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Abstract

In actual sequential auctions, 1) bidders typically incur a cost in continuing from one sale to the
next, and 2) bidders decide whether or not to continue.  To investigate the question "why do
bidders drop out," we define a sequential auction model with continuation costs and an
endogenously determined number of bidders at each sale, and we characterize the equilibria in this
model.  Simple examples illustrate the effect of several possible changes to this model.
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Introduction

Consider the sequential auctioning of several objects one after another.  Existing models of such

sequential auctions exogenously specify the number of bidders in each auction.  But in actual

auctions, bidders may choose to drop out.  How many bidders continue to the next sale may

depend on a variety of auction design factors, including, for example, the reservation prices or the

order in which the remaining objects will be sold.

This suggests a problem in using existing models to compare the expected outcomes of different

types of sequential auctions.  In particular, different types of auctions may attract different numbers

of bidders.  The effect of the difference in the number of bidders needs to be considered in

comparing different types of sequential auctions.  But the existing models specify the number of

bidders exogenously; they do not make the number of bidders adjust appropriately to changes in the

auction.

As an example, consider the auctions of used farm machinery. Often, on retiring, a farmer’s

machinery will be auctioned. The auction occurs on the farm. Between the end of one harvest

season and the beginning of the subsequent planting season, several dozen such auctions may be

held within a one or two hour drive of each other. And a typical, prospective buyer will want to buy

at most one piece of any particular machinery.

At the start of any year’s sequence of such auctions, a prospective buyer typically has very little

information about what will be offered for sale. A few weeks before an auction occurs, it will be

advertised. The advertisement list the equipment to be sold. But obtaining information about the
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what will be offered before this advertisement is often difficult; indeed, the seller may not have

decided to retire until shortly before the advertisement.

Each prospective buyer is thus faced by a sequence of auctions. There is some cost to attend the

next auction. And each prospective buyer must decide whether or not it is worthwhile to continue

attending subsequent auctions. But his decision may depend on factors such as the type of auction

to be used, whether objects will be sold without reserve, and if not, on the reservation price; it

seems unreasonable to assume that such factors can be varied without affecting the number of

bidders in each auction.

The development of single-object auction theory illustrates the problem.  For example, Myerson

[1981] and Riley and Samuelson [1981], among others, ask "what reservation price most benefits

the seller?"  They work with models with a fixed number of bidders.  They conclude that

introducing a non-trivial reservation price benefits the seller.

But, introducing a non-trivial reservation price also makes the auction less attractive to the bidders.

 So, Engelbrecht-Wiggans [1987], McAfee and McMillan [1987], Engelbrecht-Wiggans [1993],

and Menezes and Monteiro (2000), among others, endogenize the number of bidders.  In these

models, at equilibrium, as the auction becomes less attractive to any fixed number of bidders, fewer

bidders will show up and bid.  In such models, introducing a non-trivial reservation price may hurt

the seller.  This suggests that whether a non-trivial reservation price helps or hurts the seller

depends on where the actual auction falls between the two extremes considered by these models.
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The practical reasons for endogenizing the number of bidders in sequential auctions go beyond

those for doing so in single-object auctions.  In both types of auctions, changing the auction design

can affect the number of bidders that enter.  But in sequential auctions, bidders incur some cost to

continue from one sale to another; for example, real bidders typically have non-zero opportunity

costs.  And in sequential auctions, bidders can, and sometimes do, drop out during the sequence. 

So, sequential auctions naturally require models with an endogenously determined number of

bidders.

Sequential auctions also allow for a much richer collection of models than do single-object

auctions.  Questions such as "when in the sequence do bidders acquire information about as yet

unsold objects," "how are the objects' values related," and of course "what do bidders know about

the number of competitors they will face in subsequent sales" simply don't arise in single-object

auctions.  Different answers to these questions result in different models, and the number of bidders

may vary differently in these different models.

This suggests a very practical question:  "Why might bidders choose to drop out?"  In what models

of sequential auctions, or under what conditions, will bidders never choose to drop out?  What

characteristics of actual sequential auctions result in bidders choosing to drop out?

