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Why do biddersdrop out from a sequential auction*

Richard Engelbrecht-Wiggans
Department of Business Administration
University of Illinois at Urbana-Champaign

Havio M. Menezes
EPGE/FGV
Graduate School of Economics
Getulio Vargas Foundation

ThisVerson: January 26, 2000

Abstract

In actua sequentia auctions, 1) bidders typicaly incur a cost in continuing from one sde to the
next, and 2) bidders decide whether or not to continue. To investigate the question "why do
bidders drop out,” we define a sequential auction model with continuation costs and an
endogenoudy determined number of bidders at each sde, and we characterize the equilibriain this
modd. Simple examplesillustrate the effect of severd possible changesto this modd.
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Introduction

Consder the sequentia auctioning of severa objects one after another. Existing models of such
sequentia auctions exogenoudy specify the number of bidders in each auction. But in actud
auctions, bidders may choose to drop out. How many bidders continue to the next sale may
depend on a variety of auction design factors, including, for example, the reservation prices or the

order in which the remaining objects will be sold.

This suggests a problem in using existing models to compare the expected outcomes of different
types of sequentia auctions. In particular, different types of auctions may attract different numbers
of bidders. The effect of the difference in the number of bidders needs to be consdered in
comparing different types of sequential auctions. But the existing modes specify the number of
bidders exogenoudly; they do not make the number of bidders adjust appropriately to changesin the

auction.

As an example, congder the auctions of used farm machinery. Often, on retiring, a farmer’s
machinery will be auctioned. The auction occurs on the farm. Between the end of one harvest
season and the beginning of the subsequent planting season, severad dozen such auctions may be
held within aone or two hour drive of each other. And atypical, prospective buyer will want to buy

at most one piece of any particular machinery.

At the start of any year's sequence of such auctions, a prospective buyer typicaly has very little
information about what will be offered for sdle. A few weeks before an auction occurs, it will be

advertised. The advertisement list the equipment to be sold. But obtaining information about the



what will be offered before this advertisement is often difficult; indeed, the sdler may not have

decided to retire until shortly before the advertisement.

Each prospective buyer is thus faced by a sequence of auctions. There is some cogt to attend the
next auction. And each prospective buyer must decide whether or not it is worthwhile to continue
attending subsequent auctions. But his decison may depend on factors such as the type of auction
to be used, whether objects will be sold without reserve, and if not, on the reservation price; it
seems unreasonable to assume that such factors can be varied without affecting the number of

bidders in each auction.

The development of single-object auction theory illustrates the problem. For example, Myerson
[1981] and Riley and Samuelson [1981], among others, ask "what reservation price most benefits
the sdler?” They work with models with a fixed number of bidders. They conclude that

introducing anon-trivial reservation price benefits the seller.

But, introducing a non-trivial reservation price aso makes the auction less attractive to the bidders.
So, Engelbrecht-Wiggans [1987], McAfee and McMillan [1987], Engelbrecht-Wiggans [1993],
and Menezes and Monteiro (2000), among others, endogenize the number of bidders. In these
models, at equilibrium, as the auction becomes less attractive to any fixed number of bidders, fewer
bidders will show up and bid. In such models, introducing a non-trivia reservetion price may hurt
the sdller.  This suggests that whether a non-trivial reservation price helps or hurts the sdler

depends on where the actua auction fals between the two extremes considered by these models.



The practical reasons for endogenizing the number of bidders in sequentia auctions go beyond
those for doing so in single-object auctions. In both types of auctions, changing the auction design
can affect the number of bidders that enter. But in sequential auctions, bidders incur some cost to
continue from one sde to another; for example, red bidders typicdly have non-zero opportunity
costs. And in sequentia auctions, bidders can, and sometimes do, drop out during the sequence.

S0, sequentid auctions naturaly require modes with an endogenoudy determined number of

bidders.

