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Abstract

Data available on continuous-time di¤usions are always sampled
discretely in time. In most cases, the likelihood function of the obser-
vations is not directly computable. This survey covers a sample of the
statistical methods that have been developed to solve this problem.
We concentrate on some recent contributions to the literature based
on three di¤erent approaches to the problem: an improvement of the
Euler-Maruyama discretization scheme, the employment of Martingale
Estimating Functions, and the application of Generalized Method of
Moments (GMM).

1 Introduction

A large number of models in economics and �nance describe the time evo-
lution of dynamic phenomena in a continuous-time stochastic framework.
Interest-rate models, for instance, are nowadays frequently formulated in
terms of nonlinear stochastic di¤erential equations. This implies the need
to estimate the parameters of such models. However, in practice, the data
used for such inference is always of a discrete nature, sampled at discrete
intervals of time. This leads us to a very speci�c statistical problem, that

�Professor at the Graduate School of Economics (EPGE/FGV) of the Getulio Var-
gas Foundation and, in 2004, a Visiting Scholar at the Department of Economics of the
University of Chicago. E mail: rpcysne@uchicago.edu.
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has been a subject of active academic research for many years, dating back
to the seminal work of Phillips (1959).
The aim of this paper is to provide a partial survey of some of the tech-

niques used in the statistical inference of di¤usions. The quali�cation "par-
tial" here is used to alert the reader that we review only a fraction of the
many techniques that have been devised to deal with the problem: an im-
provement of the Euler-Maruyama discretization scheme, the employment of
Martingale Estimating Functions, and the application of the Generalized
Method of Moments (GMM).
The Euler-Maruyama approach employs a discrete-time approximation

to the continuous system. The estimation of the discrete-time model is then
accomplished by maximum likelihood. Martingale Estimating Functions, the
second technique studied here, and whose prime example is the score function
(the gradient of the likelihood function with respect to the parameters of
interest), represent a particular type of estimating functions, distinguished
by the nice property of allowing the use of all the available machinery of
Martingale Theory. The utilization of this machinery is particularly helpful
in the derivation of large-sample properties of the estimators, in which case
the Martingale Central Limit Theorem [Billingsley (1961)] can be used.
Finally, a GMM estimator [Hansen (1982)] is a vector that minimizes

a distance function, properly de�ned, of the sample moments from zero.
Approximation results that justify the use of GMM in the estimation of
di¤usion processes are found in Hansen and Scheinkman (1995).
Rigorous de�nitions of a di¤usion process can be found in Krylov (1980)

or in Karatzas and Shreve (1991). Loosely speaking, a di¤usion process is
a Markov process with continuous sample paths which can be characterized
by an in�nitesimal generator (which we are going to de�ne below). The
simplest di¤usion process is the Wiener process, the stochastic process that
corresponds to the Brownian Motion.
As a general point of departure for the type of problem in which we shall

be interested, consider the stochastic integral equation relative to a stochastic
process Xt in Rd:

Xt = X0 +

Z t

0

h(�; s;Xs)ds+

Z t

0

�(s;Xs)dWs; 0 � s � t

� 2 Rk denoting parameter of the model (we are considering that � does not
depend on �). In this equation, X0 is an F0�measurable function indepen-
dent of fWu �Wv; u � v � 0g and W is a standard Brownian Motion:
LetFW

0;t be the completion of the ��algebra generated by fWu; t � u � 0g :
Denote by F0;t the ��algebra generated by F0 and FW

0;t : To simplify nota-
tion, make F0;t = Ft: Now suppose h : Rk�R+�Rd ! Rd is Ft�measurable
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and � is a (d�m) Ft�measurable matrix with �ij : R+ �Rd ! R. Under a
set of Lipschitz conditions (see, e.g., Prakasa Rao (1999) or Oksendal (2000,
section 5.2)), the equation:

dXt = h(�; t;Xt)dt+ �(t;Xt)dWt; X0 = x0 2 Rd; t � 0 (1)

has a unique and continuous solution Xt(t; !) and, for each t � 0; Xt is
(Ft j Borel)�measurable. fXtg is a continuous Markov process relative to
Ft:
The process is called homogenous if h(�; s;Xs) = h(�;Xs) and �(s;Xs) =

�(Xs): In general, we shall be interested in homogenous processes in R (d =
1).
For the purpose of stochastic modelling, we can think of a di¤usion process

as a continuous version of a process:

Xt+1 = f(Xt; st) + �t

where Xt stands for the state at the tth generation, st for a random or �xed
parameter at the tth generation and �t for a noise.