We focus on this question of why bidders might drop out.  To do so, we adapt the model of

Engelbrecht-Wiggans [1994] so that 1) each bidder who continues to the next stage incurs a

continuation cost, and 2) bidders choose between continuing or dropping out after each sale so as

to maximize their net expected profits.  We derive an equilibrium for this model; more precisely, we
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establish conditions such that the equilibrium of Engelbrecht-Wiggans [1994] remains in

equilibrium when we endogenize the number of bidders, and suggest that these conditions can

always be satisfied with appropriate adjustments in the number of bidders or objects going into the

first sale.  We also prove that if the number n of bidders is allowed to take non-integer values, then

at any equilibrium in our model, no bidder ever chooses to drop out.

We also examine our model to see that changes would result in bidders dropping out with positive

probability at equilibrium.  Our model is symmetric or monotonic with respect to several variables. 

Destroying any of these might result in bidders choosing to drop out; we provide a couple of

examples and suggest that there are many others.  But we also consider less obvious changes; in

particular, restricting the number of bidders to be integer can result in bidders choosing to drop out.

Finally, there is a growing empirical and theoretical literature on sequential auctions. For example,

Weber (1983) considers a sequential auction of identical objects and shows that expected prices

follow a martingale i.e., bidders expect prices will remain constant on average throughout the

sequence of auctions within a sale. In Weber's model, bidders only purchase one of a fixed number

of objects. That is, the winner from each round drops out from the auction.

There is, however, empirical evidence that prices are not constant throughout sequential auction

sales. Ashenfelter (1989) reports that identical cases of wine fetch different prices at sequential

auctions in three auction houses from 1985 to 1987. Although the most common pattern was for
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prices to remain constant, prices were at least twice as likely to decline as to increase. Ashenfelter

refers to this phenomenon as the “price decline anomaly.''

McAfee and Vincent (1993) adopted a similar approach to Ashenfelter and examined data from

Christie's wine auctions at Chicago in 1987. In addition to pairwise comparisons, they examined

triples of identical wine sold in the same auction sale. Their results are very similar to those of

Ashenfelter.

Similar empirical findings were identified in a number of other markets; cable television licenses

(Gandal (1995); condominiums (Ashenfelter and Genesove (1992), and Vanderporten (1992-a,b);

dairy cattle (Engelbrecht-Wiggans and Kahn (1992)); stamps (Taylor (1991) and Thiel and Petry

(1990)) and wool (Jones, Menezes and Vella (1998)). Gandal provides evidence that prices

increased in the sale of cable-TV licences in Israel. Gandal attributes the price increases to the

interdependencies among licenses that may increase competition in the later rounds of the sale.

Jones, Menezes and Vella indicate that prices may increase or decrease in sequential auctions of

wool (adjusting prices to estimate wool of homogeneous quality).

Most theoretical explanations for the price decline anomaly have concentrated on models where the

winner of each round drops out from the auction. For example, McAfee and Vincent explain the

anomaly by considering the effects of risk aversion on bidding strategies. For identical objects they

show how bids in the first round are equal to the expected prices in the second round plus a risk

premium associated with the risky future price. They assume buyers have nondecreasing risk

aversion and can only buy one object.
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Von der Fehr (1994) uses participation costs to obtain different net valuations for identical objects.

When bidders face a cost of participating in each auction of two identical objects sold sequentially,

price is lower in the second auction than it is in the first. This follows because the number of buyers

who stay for the second auction falls by more than the successful bidder in the first auction. Once

again, buyers only buy one object. This is also the case of Engelbrecht-Wiggans (1994) and

Bernhardt and Scoones (1994) who show how expected prices decline when the objects are

statistically identical (i.e., where bidders' valuations for the objects are independent draws from a

fixed distribution) and the distribution of values is bounded. An exception is Menezes (1993-a) who

allows losing bidders to drop out as well.

In this paper we provide a sufficient condition such that losing bidders do not drop out. That is, we

provide a sufficient condition under which Weber type models, where the winner drops out at the

end of each round, are appropriate even when we allow losing bidders to drop out at the end of

each round.