Sequentiad auctions aso alow for a much richer collection of models than do single-object
auctions. Questions such as "when in the sequence do bidders acquire information about as yet
unsold objects," "how are the objects values related,” and of course "what do bidders know about
the number of competitors they will face in subsequent sales’ smply don't arise in sSingle-object
auctions. Different answersto these questions result in different models, and the number of bidders

may vary differently in these different models.

This suggests a very practical question: "Why might bidders choose to drop out?' In what models
of sequential auctions, or under what conditions, will bidders never choose to drop out? What

characteristics of actual sequentid auctions result in bidders choosing to drop out?

We focus on this question of why bidders might drop out. To do so, we adapt the mode of
Engel brecht-Wiggans [1994] so that 1) each bidder who continues to the next stage incurs a
continuation cogt, and 2) bidders choose between continuing or dropping out after each sale so as

to maximize their net expected profits. We derive an equilibrium for this model; more precisely, we



edtablish conditions such that the equilibrium of Engelbrecht-Wiggans [1994] remains in
equilibrium when we endogenize the number of bidders, and suggest that these conditions can
aways be satisfied with appropriate adjustments in the number of bidders or objects going into the
first sde. We dso prove that if the number n of biddersis alowed to take non-integer values, then

at any equilibrium in our model, no bidder ever chooses to drop out.

We aso examine our model to see that changes would result in bidders dropping out with positive
probability at equilibrium. Our model is symmetric or monotonic with respect to severd variables.

Destroying any of these might result in bidders choosing to drop out; we provide a couple of
examples and suggest that there are many others. But we aso consider less obvious changes; in

particular, restricting the number of biddersto be integer can result in bidders choosing to drop out.

Findly, there is a growing empirical and theoretica literature on sequentia auctions. For example,
Weber (1983) consders a sequentid auction of identical objects and shows that expected prices
follow a martingde i.e., bidders expect prices will remain constant on average throughout the
sequence of auctions within a sale. In Weber's mode, bidders only purchase one of afixed number

of objects. That is, the winner from each round drops out from the auction.

There is, however, empirical evidence that prices are not constant throughout sequential auction
sdes. Ashenfelter (1989) reports that identical cases of wine fetch different prices at sequentia

auctions in three auction houses from 1985 to 1987. Although the most common pattern was for



prices to remain constant, prices were at least twice as likely to decline as to increase. Ashenfelter

refersto this phenomenon as the “ price decline anomaly.”

McAfee and Vincent (1993) adopted a smilar gpproach to Ashenfelter and examined data from
Chrigtie's wine auctions at Chicago in 1987. In addition to pairwise comparisons, they examined
triples of identical wine sold in the same auction sdle. Ther results are very smilar to those of

Ashenfelter.

Smilar empirica findings were identified in a number of other markets, cable televison licenses
(Ganda (1995); condominiums (Ashenfelter and Genesove (1992), and Vanderporten (1992-a,b);
dairy cattle (Engelbrecht-Wiggans and Kahn (1992)); stamps (Taylor (1991) and Thiel and Petry
(1990)) and wool (Jones, Menezes and Vedla (1998)). Gandal provides evidence that prices
increased in the sde of cable-TV licences in Israd. Ganda attributes the price increases to the
interdependencies among licenses that may increase competition in the later rounds of the sde.
Jones, Menezes and Vela indicate that prices may increase or decrease in sequentia auctions of

wool (adjusting prices to estimate wool of homogeneous qudlity).

Most theoretical explanations for the price decline anomay have concentrated on models where the
winner of each round drops out from the auction. For example, McAfee and Vincent explain the
anomaly by considering the effects of risk averson on bidding Strategies. For identical objects they
show how bids in the first round are equal to the expected prices in the second round plus a risk
premium associated with the risky future price. They assume buyers have nondecreasing risk

averson and can only buy one object.



Von der Fehr (1994) uses participation costs to obtain different net valuations for identical objects.
When bidders face a cost of participating in each auction of two identical objects sold sequentidly,
priceislower in the second auction than it isin the first. This follows because the number of buyers
who stay for the second auction fals by more than the successful bidder in the first auction. Once
again, buyers only buy one object. This is dso the case of Engebrecht-Wiggans (1994) and
Bernhardt and Scoones (1994) who show how expected prices decline when the objects are
gatisticaly identical (i.e., where bidders vauations for the objects are independent draws from a
fixed distribution) and the distribution of valuesis bounded. An exception is Menezes (1993-a) who

alowslosing biddersto drop out aswell.