Example 1 (Wiener Process with Drift � and Di¤usion �2) :

dXt = �dt+ �dWt; X0 = 0 2 R; t � 0

In this case X(t)�X(s), t > s > 0; is normal with independent increments,
mean E(X(t)�X(s)) = � js� tj and V ar(X(t)�X(s)) = �2 js� tj.

Ideally, parametric inference for di¤usion processes should be based on
the likelihood function. Since such processes are Markovian, the likelihood
function (given that the initial point is known) is the product of transi-
tion densities. However, the transition densities fk; on which the maximum
likelihood function has to rely, can be obtained in closed-form only in very
speci�c cases. Given this hindrance to the direct application of the likelihood
method, di¤erent alternatives have been proposed in the literature.
Pedersen (1995a, 1995b) derived the estimators departing from approx-

imations of the continuous-time likelihood function using simulation meth-
ods. More recently, Ait-Sahalia (2002) has proposed the use of closed-form
approximations of the (unknown) likelihood functions based on Hermite poly-
nomials. The estimator so obtained is shown by the author to converge to the
true maximum likelihood estimator and to share its asymptotic properties.
The method proposed by Ait-Sahalia starts by making a transformation

of the original process, from X to Z. Z is a process for which the Hermite
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expansion of the transition densities converges. It is the appropriate trans-
formation of X; whose expansion starts with a N(0,1) term. Since Z is a
known transformation of X, the expansion of the density of X can then be
obtained by the use of the Jacobian formula, thereby leading (analytically)
to closed-form approximations of the maximum likelihood function.
As pointed out before, the �rst two techniques on which we shall concen-

trate here, the Euler-Maruyama discretization and the Martingale Estimating
Functions, are based on replacements of the true likelihood function (which
is not known) by some approximation. Such procedures, sometimes classi�ed
as indirect inference (Gourieroux and Jasiak (2001)), are usually followed by
additional steps involving simulation and calibration (in order to improve the
quality of the estimators). The third method object of our analysis will be
the Generalized Method of Moments (GMM).

2 Two Basic Applications in Finance

Di¤usion processes provide an alternative to the discrete-time stochastic
processes traditionally used in time series analysis. The need of modelling
and estimating such processes has been particularly important in �nance and
economics, where they are �tted to time series of, for instance, stock prices,
interest rates, and exchange rates, in order to price derivative assets.
The applications shown below fall into a category (see section 4.2.1) in

which the di¤usion process is of a type such that the transition functions are
known. In this case the parameters can be directly estimated by maximum
likelihood. The reason we introduce such applications here is that they are a
point of departure for more complicated models, which use other underlying
di¤usion processes, and which do not lead to transition functions that are
known.
For instance, there is considerable evidence that the increments of the

logarithm of the price of the stock used to price options in the Black and
Scholes model are neither independent nor Gaussian, as implied by equation
(2) below. This leads to the necessity of more complex estimation processes,
the analysis of which is the purpose of this survey.

� Black and Scholes (1973). We present here the version of Campbell et
al. (1997). Suppose we want to �nd the price G(P (t); �) at time t, of
an (European) option with strike price X and expiration date T > t;
with � = T � t. We assume that the relative changes of prices follow
the equation:

dP (t)

dt
= k(t)P (t); P0 given
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with k(t) = � + �Z(t); Z(t) a white noise and � and � constants. In
Itô�s representation:

dP (t) = �P (t)dt+ �P (t)dW (t); t � 0 (2)

W (t) standing for a standard Brownian motion. The hypothesis of the model
is that P (t) models the stock price upon which the option price is based.
Now suppose (we omit the arguments of the function P (:)) that an initial
investment I is allocated in options and stocks according to

I = G(P; t) + �P (3)

Using Itô�s Lemma:

dG(P; t) = dt

�
�PGP +Gt +

1

2
P 2�2GPP

�
+ PGP�dW

dI(t) = dt

�
(�+GP )P�+Gt +

1

2
P 2�2GPP

�
+ (�+GP )P�dW

The risk is zero when dI(t) does not depend on the stochastic component
(�+GP )P�dW , which implies �+GP = 0: In this case the expected income
per unit of time is Gt + 1

2
P 2�2GPP : Denoting by r the risk-free rate, the

no-arbitrage condition demands:

Gt +
1

2
P 2�2GPP = rI

Using (3) and the no-risk condition once more:

Gt +
1

2
P 2�2GPP = r(G+ �P ) = r(G�GpP )

from which we get:

Gt +
1

2
P 2�2GPP � r(G�GpP ) = 0 (4)

Since the (European) option is only exercised if the price at time T is no
less than the strike price X:

G(P (T ); T ) = max(0; P (T )�X) (5)

Solving (4) with condition (5) gives the price of the option as a function of
time and of the parameter (which must be estimated) �:
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� Cox, Ingersoll and Ross (CIR-SR), (1985)1: In this model the state
variable follows a di¤usion process given by:

dXt = (�+ �Xt)dt+ �
p
XtdWt

In this case the parameters �; � and � are the purpose of the statistical
estimation.