The Basic Model

Imagine that (m ≥ 2) objects will be sold one after another in a sealed-bid second-price auction as

defined by Vickrey [1961].  Initially, there are nm-1 expected profit maximizing potential bidders;

the "-1" simplifies subsequent expressions.  Let s index the sales, with s equal to zero for the last

sale; think of s as "sales remaining."  For s=m-1, ..., 0, let ns denote the number of bidders who bid

in sale s, and define  n=(nm, nm-1, ... , n0).  Each bidder may win at most one object; the winner must
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drop out.  In addition, once a bidder skips a sale, that bidder may not bid in any subsequent sale. 

So, after the first sale, the number of bidders drops by at least one per sale.  Specifically, ns-1 ≤ ns-1

for s = 1, 2, ... , m.

Each bidder who bids in sale s incurs a continuation cost cs.  This, especially for  s=m-1, may be

thought of as an entry cost, and might reflect the opportunity cost of time to be spent at a sale, any

bid preparation costs, the cost - if the sales are spatially distributed - to travel to this sale, and any

other costs incurred by a bidder.  Also, for our purposes - since we do not examine the sellers' or

auctioneer's expected revenue - any entry fee paid to the sellers and/or the auctioneer may be

lumped into this continuation cost.  Assume that cm-1 ≥ cm-2 ≥ ... ≥ c0.  A special case of this arises if

bidders incur one cost to enter the sequence of auctions, and then incur another, constant cost on

entering each sale.

Let X(i,s) denote a random variable with outcome x(i,s).  Bidder i has a value of x(i,s) for the

object in sale s.  (For notational simplicity, define X(i,s) for each i and s even though some bidders i

may not actually bid in sale s.)  Assume symmetry - but not independence - across bidders; more

precisely, the joint distribution of X(1,s), X(2,s) , ... , X(nm,s) is symmetric in its arguments.  Also

assume that for each i, X(i,m),..., X(i,2), X(i,1), are identically and independently distributed.  Next,

assume that bidder i knows x(i,s) when bidding in sale s, but does not yet know x(i,s - 1), x(i,s - 2),

... , x(i,0).  Finally, assume that all bidders know the joint distribution of the X(i,j)'s.

These assumptions impose quite a bit of structure.1  In particular, together with a subsequent

assumption on the process by which bidders might leave, they imply that ex-ante to each auction,



9

the remaining bidders are stochastically equivalent.  In addition, they imply that each remaining

bidder views each of the remaining objects as being stochastically equivalent.2

The model presumes a particular order of events which repeats itself sale after sale.  In the

beginning, there is a pool of nm-1 potential bidders, each of whom must decide whether or not to

bid in sale m-1.  Of these, nm-1 enter the first sale.  (The process that determines how many of the

potential bidders actually continue will be defined below.)  Then each bidder incurs the continuation

cost cm-1.  Next, each bidder i learns his or her private value x(i, m-1) for the first object.  Now the

auction proceeds, and a winner and price are determined.  The winner pays up and drops out.  This

is the end of sale m-1.  Then, going into sale s-1 (1 ≤ s ≤ m-1) there is some new, smaller, number

ns-1 of potential bidders, of whom ns-1 actually enter, each incurring the continuation cost cs-1.  And

the process continues as before until the end of sale s=0.

In many ways, the farm auction example illustrates our model. Our model assumes a finite number

of sales; sooner or later, a prospective buyer of used farm machinery runs out of chances to buy.

There is a cost associated with participating in an auction; a prospective buyer must travel to the

auction site. There is only one object per auction; for example, a prospective buyer wants only to

buy a combine, each sale offers at most one combine, and the prospective buyer can determine

what sales offer a combine from their advertisements. A prospective buyer has no specific

information about what will be offered for sale until it is actually offered; a prospective buyer

cannot inspect the condition of a particular piece of machinery except at the auction site shortly

before the auction commences. Ex-ante to acquiring specific information, all objects are

stochastically equivalent; for example, the sales are not ordered so that the better used combines
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will be sold on earlier dates than the less good used combines. Our model assumes independent

private values; a prospective buyer’s value for acquiring a particular type of machinery depends on

what machinery he or she currently owns and on its condition, the current overall market for used

equipment is well known, the average quality of machinery that will be offered is well known, an

the cost to resell such equipment is relatively large compared to any allocation inefficiencies arising

from the auction.