In this paper we provide a sufficient condition such that losing bidders do not drop out. That is, we
provide a sufficient condition under which Weber type models, where the winner drops out at the
end of each round, are appropriate even when we alow losing bidders to drop out at the end of

each round.

TheBasic Model

Imagine that (m 3 2) objects will be sold one after another in a sedled-bid second-price auction as
defined by Vickrey [1961]. Initidly, there are n.-1 expected profit maximizing potential bidders;
the "-1" smplifies subsequent expressons. Let s index the sales, with s equd to zero for the last
sde; think of sas"salesremaining.” For ssm-1, ..., O, let ns denote the number of bidders who bid

insdes, and define n=(Nm, N, ... , No). Each bidder may win a most one object; the winner must



drop out. In addition, once a bidder skips a sale, that bidder may not bid in any subsequent sde.
So, dfter the firgt sale, the number of bidders drops by at least one per sale. Specificdly, ng1 £ ne1

fors=1,2,..,m.

Each bidder who bids in sdle s incurs a continuation cost ¢, This, especidly for s=m-1, may be
thought of as an entry cost, and might reflect the opportunity cost of time to be spent at a sale, any
bid preparation costs, the cost - if the sales are spatially distributed - to travel to this sde, and any
other costs incurred by a bidder. Also, for our purposes - since we do not examine the sellers or
auctioneer's expected revenue - any entry fee paid to the sdlers and/or the auctioneer may be
lumped into this continuation cost. Assumethat Cna® Cnz 3 ... 3 Co. A Specid case of thisarisesif
bidders incur one cost to enter the sequence of auctions, and then incur another, constant cost on

entering eech sale.

Let X(i,9) denote a random variable with outcome x(i,s). Bidder i has a vaue of x(i,s) for the
objectinsdes. (For notational smplicity, define X(i,s) for each i and s even though some biddersi
may not actudly bid in sdle s) Assume symmetry - but not independence - across bidders, more
precisdly, the joint distribution of X(1,9), X(2,9) , ... , X(Nm,9) is symmetric in its arguments. Also
assume that for each i, X(i,m),..., X(i,2), X(i,1), areidentically and independently distributed. Next,
assume that bidder i knows x(i,s) when bidding in sale s, but does not yet know x(i,s- 1), X(i,s - 2),

.., X(i,0). Findly, assumethat al bidders know thejoint distribution of the X(i,j)'s.

These assumptions impose quite a bit of structure’ In particular, together with a subsequent

assumption on the process by which bidders might leave, they imply that ex-ante to each auction,



the remaining bidders are stochasticaly equivaent. In addition, they imply that each remaining

bidder views each of the remaining objects as being stochastically equivaent.?

The model presumes a particular order of events which repeats itsdf sde after sde. In the
beginning, there is a pool of n.-1 potential bidders, each of whom must decide whether or not to
bid in sde m-1. Of these, ny,; enter the first sde. (The process that determines how many of the
potentia bidders actudly continue will be defined below.) Then each bidder incurs the continuation
cost Cma. Next, each bidder i learns his or her private value x(i, m-1) for the first object. Now the
auction proceeds, and awinner and price are determined. The winner pays up and dropsout. This
istheend of sdlem-1. Then, going into sdles-1 (1 £ s£ m-1) there is some new, smaler, number
ns1 of potential bidders, of whom ns; actualy enter, each incurring the continuation cost ¢;;. And

the process continues as before until the end of sale s=0.

