case, following the strategy of telling the truth until pe-

riod t− 1 and following the continuation strategy ςt yields more utility than truthtelling,

which is a contradiction with the fact that the allocation is incentive compatible. To show

that (6) implies (13) is immediate. Just note that if there were any one period deviation that

yielded more expected utility following any history that occurs with positive probability

(since we are not considering the pure heterogeneity case, this means all finite histories),

then the strategy of only lying at the specific node in which one period deviation is wel-

fare increasing; i.e., yields a larger expected utility than truthtelling. This contradicts the

assumption that (4) is satisfied. To prove the converse we assume that (13) is satisfied for

all (θt, zt) For the last period, this simply amounts to static incentive compatibility. Now

assume that the continuation strategy of telling the truth from period t on delivers higher

expected utility than any other continuation strategy. In this case, (13) guarantees that

the continuation strategy of telling the truth from period t− 1 on delivers more expected

utility than any other continuation strategy starting in period t − 1. Because telling the

truth is optimal in period T, then it is optimal in all periods.

For the preferences defined in Section 3, consider the following transformation of vari-

ables,

u(θt, zt) =
c(θt, zt)1−ρ

1− ρ

and

v(θt, zt) =
y(θt, zt)γ

γθ
γ
t zγ

t
.

It will also be convenient to define

u(θt, zt) =
c(σ(θt, zt), zt)1−ρ

1− ρ

and

v(θt, zt) =
y(σ(θt, zt), zt)γ

γθ
γ
t zγ

t
.

Note that

u(θt, zt) = u(σ(θt, zt), zt)

while

v(θt, zt) =
y(σ(θt, zt), zt)γ

γθ
γ
t zγ

t
= v(σ(θt, zt), zt)

σt(θt, zt)γ

θ
γ
t
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Finally let C(u(θ, z)) = u(θ, z)
1

1−ρ [1− ρ]
1

1−ρ and V(v(θ, z)) = γ
1
γ v(θ, z)

1
γ θz.

The first thing we shall do is to recursively define the expected continuation utility for

an agent with history θt conditional on aggregate history zt+1 as

w(θt−1, zt) = ∑
θt�θt−1

µt

(
θt|θt−1

) [
u(θt, zt)− v(θt, zt) + β ∑

zt+1�zt

π(zt+1)w(θt, zt+1)

]
for t < T and

w(θT−1, zT) = ∑
θT�θT−1

µT

(
θT|θT−1

) [
u(θT, zT)− v(θT, zT)

]
,

for t = T.

Similarly, for θ̄t−1 = (θt−2, θ̄) 6= (θt−2, θ) = θt−1. We then define

ŵ(θt−1, zt) = ∑
θt�θt−1

µt

(
θt|θ̄t−1

) [
u(θt, zt)− v(θt, zt) + β ∑

zt+1�zt

π(zt+1)w(θt, zt+1)

]
for t < T and

ŵ(θT−1, zT) = ∑
θT�θT−1

µT

(
θT|θ̄T−1

) [
u(θT, zT)− v(θT, zT)

]
,

for t = T.

Assuming that the ’seed values’ θ0 are publicly known, and starting from z1 (i.e., using

π(z1) = 1) we may define as in Fernandes and Phelan [2000] an auxiliary problem of the

form:

min ∑
t

∑
θt

∑
zt

Q(zt)
[
C(u(θt, zt))−V(v(θt, zt))

]
subject to

∑
t

βt−1 ∑
θt

∑
zt

πt(zt)µt
(
θt|θ0

) [
u(θt, zt)− v(θt, zt)

]
= w(θ0, z1),

∑
t

βt−1 ∑
θt

∑
zt

πt(zt)µt
(
θt|θ̄0

) [
u(θt, zt)− v(θt, zt)

]
= ŵ(θ0, z1),

and

∑
t

βt−1 ∑
θt

∑
zt

πt(zt)µt
(
θt) [u(θt, zt)− v(θt, zt)

]
≥

∑
t

βt−1 ∑
θt

∑
zt

πt(zt)µt
(
θt) [u(σ(θt, zt), zt)− v(σ(θt, zt), zt)

σt(θt, zt)γ

θ
γ
t

]
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for all σ ∈ Σ, which defines a function ξ(w(θ0, z1), ŵ(θ0, z1)).

Our goal is to characterize as much as possible any solution to this problem. Since any

solution to P1 is also a solution to this problem, this will allow us to partially characterize

the solution to P1.

We start with the period T problem,

min ∑
θT�θT−1

µT

(
θT|θT−1

) [
C(u(θT, zT))−V(v(θT, zT))

]
subject to

∑
θT�θT−1

µT

(
θT|θT−1

) [
u(θT, zT)− v(θT, zT)

]
= w(θT−1, zT),

∑
θT�θT−1

µT

(
θT|θT−1

) [
u(θT, zT)− v(θT, zT)

]
= ŵ(θT−1, zT),

and

u(θT, zT)− v(θT, zT) ≥ u(θT−1, θ̄, zT)− v(θT−1, θ̄, zT)
θ̄γ

θγ
.