We do not mean to claim that our model exactly reflects the farm machinery auctions, nor that our

model only applies to farm machinery auctions; rather, we simple claim that our model, despite its

specialized nature, captures the flavor of certain actual auctions.

Endogenizing the Number of Bidders

To endogenize the number of bidders, we must model the framework within which losing bidders

decide whether or not to continue.  Specifically, we assume that bidders make their decisions one

by one with full information of the decisions made by others.  For example, given appropriate

monotonicity of profits in the number of bidders, bidders could leave one by one until those who

remain can all profit from continuing.  If the losing bidders are stochastically equivalent, the order

of the bidders in this process doesn't affect the number that continue.  We assume that the order of

bidders is randomly chosen; this preserves the stochastic equivalence of the bidders.

These assumptions have three important, immediate consequences.  First, since the losing bidders

are stochastically equivalent, we need keep track only of the number of losing bidders who choose
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to continue.  Second, the stochastic equivalence of bidders together with the assumption of full

information assures that the number of bidders changes deterministically from sale to sale.  In

particular, any specific equilibrium uniquely defines the numbers nm-1, nm-2, ... , n0 of bidders in each

sale; together with the initial number nm-1 of potential bidders, this uniquely defines the vector n.  In

short, each equilibrium has associated with it a unique vector n; later, in an example, we examine a

different set of assumptions, assumptions such that an equilibrium defines a non-degenerate

stochastic process for the number of bidders.

For the third consequence, look at the process from an individual losing bidder's perspective.  Since

the order in which the bidders make their decisions is random, each of the losing bidders in sale s

has an equal chance of being one of the ns-1 who continues.  So, each of the ns -1 losing bidders in

sale s perceives that he or she has a  ns-1/(ns-1) chance of being one of the ns-1 bidders who

continues.

Realistically, the number of bidders ns must be integer.  Unfortunately, this integrality complicates

the analysis.  Instead, we allow the ns's to be real valued.  We will argue that at equilibrium, this

implies that if any losing bidders drop out, the ns bidders who do continue to sale s each have

exactly zero net expected profit from the remaining sales.3  Later, in an example, we illustrate the

effect of this assumption.

Expected Profits at Equilibrium
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Consider how the expected profit to bidders at various points in the auction must be related at

equilibrium.  We consider only perfect - in this case, iterated-dominant-strategy - equilibria. 

Imagine that such an equilibrium exists; this together with the number nm-1 of potential bidders

defines n.

Start with the last sale.  It looks just like a single object auction with n0 bidders, and each of the

bidders has the dominant strategy of bidding equal to his or her known value xi, s = 0.  When each

bidder follows this strategy , then the n0 bidders each has an ex-ante net expected profit equal to n0

(π(n0)-c0), where π(n) denotes the expected profit per bidder at the dominant strategy equilibrium

in a single-object privately-known-values auction without entry costs.4  Assume that π(n) decreases

as n increases - this is true in most privately-known-values models - and thus (π(ns)-cs) decreases as

s increases.  Also assume that π(1) ≥ c0; if not, no bidder would be willing to bid in the last - or any

other - sale.

Now, let ∏ (n, s) denote the net expected profit from sales s-1, s-2, ... 0 to each losing bidder in

sale s at the end of sale s.  (For s=m, interpret ∏ (n, m) as the net expected profit from all the sales

to each of the nm-1 potential bidders.)  At the end of sale s=1, each of the n1-1 losing bidders has an

equal chance at the combined net expected profit in the last sale.  So, ∏ (n,s=1) = (n0/(n1-1)) (π(n0)-

c0).  Knowing this, each bidder in sale s=1 has the dominant strategy to bid ∏ (n, s=1) less than his

or her privately known value for the object in this sale, and the combined net expected profit - from

this and all remaining sales - to the n1 bidders who enter this sale equals n1[(π(n1)-c1 + ∏ (n,1)]. 