In many ways, the farm auction example illustrates our modd. Our model assumes a finite number
of sales, sooner or later, a prospective buyer of used farm machinery runs out of chances to buy.
There is a cost associated with participating in an auction; a prospective buyer must travel to the
auction ste. There is only one object per auction; for example, a prospective buyer wants only to
buy a combine, each sde offers a most one combine, and the prospective buyer can determine
what sales offer a combine from their advertisements. A prospective buyer has no specific
information about what will be offered for sde until it is actudly offered; a prospective buyer
cannot inspect the condition of a particular piece of machinery except at the auction dte shortly
before the auction commences. Ex-ante to acquiring specific information, al objects are

sochastically equivaent; for example, the sales are not ordered so that the better used combines



will be sold on earlier dates than the less good used combines. Our modd assumes independent
private values, a progpective buyer’s value for acquiring a particular type of machinery depends on
what machinery he or she currently owns and on its condition, the current overall market for used
equipment is well known, the average quaity of machinery that will be offered is well known, an
the cost to resdll such equipment is relatively large compared to any alocation inefficiencies arising

from the auction.

We do not mean to claim that our model exactly reflects the farm machinery auctions, nor that our
model only applies to farm machinery auctions, rather, we smple clam that our model, despite its

gpecidized nature, captures the flavor of certain actua auctions.

Endogenizing the Number of Bidders

To endogenize the number of bidders, we must mode the framework within which losing bidders
decide whether or not to continue. Specifically, we assume that bidders make their decisions one
by one with full information of the decisons made by others. For example, given appropriate
monotonicity of profits in the number of bidders, bidders could leave one by one until those who
remain can al profit from continuing. If the losing bidders are sochagticaly equivaent, the order
of the biddersin this process doesn't affect the number that continue. We assume that the order of

biddersis randomly chosen; this preserves the stochastic equivaence of the bidders.

These assumptions have three important, immediate consequences. Firdt, since the losing bidders

are sochagticaly equivaent, we need keep track only of the number of losing bidders who choose
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to continue. Second, the stochastic equivalence of bidders together with the assumption of full
information assures that the number of bidders changes deterministically from sdle to sdle. In
particular, any specific equilibrium uniquely defines the numbers Ne1, N, ... , No Of biddersin each
sde together with the initid number ny,-1 of potential bidders, this uniquely definesthe vector n. In
short, each equilibrium has associated with it a unique vector n; later, in an example, we examine a
different set of assumptions, assumptions such that an equilibrium defines a non-degenerate

stochastic process for the number of bidders.

For the third consequence, look at the process from an individua losing bidder's perspective. Since
the order in which the bidders make their decisions is random, each of the losing biddersin sde s
has an equal chance of being one of the ns; who continues. So, each of the ns-1 losing bidders in
sde s perceives that he or she has a nsi/(ns1) chance of being one of the ns; bidders who

continues.

Redidticdly, the number of bidders ns must be integer. Unfortunately, this integrality complicates
the andyss. Instead, we dlow the ngs to be redl valued. We will argue that at equilibrium, this
implies that if any losing bidders drop out, the ns bidders who do continue to sdle s each have
exactly zero net expected profit from the remaining sdles® Later, in an example, we illudrate the

effect of this assumption.

Expected Profitsat Equilibrium

11



Consgider how the expected profit to bidders a various points in the auction must be related at
equilibrium.  We congder only perfect - in this case, iterated-dominant-strategy - equilibria
Imagine that such an equilibrium exigts, this together with the number n.-1 of potentia bidders

definesn.

Start with the last sale. It looks just like a single object auction with ng bidders, and each of the
bidders has the dominant strategy of bidding equa to his or her known vaue x; s=o. When each
bidder follows this strategy , then the ny bidders each has an ex-ante net expected profit equa to ng
(p(ng)-co), where p(n) denotes the expected profit per bidder at the dominant strategy equilibrium
in asingle-object privately-known-val ues auction without entry codts.* Assume that p(n) decresses
as nincreases - thisis truein mogt privatey-known-values models - and thus (p(ny)-cs) decreases as
sincreases. Also assumethat p(1) 3 co; if not, no bidder would be willing to bid in the last - or any

other - sdle.