3 The Generator of a Di¤usion Process

Let f(:) be a bounded twice continuously di¤erentiable function, with bounded
derivatives, and Xt a generic time-homogeneous di¤usion process de�ned on
the probability space (
;F ,P ): Let Q be the probability measure induced by
Xt on Rn (for any t) and L2(Q) be the space of Borel measurable functions
f(Xt) : R

n ! R; Q -square integrable. In this space (not distinguishing be-
tween the space itself and the equivalent-classes space) we de�ne, for t � 0;
the family of operators:

�tf(x0) = E [f(Xt) j X0 = x0] (� E0(f(Xt)) (6)

It can be shown that these operators (L2(Q)!L2(Q)) are well de�ned
(f = f � Q-a.e.! �t(f) = �t(f

�) Q-a.e. and �t(f �) 2 L2(Q)), a weak
contraction (k�t(f)k � kfk) and a semi-group (by the law os iterated expec-
tations, E0(Xt+s) = E

0(Et(Xt+s)); implying �t+s = �t�s):
In the remaining of this text, we will some times refer to the in�nitesimal

generator of a di¤usion process f(Xt). The in�nitesimal generator gives a
measure of the in�nitesimal drift of a di¤usion. For some functions f 2 L2(Q)
for which the limit below exists ( call it 	; a proper subset of L2(Q)); this is
de�ned as:

�f(x0) = lim
t#0

�tf(x0)� f(x0)
t

; t � 0 (7)

� and � commute on 	 and 	 is dense in L2(Q):
We need a Proposition about the way how this generator materializes in

the case of a particular di¤usion process. The initial part of the proof is done
in Scheinkman and Hansen (1995).

1This process is usually abbreviated by CIR-SR, with SR denoting square root (because
of the

p
Xt term). One usually denotes by CIR-VR the process, used in another work of

these authors, in which the exponent of Xt is 3/2, rather than 1/2. We shall come back
to this process later in this text.
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Proposition 1 Consider the one-dimensional di¤usion process de�ned as
solution to the stochastic di¤erential equation:

dXt = b(Xt; �)dt+ �(Xt; �)dWt (8)

where Wt is a Wiener process. Let L� be a (di¤erential) operator de�ned by:

L� = b(x; �)
d

dx
+
1

2
�2(x; �)

d2

dx2
(9)

Then �f(x0) = L�f(x0):

Proof. We divide the Proof in six parts.

I- Write Yt = f(Xt); use (8) and apply Itô�s formula to get:

dYt = f
0(Xt)(b(Xt; �)dt+ �(Xt; �)dWt) +

1

2
f 00(Xt)�

2(Xt; �)(dWt)
2

II- Substitute dt for (dWt)
2 and integrate to get:

Yt = f(Xt) = f(x0) +

Z t

0

�
b(Xs; �)f

0(Xs) +
1

2
f 00(Xs)�

2(Xs; �)

�
ds+

+

Z t

0

f 0(Xs)�(Xs; �)dWs

III- By the construction of the Itô�s Integral, for u < t;

Eu
Z t

0

f 0(Xs)�(Xs; �)dWs =

Z u

0

f 0(Xs)�(Xs; �)dWs

Using the de�nition of L� established by (9),

Yt � f(x0)�
Z t

0

L�f(Xs)ds

is a continuous martingale.
IV- Taking expectations conditional on x0 :

E[f(Xt) j x0]� f(x0) = E[
Z t

0

L�f(Xs)ds j x0]

V- Using Fubini�s theorem (by assumption, the integrand is quasi-integrable
w.r.t the product measure) and de�nition (6):

�tf(x0)� f(x0)
t

= (1=t)

Z t

0

�sL�f(x0)ds
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VI- Now take limits with t ! 0 on both sides of the above equation. The
left side, by de�nition, is equal to �f: Therefore, the demonstration will be
�nished once we show that the limit of the right side equals L�f: We need
to show: Z

Rn

�
[(1=t)

Z t

0

(�sL�f(x0)� L�f(x0))ds]2
�
dQ ! 0

Using the Cauchy-Schwarz (Hölder) inequality:Z
Rn

�
[(1=t)

Z t

0

(�sL�f(x0)� L�f(x0))ds]2
�
dQ

� (1=t)2
Z
Rn

�Z t

0

[�sL�f(x0)� L�f(x0)]2ds
Z t

0

12ds

�
dQ

= (1=t)

Z
Rn

�Z t

0

[�sL�f(x0)� L�f(x0)]2ds
�
dQ

Using Fubini again,

(1=t)