Continuing this process yields the following:
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∏ (n,s) = (ns-1/(ns-1)) [(π(ns-1) - cs-1)

+ (ns-2)/(ns-1-1)) [(π(ns-2)-cs-2)

+ ... ] ... ] for s = 1, ... , m.

An Example

Consider a simple, specific example that satisfies all the assumptions of the basic model.  This

example illustrates what the equilibrium looks like; subsequent propositions formalize these

characterizations.  This example also provides a reference point for our subsequent examples,

examples illustrate the effect of various possible changes to the basic model.

Example 1:  Five expected profit maximizing potential bidders face a sequence of two sales. 

Assume that π(n) = 1/(n(n+1)) for all n > 0.  (This would be the case for integer n ≥ 2 if the bidders'

privately-known values for the objects are independent - across both bidders and sales - samples

from a uniform distribution on [1, 2] and the objects will be sold without reserve; it also holds for

n=1 if that lone bidder faces an appropriate reservation price.)  Assume c1 = c0 = 0.09.

To solve this example, start with sale s=0.  Assume each bidder follows the dominant strategy of

bidding equal to his or her value for the object.  Then, ex-ante, each of the n0 bidders has a net

expected profit of π(n0) - 0.09.  At equilibrium, this must be non-negative, and so n0 ≤ 2.795+.

Now look at sale s=1.  At the iterated-dominant-strategy equilibrium, each bidder bids (n0/(n1-1))

(π(n0) - 0.09) less than his or her value for the object in sale s=1.  So each of the n1 bidders has an
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ex-ante net expected profit of (π(n1)-0.09) + (n0/(n1-1)) (π(n0) - 0.09) from the two sales.  At

equilibrium, this must be non-negative.

Two cases need to be considered.  In the first, n0 = 2.795+ and therefore n1 ≥ 3.795+.  This forces

the ex-ante net expected profit for the two sales together to be negative, and thus this case can't

occur at equilibrium.  In the second case, n0 < 2.795+ and this can happen only if n1 = n0 + 1.  In this

case, the ex-ante net expected profit from two sales is non-negative if and only if n1 ≤ 3.480+ .

Thus, at (the unique perfect) equilibrium to this first example, 3.480+ of the 5 potential bidders bid

on the first object, and 2.480+ continue to the last sale.  In particular, only the winner in the first sale

drops out.  A subsequent proposition establishes that this must be true at any equilibrium to the

basic model.

A Necessary Condition for Equilibrium

At equilibrium, bidders act in their own best interests.  So, at any (perfect) equilibrium, each of the

bidders entering a sale must have a non-negative expected profit from doing so.  This implies that

∏ (n,s) ≥ 0 for s = m, m-1, ... , 1.

In addition, no bidder who drops out at equilibrium can have a positive expected profit from

continuing.  In particular, if someone chooses to drop out, then there exists an s*, 1 ≤ s* ≤ m, and a
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δ > 0 such that ns*-1 ≤ ns*-1-δ.  For 1 ≤ s ≤ m, define n(s,δ) = (nm, ... , ns, ns-1 + δ, ns-2, ... , n0); this is

the number of bidders that would result if δ (or a fraction δ of one bidder) were to continue one

sale longer than in the equilibrium.  At equilibrium, these δ bidders could not have a positive

expected profit from continuing.  This implies that ∏ (n(s*,δ),s*) ≤ 0. Now let δ decrease to zero. 

Then the two above conditions together imply that at equilibrium, if there exists an s* (1  ≤ s* ≤ m)

such that ns*-1 < ns*-1, then ∏ (n,s*) = 0.  In short, if any losing bidders drop out, then the

continuing bidders must have zero expected profit from continuing.5  This gives us the following:

Proposition 1:  At any perfect equilibrium to our model, all losing bidders in each sale

continue to the next (if there is one.)  Specifically, ns-1=ns-1 for s=m-1, m-2, ..., 1.