Now, let O (n, 5) denote the net expected profit from sdes s-1, s-2, ... 0 to each losing bidder in
sdesat theend of sdles. (For s=m, interpret O (n, M) as the net expected profit from al the sales
to each of the n-1 potentid bidders,) At the end of sdle s=1, each of the n;-1 losing bidders has an
equal chance at the combined net expected profitinthelast sde. So, O (n,s=1) = (no/(N1-1)) (P(No)-
Co). Knowing this, each bidder in sdle s=1 has the dominant strategy to bid O (n, s=1) less than his
or her privately known value for the object in this sae, and the combined net expected profit - from
this and all remaining saes - to the n; bidders who enter this sle equals ny[(p(ny)-c: + © (n,1)].

Continuing this process yields the following:

12



O (n9) = (nea/(n 1)) [(P(Nss) - Co1)

*+ (Ns2)/(Ns1-1)) [(P(Ns2)-Cs2)

+..]...]fors=1,..,m.

An Example

Congder a smple, specific example that satisfies dl the assumptions of the basic modd. This
example illustrates what the equilibrium looks like subsequent propostions formdize these
characterizations. This example aso provides a reference point for our subsequent examples,
examplesillugtrate the effect of various possible changes to the basic modd.

Example 1. Five expected profit maximizing potentid bidders face a sequence of two saes.
Assumethat p(n) = Y/(n(n+1)) for dl n>0. (Thiswould be the casefor integer n3 2 if the bidders
privately-known vaues for the objects are independent - across both bidders and sdes - samples
from a uniform distribution on [1, 2] and the objects will be sold without reserve; it also holds for

n=1if that lone bidder faces an gppropriate reservation price.) Assumec; = ¢, = 0.09.

To solve this example, start with sdle s=0. Assume each bidder follows the dominant strategy of
bidding equa to his or her value for the object. Then, ex-ante, each of the ny bidders has a net

expected profit of p(ny) - 0.09. At equilibrium, this must be non-negative, and so ny £ 2.795".

Now look a sde s=1. At the iterated-dominant-strategy equilibrium, each bidder bids (no/(n;-1))

(p(ng) - 0.09) less than his or her value for the object in sale s=1. So each of the n, bidders has an

13



ex-ante net expected profit of (p(ny)-0.09) + (no/(M-1)) (p(no) - 0.09) from the two sales. At

equilibrium, this must be non-negetive.

Two cases need to be considered. In the firgt, ny = 2.795" and therefore n; 3 3.795". This forces
the ex-ante net expected profit for the two sales together to be negative, and thus this case can't
occur a equilibrium. In the second case, ny < 2.795" and this can happen only if n, =y + 1. Inthis

case, the ex-ante net expected profit from two salesis non-negative if and only if n, £ 3.480" .

Thus, a (the unique perfect) equilibrium to this first example, 3.480" of the 5 potentia bidders bid
on thefirst object, and 2.480" continue to the last sdle. In particular, only the winner in the first sle
drops out. A subsequent proposition establishes that this must be true a any equilibrium to the

basic modd.

A Necessary Condition for Equilibrium

At equilibrium, bidders act in their own best interests. So, at any (perfect) equilibrium, each of the
bidders entering a sdle must have a non-negative expected profit from doing so. This implies that

O(ns9 2 0fors=m,m-1, ..., 1.

In addition, no bidder who drops out a equilibrium can have a postive expected profit from

continuing. In particular, if someone choosesto drop out, then thereexistsans®, 1£s* £ m, and a

14



d>0suchthat ne.; £ Ne-1-d. For 1 £ s£ m, definen(s,d) = (Nm, ... , Ns, Ns1 + d, Ns2, ..., No); thisis
the number of bidders that would result if d (or a fraction d of one bidder) were to continue one
sde longer than in the equilibrium. At equilibrium, these d bidders could not have a postive
expected profit from continuing. Thisimpliesthat O (n(s*,d),s*) £ 0. Now let d decrease to zero.