The problem is strictly convex and defines a strictly convex value function

ξT(w(θT−1, zT), ŵ(θT−1, zT)).

Assume now that period t problem defines a strictly convex function

ξt(w(θt−1, zt), ŵ(θt−1, zt))

and consider period t− 1 problem,

min

[
∑

θt−1�θt−2

µt−1

(
θt−1|θt−2

)
C(u(θt−1, zt−1))−V(v(θt−1, zt−1))

+ ∑
zt−1�zt−2

Q(zt)ξt(w(θt−1, zt), ŵ(θt−1, zt))

]

subject to

∑
θt−1�θt−2

µt

(
θt−1|θt−2

) [
u(θt−1, zt−1)− v(θt−1, zt−1)

+β ∑
zt−1�zt−2

π(zt)w(θt−1, zt)

]
= w(θt−2, zt−1),
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∑
θt−1�θt−2

µt

(
θt−1|θ̄t−2

) [
u(θt−1, zt−1)− v(θt−1, zt−1)

+β ∑
zt−1�zt−2

π(zt)w(θt−1, zt)

]
= ŵ(θt−2, zt−1),

and

u(θt−1, zt−1)− v(θt−1, zt−1) + β ∑ π(zt)w(θt−1, zt) ≥

u(θt−2, θ̄, zt−1)− v(θt−2, θ̄, zt−1)
θ̄γ

θγ
+ β ∑ π(zt)ŵ(θt−1, zt) .

Once again, this defines a strictly convex problem, which solution we represent with

the strictly convex cost function ξt−1(w(θt−2, zt−1), ŵ(θt−2, zt−1)). Hence, the whole pro-

gram is convex and we can characterize the solution to period t problem by solving the

associated Lagrangian.

Lemma 5 If the allocation is separable in c it is also separable in y.

Proof. Consider first order condition with respect to c(θt, zt),

µ(θt|θt−1)λ(zt)− c(θt, zt)ρµ(θt|θt−1) = ∑ δ(θt, zt|θ̃t)/π(zt)−∑ δ(θ̃t, zt|θt)/π(zt). (16)

Under separability on consumption, the left hand side is

η(zt)
[
µ(θt|θt−1)E[c̃(θt, zt−1)ρ]− c̃(θt, zt−1)ρµ(θt|θt−1)

]
which is separable in zt. Because we have only two types, only one multiplier δ is positive.

Take, then the type which alloation is not envied. Then, the left hand side of (16) is

δ
(
θ̃t, zt|θt) /π(zt) = η(zt)δ̃

(
θ̃t, zt−1|θt

)
/π(zt)

with δ̃(θ̃t, zt−1|θt)/π(zt) independent of zt. Since the first order condition with respect to

y(θt, zt) is

θ
−γ
t

{
µ(θt|θt−1)λ(zt) + δ(θ̃t, zt|θt)/π(zt)

}
= µ(θt|θt−1)zγ

t y(θt, zt)γ−1

Then, the right hand side of the expression above is also independent of zt. Therefore,

y(θt, zt−1, z)γ−1

y(θt, zt−1, ẑ)γ−1 =
η(z)ẑγ

η(ẑ)zγ
.

A similar procedure applies to θ̃ to show that both are separable.
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Lemma 6 If the allocation is separable then η(z) = z
γ

γ+ρ−1 .

Proof. Note that adding the first order conditions with respect to y and using λ(zt) =

E[c(θt, zt−1)ρθt−1]η(zt)ρ we get

E[θ−γ
t |θt−1]E[c(θt, zt−1)ρ|θt−1]

E[y(θt, zt−1)1−γ|θt−1]
η(zt)

ρ = η(zt)
1−γzγ

t ,

which implies η(z) = z
γ

γ+ρ−1 .

Proof. of Proposition 3: Assume that the optimal allocation does not display mem-

ory. This implies that utility promises in τ + 1 are independent of zτ. Define c̃(θt, zt) =

c(θt, zt)/η(zt) and ỹ(θt, zt) = y(θt, zt)/η(zt), with η(z) = z
γ

γ+ρ−1 . Note that due to Lemma

XX, above, if the allocation is separable then both c̃(θt, zt) and ỹ(θt, zt) are not functions

of zt. Next, re-write program P() as

ξ(w(θt−1, zt), ŵ(θt−1, zt)) = min ∑
θt�θt−1

µt

(
θt|θt−1

) [
η(zt)

[
c̃(θt, zt)− ỹ(θt, zt)

]
+ ∑

zt+1�zt

Q(zt+1)ξ(w(θt, zt+1), ŵ(θt, zt+1))

]
subject to

∑
θt�θt−1

µt

(
θt|θt−1

) [
η(zt)

1−ρ

[
c̃(θt, zt)1−ρ

1− ρ
− ỹ(θt, zt)γ

γθ
γ
t

]