Proof:  By contradiction, imagine that for m objects and a pool nm of potential bidders, there exists

an equilibrium resulting in nm-1, nm-2, ... , n0 bidders bidding in sales m-1, m-2, ... , 0 such that for

some s* (1 ≤ s* ≤ m-1), ns*-1 < ns*-1.  Thus ∏ (n,s*)=0.  But since (π(ns)-cs) decreases as s

increases, ∏ (n,s*) can be zero only if π(ns*-1) - cs*-1 < 0, and so π(ns*) - cs* must also be negative. 

Write ∏ (n,s*+1) = (ns*/(ns*+1-1)) [(π(ns*) - cs*) + ∏ (n,s*)]).  The first term in the square brackets is

negative and the second is zero.  Thus, the total expression is negative, which can't happen at

equilibrium.  So, no such equilibrium can exist.

This necessary condition that ns-1 = ns - 1 for s = m-1, m-2, ..., 1 simplifies the expected profit

expression ∏ (n,s).  In particular, n0 now completely determines n for any fixed number nm-1 of

potential entrants; to emphasize this, we now write ∏ (n0,s) in place of ∏  (n,s).  And, appropriate

use of the necessary condition yields ∏ (n0,s) = ∑ k=0, 1, ... , s-1(π(n0+k)-ck) for s = m, m-1, ... , 1.
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This function has three noteworthy properties.  One, since π(n) decreases as n increases, ∏ (n0,s)

decreases as n0 increases.  Two, since (π(nk)-ck) decreases as k increases, ∏ (n0,s) is concave in s. 

And three, since π(1) ≥ c0, ∏ (n0=1, s=1) ≥ 0.

Construction of an Equilibrium

We now construct an equilibrium.  More precisely, we establish conditions such that the iterated-

dominant-strategy equilibrium of Engelbrecht-Wiggans [1994] for sequential auctions with

exogenously specified number of bidders will still be an equilibrium in our adaptation of that model.

 In this equilibrium, only the winning bidders drop out.

To establish the desired conditions, we start by defining sales and bidder capacities for sequential

auctions.  Then we derive the necessary conditions for an equilibrium in terms of these capacities. 

Finally, we discuss how an equilibrium can be constructed for cases not satisfying these conditions.

In particular, for any sequential auction, define the sales capacity m* = max{s st ∏ (1,s)≥0}. 

Property 3 above assures that m* exists and that m* ≥ 1.  Property 2 assures that ∏ (1,s) ≥(<) 0 for

s ≤ (>) m*.  In particular, ∏ (1,m*) ≥ 0.  Intuitively, m* is the maximum number of objects so that

if the auction starts with as many bidders as objects, no loser would ever benefit from dropping out

and thus, in the end, no object would be left without anyone bidding for it.
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For any sales capacity m* and any actual number of objects m, define the bidder capacity n* =

max{n st ∏ (n,min{m,m*}) ≥ 0}.  Note that ∏ (1,m*) ≥ 0 implies that n* exists and that n* ≥ 1. 

Property 1 above assures that ∏ (n,m*) ≥ (<) 0 for  n ≤ (>) n*.  This together with property 2

yields the following condition:

∏ (n,s) ≥ 0 for all n ≤ n* and s ≤ m* (*).

Intuitively, n*-1 is the maximum number of excess bidders - bidders in excess of the number of

objects to be sold - that the auction can accommodate without some losing bidder dropping out at

some point (or some potential bidding not entering into the auction).  This suggests the following

proposition:

Proposition 2:  If the number m of objects to be sold is at most the capacity m* and the

number nm-1 of potential bidders is at most n*+m-1, then there exists an iterated dominant

strategy equilibrium in which everyone who may bid chooses to bid.