Then the two above conditions together imply that at equilibrium, if thereexistsan s (1 £ s* £ m)
such that ne; < ne-1, then O (n,s*)=0. In short, if any losing bidders drop out, then the

continuing bidders must have zero expected profit from continuing.® This gives us the following:

Propostion 1. At any perfect equilibrium to our mode, all losng bidders in each sale

continueto thenext (if thereisone) Specifically, ng;=ns1for ssm-1, m-2, ..., 1.

Proof: By contradiction, imagine that for m objects and a pool n., of potentia bidders, there exists
an equilibrium resulting iN Ny, Nma, ... , N bidders bidding in sdes m-1, m-2, ... , 0 such that for
some s* (1 £ s £ m1), ne1 < ne-1. Thus O (ns*)=0. But since (p(n)-Ccy decreases as s
increases, O (n,s*) can be zero only if p(ne.1) - c+1 < 0, and S0 p(ns) - ¢+ must also be negative.

Write O (n,s*+1) = (ne/(Ne+1-1)) [(P(Ne) - &) + O (n,s%)]). Thefirst term in the square bracketsis
negative and the second is zero. Thus, the total expression is negative, which can't happen at

equilibrium. So, no such equilibrium can exist.

This necessary condition that ns; = ng - 1 for s = m-1, m-2, ..., 1 smplifies the expected profit
expresson O (n,s). In particular, np now completely determines n for any fixed number n,-1 of
potential entrants; to emphasize this, we now write O (no,s) in place of O (n,s). And, appropriate

use of the necessary condition yields O (no,S) = & k=0, 1, .., s1(P(No*k)-c) for s=m, m-1, ..., 1.

15



This function has three noteworthy properties. One, since p(n) decreases as n increases, O (No,9)
decreases as ny increases. Two, since (p(nk)-cx) decreases as k increases, O (ny,s) is concavein s.

And three, sincep(1) 3 ¢, O (=1, s=1) 3 0.

Construction of an Equilibrium

We now congtruct an equilibrium. More precisaly, we establish conditions such that the iterated-
dominant-sirategy equilibrium of Engelbrecht-Wiggans [1994] for sequentid auctions with
exogenoudy specified number of bidders will ill be an equilibrium in our adaptation of that model.

In this equilibrium, only the winning bidders drop ot.

To egtablish the desired conditions, we start by defining sales and bidder capacities for sequentia
auctions. Then we derive the necessary conditions for an equilibrium in terms of these capacities.

Findly, we discuss how an equilibrium can be constructed for cases not satisfying these conditions.

In particular, for any sequentid auction, define the sales capacity m* = max{s & O (1,930}.

Property 3 above assuresthat m* exists and that m* 3 1. Property 2 assuresthat O (1,9) 2 (<) O for
s£ (>) m*. Inparticular, O (1,m*) 3 0. Intuitively, m* is the maximum number of objects so that
if the auction starts with as many bidders as objects, no loser would ever benefit from dropping out

and thus, in the end, no object would be left without anyone bidding for it.

16



For any sdes capacity m* and any actua number of objects m, define the bidder capacity n* =
max{n st O (nmin{m,m*}) 3 0}. Notethat O (1,m*) 3 0impliesthat n* exigts and that n* 3 1.
Property 1 above assures that O (nym*) 2 (<) 0 for n £ (>) n*. This together with property 2

yields the following condition:

O(ns 3 Ofordl n£n* ands£ m* *).
Intuitively, n*-1 is the maximum number of excess bidders - bidders in excess of the number of
objects to be sold - that the auction can accommodate without some losing bidder dropping out at
some point (or some potentia bidding not entering into the auction). This suggests the following
proposition:

Proposition 2:  If the number m of objects to be sold is at most the capacity m* and the
number n.-1 of potential biddersis at most n*+m-1, then there exists an iterated dominant

strategy equilibrium in which everyone who may bid choosesto bid.

Proof: Set n= (Nm, Nw-1, ..., Nym). Thusny = Ny, - M £ n*. Condition (*) above then assures that
O(ns) 2 0fors=m, m-1, ..., 0, and so no losing bidder ever wants to drop out. In particular, the
iterated-dominant-strategy  equilibrium defined by Engebrecht-Wiggans [1994] remains an

equilibrium even though bidders may drop out.