+β ∑
zt+1�zt

π(zt+1)w(θt, zt+1)

]
= w(θt−1, zt),

∑
θt�θt−1

µt

(
θt|θ̂t−1

) [
η(zt)

1−ρ

[
c̃(θt, zt)1−ρ

1− ρ
− ỹ(θt, zt)γ

γθ
γ
t

]

+β ∑
zt+1�zt

π(zt+1)w(θt, zt+1)

]
= ŵ(θt−1, zt),

and

c̃
(
θt, zt) 1−ρ

1− ρ
−

ỹ
(
θt, zt) γ

γθ
γ
t

−
[

c̃
(
θt−1, θ, zt)1−ρ

1− ρ
−

ỹ
(
θt−1, θ, zt)γ

γθ
γ
t

]
≥

β

{
∑

zt+1�zt

π(zt+1)
[
ŵ(θt−1, θ, zt+1)− w(θt, zt+1)

]}
η(zt)

ρ−1 (17)
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Under assumption A, (17) holds as an equality for some θt at both aggregate states. The

term in curly brackets in the right hand side of expression (17) is independent of zt since

the allocation is memoryless. But, in this case, the left hand side must depend on zt, mean-

ing that (c(θt, zt), y(θt, zt)) is not separable. However, from Proposition 2, this cannot be

the case.

B Appendix: Mirrlees’ period T allocation

Proof. Consider the problem being analyzed,

max
c,y ∑

t=1,2
βt−1 ∑

θt
∑
zt

π1(zt)µt
(
θt) [ c(θt, zt)1−ρ

1− ρ
− y(θt, zt)γ

γθ
γ
t zγ

t

]
subject to

∑
θt

µt
(
θt) [c(θt, zt)− y(θt, zt)

]
≤ 0

and

∑
t=1,2

βt−1 ∑
θt

∑
zt

πt(zt)µt
(
θt) [ c(θt, zt)1−ρ

1− ρ
− y(θt, zt)γ

γθ
γ
t zγ

t

]
≥

∑
t=1,2

βt−1 ∑
θt

∑
zt

πt(zt)µt
(
θt) [ c(σ(θt, zt), zt)1−ρ

1− ρ
− y(σ(θt, zt), zt)γ

γθ
γ
t zγ

t

]
Suppose that the variable of choice is c̃ and ỹ, but that the actual consumption and

labor implemented in period T are given by cT (.) = c̃T (.) z
γ

γ+ρ−1
T and yT (.) = ỹT (.) z

γ
γ+ρ−1
T ,

since c̃T and ỹT also depend on zT potentially, this change of variable is without loss of

generality. Assume that ct = c̃t and yt = ỹt for t < T. Given that we are in a finite period

model, the incentive compatibility constraint can be written as a restriction that agents do

not lie at period t given any history and that they do not plan to lie from t onwards. Then

the last period incentive compatibility becomes

z
(1−ρ)γ
γ+ρ−1
T

{
c̃(θT−1, θ, zT)1−ρ

1− ρ
− ỹ(θT−1, θ, zT)γ

γθ
γ
T

}
≥

z
(1−ρ)γ
γ+ρ−1
T

{
c̃(θT−1, θ′, zT)1−ρ

1− ρ
− ỹ(θT−1, θ′, zT)γ

γθ
γ
T

}
.
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And the resource constraints turns into

z
γ

γ+ρ−1
T ∑

θT

µt

(
θT
) [

c̃T(θ
T, zT)− ỹT(θ

T, zT)
]
≤ 0.

Then the constraints on c̃ and ỹ do not depend explicitly on the aggregate shock in the last

period. From this and the concavity of the objective function, we get that c̃ and ỹ do not

depend on zT.
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Figure 1: Memory - ρ = 5
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Figure 2: Memory - ρ = .5
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Figure 3: Separability in Consumption
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Figure 4: Backloading - ρ = 5
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Figure 5: Backloading - ρ = .5

-0,4

-0,35

-0,3

-0,25

-0,2

-0,15

-0,1

-0,05

0

Backloading - Low Productivity

-0,45

-0,4

-0,35

-0,3

-0,25

-0,2

-0,15

-0,1

-0,05

0

0 .4 .8

Persistence

Backloading - Low Productivity

Low State High State

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

Backloading - High Productivity

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 .2 .4 .6 .8 1

Persistence

Backloading - High Productivity

Low State High State

46



Figure 6: 1st Period Consumption and Output - ρ = 5
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Figure 7: 1st Period Consumption and Output - ρ = .5
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Figure 8: Labor Supply and Mg Tax Rates - ρ = 5
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Figure 9: Labor Supply and Mg Tax Rates - ρ = .5
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Figure 10: Labor Wedge
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Figure 11: Pricing Kernel: Rep. Agent and True - ρ = 5
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Figure 12: Pricing Kernel: Rep. Agent and True - ρ = .5
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Figure 13: Risk Premium and Pricing Errors - ρ = 5
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Figure 14: Risk Premium and Pricing Errors - ρ = .5
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