Proof:  Set n = (nm, nm-1, ... , nm-m).  Thus n0 = nm - m ≤ n*.  Condition (*) above then assures that

∏ (n,s) ≥ 0 for s = m, m-1, ... , 0, and so no losing bidder ever wants to drop out.  In particular, the

iterated-dominant-strategy equilibrium defined by Engelbrecht-Wiggans [1994] remains an

equilibrium even though bidders may drop out.

This proposition also suggests an equilibrium for cases with too many potential bidders and/or too

many objects.  If m > m*, then some objects will see no bidders.  Throw away (the last) m-m*

objects.  If nmin{m*,m} exceeds n*+min{m*,m}, then not all of the potential bidders will enter the

auction.  These adjustments yield an auction with an equilibrium in which no losing bidder will drop
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out, and in which all the objects will be bid on.  Note that if the numbers of bidders must be integer,

then the results of this section still hold, but there might also be equilibria in which losing bidders

choose to drop out.

Why Losing Bidders Drop Out

Now let us examine why losing bidders might drop out.  In our basic model, they don't.  But, any

one of several changes to the basic model introduces factors that can result in losing bidders

dropping out.  We illustrate the possibilities through appropriate examples.

The following two examples illustrate the effect of changing the assumptions on the process by

which losing bidders decide whether or not to continue.  Example 2 restricts the number of bidders

that continues to be integer, while example 3 alters the assumption of full information about others'

decisions.  Either change can result in equilibria in which some losing bidders drop out; the first

proposition no longer holds.

Example 2:  Everything is the same as in example 1 except that now the numbers n0 and n1 of

bidders must be integer.

To solve this example, proceed as before.  Rounding down the previous 2.795+ gives that at

equilibrium, n0 ≤ 2.  If n0<2, then n1=n0 + 1<3, and at least one additional bidder would want to

enter into sale s = 1; there can be no equilibrium with n0 < 2.  Then, if n0 = 2, each of these bidders

in sale s = 0 has an ex-ante net expected profit of 0.07666... and all five of the potential bidders will

choose to enter sale s = 1.
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Thus, at (the unique perfect) equilibrium to this second example two losing bidders chose to drop

out after the first sale.  The intuition goes as follows:  Rounding down the number of bidders in sale

s = 0 increases the expected profit per bidder from that sale.  This increases the bidders' expected

profit for the two sales combined, and sale s = 1 can now support more bidders.  And in example 2,

the increase is large enough so that, after rounding down n1, n1 - 1 still exceeds n0.  But if the

continuation cost were 0.11, only three of the five potential bidders would enter sale s = 1 and both

losing bidders would continue to sale s = 0.  The parameters must be balanced just so to get losers

to drop out.

Example 3:  Everything is the same as in example 1 except for the process by which bidders chose

to drop out.  In particular, assume that each losing bidder in sale s chooses a probability ps and then

continues to sale s-1 with this probability.

To solve this example, again work backwards from sale s = 0.  We consider only the symmetric

equilibrium and thus assume that all the potential bidders choose the same value for ps.  If there are

at most two potential bidders, then they will all continue with probability one.  If there are three or

more potential bidders, then at (any perfect) equilibrium, then ps must be less than one, and each

potential bidder must be indifferent between continuing and dropping out.  In particular, for three

potential bidders, each of the three bidders has an expected profit of [ps
2 (1/12) + 2 ps(1-ps) (1/6) +

(1-ps)
2 (1/2)] - 0.09 from continuing, and this must be equal to the zero expected profit from

dropping out.  Solving this quadratic equation yields ps = 0.9621+; similarly, for four potential

bidders, ps is the appropriate root of a cubic equation.
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Now look at sale s = 1.  If all five potential bidders were to bid with probability one, there would be

four potential bidders for sale s = 0, each of which would have zero expected profit from sale s = 0.

 So, in sale s = 1, each of the five bidders would have the dominant strategy of bidding equal to

their value, which would net each of them an ex-ante expected profit of 1/30 - 0.09 from the two

sales combined.  This is negative.  Thus, the five bidders can't all bid with probability one.  In fact,

at equilibrium, ps=1 < 1; the actual calculations are quite involved, and we refer the interested reader

to Menezes [1993-b] for the details.