This proposition also suggests an equilibrium for cases with too many potentia bidders and/or too
many objects. If m > m*, then some objects will see no bidders. Throw away (the last) m-m*
objects. If Nuingme,my €XCeEAS N*+min{m*,m}, then not dl of the potential bidders will enter the

auction. These adjustments yield an auction with an equilibrium in which no losing bidder will drop

17



out, and in which al the objectswill be bid on. Note that if the numbers of bidders must be integer,
then the results of this section ill hold, but there might aso be equilibria in which losing bidders

choose to drop out.

Why L osing Bidders Drop Out

Now let us examine why losing bidders might drop out. In our basic model, they don't. But, any
one of severad changes to the basc mode introduces factors that can result in losing bidders

dropping out. Weillustrate the possibilities through appropriate examples.

The following two examples illugtrate the effect of changing the assumptions on the process by
which losing bidders decide whether or not to continue. Example 2 restricts the number of bidders
that continues to be integer, while example 3 aters the assumption of full information about others
decisons. Either change can result in equilibria in which some losing bidders drop out; the first
proposition no longer holds.

Example 2.  Everything is the same as in example 1 except that now the numbers ny and n, of

bidders must be integer.

To solve this example, proceed as before. Rounding down the previous 2.795+ gives that at
equilibrium, g £ 2. If ny<2, then m=ny + 1<3, and at least one additional bidder would want to
enter into sde s = 1; there can be no equilibrium with ng < 2. Then, if np = 2, each of these bidders
in sdle s= 0 has an ex-ante net expected profit of 0.07666... and dl five of the potentia bidders will

chooseto enter sdles=1.
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Thus, at (the unique perfect) equilibrium to this second example two losing bidders chose to drop
out after thefirst sdle. Theintuition goes asfollows. Rounding down the number of biddersin sde
s = 0 increases the expected profit per bidder from that sdle. This increases the bidders expected
profit for the two sales combined, and sale s= 1 can how support more bidders. And in example 2,
the increase is large enough so that, after rounding down ng, n; - 1 Hill exceeds ny. But if the
continuation cost were 0.11, only three of the five potentia bidders would enter sdle s= 1 and both
losing bidders would continue to sdle s= 0. The parameters must be balanced just so to get losers

to drop out.

Example 3: Everything is the same as in example 1 except for the process by which bidders chose
to drop out. In particular, assume that each losing bidder in sale s chooses a probability ps and then

continues to sale s-1 with this probability.

To solve this example, again work backwards from sde s = 0. We consder only the symmetric
equilibrium and thus assume that al the potential bidders choose the same vaue for ps. If there are
at most two potentia bidders, then they will al continue with probability one. If there are three or
more potentia bidders, then at (any perfect) equilibrium, then ps must be less than one, and each
potentia bidder must be indifferent between continuing and dropping out. In particular, for three
potential bidders, each of the three bidders has an expected profit of [ps (1/12) + 2 p(1-p) (1/6) +
(1-p)? (1/2)] - 0.09 from continuing, and this must be equa to the zero expected profit from
dropping out. Solving this quadratic equation yields ps = 0.9621"; smilarly, for four potentia

bidders, psisthe appropriate root of a cubic equation.
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Now look at sdes=1. If dl five potentia bidders were to bid with probability one, there would be
four potentia biddersfor sde s= 0, each of which would have zero expected profit from sdles=0.

So, in sde s = 1, each of the five bidders would have the dominant strategy of bidding equa to
their vaue, which would net each of them an ex-ante expected profit of 1/30 - 0.09 from the two
sdes combined. Thisis negative. Thus, the five bidders can't dl bid with probability one. In fact,
at equilibrium, ps; < 1; the actua caculations are quite involved, and we refer the interested reader

to Menezes[1993-b] for the details.