So, in example 3, an equilibrium implicitly defines a stochastic process for the vector n.  An integer,

but possible random, number of bidders continue from one stage to the next.  For example, there is

a positive probability of five bidders in sale s = 1 and zero bidders in sale s = 0;  all of the maximum

possible number of losing bidders might drop out.  In sequences of more than two sales, there may

be several sales in which some losing bidders drop out.  But all the dropping out of losing bidders

can be interpreted as a random adjustment process toward a sufficiently small number of continuing

bidders.

In the above three examples, π(ns) - cs is monotonically non-increasing in s.  We used this

monotonicity in the proof of the first proposition.  The next two examples illustrate different

changes to the basic model assumptions that underlie this monotonicity; either change can result in

equilibria in which losing bidders drop out.
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Example 4:  Everything is as in example 1 except that the objects are no longer stochastically

equivalent.  In particular, let the object in sale s = 1 be one hundred times as valuable as before; the

bidders' values for this object are now independent samples distributed uniformly on the interval

[100, 200].

Example 5:  Everything is as in example 1 except that the continuation costs increase as s

decreases.  In particular, let c1 = 0 (and c0 = 0.09 as before).

To solve these examples, start with sale s = 0.  It looks just like sale s = 0 in example 1.  But now in

examples 4 and 5, all five potential bidders will actually bid in sale s = 1.  So, 4 - 2.795+ = 1.205-

losing bidders (4 - 2 = 2, if the numbers must be integer) drop out after sale s = 1.  In both

examples, the condition that ns+1 ≥ ns + 1 for all s no longer suffices to make π(ns) - cs a

monotonically non-increasing function of s.  This illustrates that if, for whatever reason, early sales

offer objects with a sufficiently higher value (net of continuation costs) than do later sales, losing

bidders may drop out at equilibrium.

These two examples destroy an essential symmetry or monotonicity of our model.  Of course, there

are many other ways to destroy the symmetry.  Each of these, if taken to a sufficient extreme, might

result in losing bidders dropping out.  To illustrate, consider our assumption that bidders learn their

values for an object just before the object is offered for sale.  This helped make the remaining

objects stochastically equivalent both across objects and across bidders.



22

Alternatively, the model might assume that bidders know something about their values for an object

earlier.  Possibly, a potential bidder knows the value for the next object to be sold before he or she

must decide whether or not to continue.  Or, bidders know something about each object relatively

early in the sequence.  Either possibility can result in different bidders having different expected

values from continuing.  Now, with positive probability, a losing bidder might perceive the

remaining objects to be of low enough value that he or she decides to drop out.

Conclusion

Bidders might drop out of a sequential auction for a variety of reasons.  In our basic model, there

can be no equilibrium at which losing bidders decide to drop out, and equilibria do exist.  But any

one of several changes to the model can result in bidders dropping out at equilibrium; our examples

illustrate several possibilities, and there are many others.
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Footnotes

1. Despite this degree of structure, Engelbrecht-Wiggans and Kahn [1992] show that this

model with only the winner dropping out can be parameterised to fit actual sequential

auction data.

2. The stochastic equivalence of the remaining objects makes the analysis tractable, but is not

without its limitations.  Engelbrecht-Wiggans [1994] and Bernhardt and Scoones (1994)

discuss this assumption in more detail.  We will illustrate the effects of relaxing it later.

3. We need this zero profit condition.  If the number of bidders were restricted to be integer,

this condition would not hold, and as a subsequent example illustrates, our first proposition

may be false.

4. Engelbrecht-Wiggans [1993] shows that for n > 1 in sales without reserve, this π(n) equals

v(n) - v(n-1), where v(n) denotes the expected social value E{max{X(1,s), X(2,s), ... ,

X(n,s)}].  In particular, π(n) depends on the distribution of the X(i,s)'s.  In the case of a

single bidder, π(n) presumably equals the amount by which the bidder's expected value for

the object exceeds the reservation price.

5. If the number of bidders must be an integer, then δ must be a positive integer, and ∏ (n,s*)

may be strictly positive.
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