S0, in example 3, an equilibrium implicitly defines a stochastic process for the vector n. An integer,
but possible random, number of bidders continue from one stage to the next. For example, thereis
apogtive probability of five biddersin sde s= 1 and zero biddersin sde s=0; dl of the maximum
possible number of losing bidders might drop out. In sequences of more than two sales, there may
be severa sdesin which some losing bidders drop out. But al the dropping out of losing bidders
can be interpreted as a random adjustment process toward a sufficiently small number of continuing

bidders.

In the above three examples, p(ny) - ¢ is monotonicdly non-increasing in s. We usad this
monotonicity in the proof of the first propogtion. The next two examples illustrate different
changes to the basic model assumptions that underlie this monotonicity; either change can result in

equilibriain which losing bidders drop ot.
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Example 4. Everything is as in example 1 except that the objects are no longer stochadticaly
equivaent. In particular, et the object in sale s = 1 be one hundred times as valuable as before; the
bidders vaues for this object are now independent samples distributed uniformly on the interva

[100, 200].

Example 5. Everything is as in example 1 except that the continuation cods increase as S

decreases. In particular, let c; = 0 (and ¢ = 0.09 as before).

To solve these examples, start with sdes=0. It looksjust likesades=0inexample 1. But now in
examples 4 and 5, al five potentia bidders will actualy bid in sdes=1. So, 4-2795" = 1.205
losing bidders (4 - 2 = 2, if the numbers must be integer) drop out after sdle s = 1. In both
examples, the condition that nsy 3 ns + 1 for al s no longer suffices to make p(ny) - ¢ a
monotonically non-increasing function of s. Thisillustrates thet if, for whatever reason, early sdes
offer objects with a sufficiently higher value (net of continuation costs) than do later sdes, losing

bidders may drop out at equilibrium.

These two examples destroy an essential symmetry or monotonicity of our moddl. Of course, there
are many other ways to destroy the symmetry. Each of these, if taken to a sufficient extreme, might
result in losing bidders dropping out. To illustrate, consider our assumption that bidders learn their
values for an object just before the object is offered for sde. This helped make the remaining

objects stochastically equivaent both across objects and across bidders.
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Alternatively, the model might assume that bidders know something about their values for an object
earlier. Possibly, a potentid bidder knows the value for the next object to be sold before he or she
must decide whether or not to continue. Or, bidders know something about each object relatively
early in the sequence.  Either possibility can result in different bidders having different expected
vaues from continuing. Now, with postive probability, a losing bidder might perceive the

remaining objects to be of low enough value that he or she decides to drop out.

Concluson

Bidders might drop out of a sequentia auction for a variety of reasons. In our basic modd, there
can be no equilibrium at which losing bidders decide to drop out, and equilibria do exist. But any
one of severd changes to the mode can result in bidders dropping out at equilibrium; our examples

illustrate severa possibilities, and there are many others.
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Footnotes

1 Despite this degree of structure, Engelbrecht-Wiggans and Kahn [1992] show that this
modd with only the winner dropping out can be parameterised to fit actua sequentia

auction data.

2. The stochastic equivalence of the remaining objects makes the analysis tractable, but is not
without its limitations. Engelbrecht-Wiggans [1994] and Bernhardt and Scoones (1994)

discuss this assumption in more detail. We will illugtrate the effects of rdaxing it later.

3. We need this zero profit condition. If the number of bidders were restricted to be integer,
this condition would not hold, and as a subsequent example illustrates, our first proposition

may befdse.

4, Engelbrecht-Wiggans [1993] shows that for n > 1 in sales without reserve, this p(n) equals
v(n) - v(n-1), where v(n) denotes the expected socia value E{max{X(1,s), X(2,9), ... ,
X(n,9)}]. In particular, p(n) depends on the distribution of the X(i,s)'s. In the case of a
sngle bidder, p(n) presumably equals the amount by which the bidder's expected vaue for

the object exceeds the reservation price.

5. If the number of bidders must be an integer, then d must be a positive integer, and O (n,s*)

may be drictly positive.
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