Z
Rn

�Z t

0

[�sL�f(x0)� L�f(x0)]2ds
�
dQ

= (1=t)

Z t

0

�Z
Rn
[�sL�f(x0)� L�f(x0)]2dQ

�
ds

= (1=t)

Z t

0

k�sL�f(x0)� L�f(x0)k2 ds

which goes to zero by the assumption that Xt is (Borel) measurable with
respect to the product sigma-algebra (the sigma algebra generated by the
measurable rectangles AxB;A 2 R; B 2 F (this implies2 that, for each �;
f�t�; t � 0g converges to � as t # 0:)

4 Maximum Likelihood Estimation (MLE)

4.1 Continuously Observed Data

Likelihood methods for continuously observed di¤usions are standard in the

literature. We concentrate our exposition here on Prakasa Rao (1999) and

2See footnote 4 in Hansen and Scheinkman (1995).
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Basawa and Prakasa Rao (1980). The important point to note is that likeli-
hood function in this case can be obtained by a classical result on change of
measure.
Consider the di¤usion process (1). Note that the function �(s;Xt) does

not depend on the parameter �: We assume that �(s;Xt) is known or, al-
ternatively, that it is a constant, in which case it can be estimated from a
standard quadratic-variation property of the Wiener process. Stokey (2000,
chapter 2) presents this as an exercise.

Proposition 2 If X is a (�; �2) Brownian motion, then over any �nite in-
terval [S; S + T ] :

QVn �
2nX
j=1

�
X(
jT

2n
; !)�X((j � 1)T

2n
; !)

�2
! �2T; P � a:e: as n!1.

(QV stands for quadratic variation).

Proof. We omit the !: Make

�j;n = X(
jT

2n
)�X((j � 1)T

2n
)

Then E(�j;n) = 0 and

E(�j;n)
2 = E(

X( jT
2n
)�X( (j�1)T

2n
)q

T
2n
�2

)2
�2T

2n
=
�2T

2n

because X( jT
2n
)�X( (j�1)T

2n
)p

T
2n
�2

is a N(0; 1) r.v. De�ne xn =
P2n

j=1(�j;n)
2: Then

Exn � E(
2nX
j=1

(�j;n)
2) = �2T

and

E(xn � �2T )2 = V ar(xn) = V ar(
2nX
j=1

(�j;n)
2)

By the independence of increments:

E(xn��2T )2 =
2nX
j=1

V ar(�j;n)
2 =

2nX
j=1

�4T 2

22n
V ar((

X( jT
2n
)�X( (j�1)T

2n
)q

�2 T
2n

)2) =
2�4T 2

2n

(10)
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because (X(
jT
2n
)�X( (j�1)T

2n
)p

�2 T
2n

)2 has a chi-square distribution with one degree of

freedom. (10) implies convergence of xn to �2T in L2(P ): To prove, as re-
quired, that QV � limnxn = �

2T; P � a:e:; note that:
1X
n=1

E(xn � �2T )2 = 2�4T 2 <1

Since (xn�T )2 � 0 ,
P1

n=1E(xn��2T )2 = E(
P1

n=1(xn��2T )2) <1: This
implies

1X
n=1

(xn � �2T )2 <1; P-a.e.

lim
n
(xn � �2T )2 = 0; P-a.e.

and
QV � limnxn = �

2T P-a.e.

Proposition 2 allows us to consider (1) with � = 1:
Formally, let (
;F ; P ) be a probability space and fFt; t � 0g a �ltration

in (
;F) : Suppose fXtg is adapted to this �ltration and satis�es (1): Let
P T� be the probability measure generated by fXt; 0 � t � Tg on the space
(C [0; T ] ;BT ) ; B corresponding to the Borel sigma-algebra de�ned in C [0; T ].
By this we mean:

P T� (B) = P fw 2 
 : Xt 2 B; B 2 BTg
P T� (B) is the measure induced by the process Xt(�) on C [0; T ] :
In the same way, let P TW be the probability measure induced by theWiener

process in C [0; T ] :

P TW (B) = P fw 2 
 : Wt 2 B; B 2 BTg
Then, under regularity conditions ensuring (for all � 2 �) the absolute conti-
nuity of P T� with respect to P

T
W ; the Radon-Nikodym derivative

dPT�
dPTW

is given

by (see Oksendall (2000), Girsanov�s theorem):

dP T�
dP TW

= exp

�Z T

0

h(�; s;Xt)dXt �
1

2

Z T

0

h2(�; s;Xt)dt

�
; [P � a:e]

By de�nition, the MLE �̂T (XT ) of � is de�ned by the measurable map
�̂T : ((C [0; T ] ;BT )! (�; �), such that:

dP T
�̂

dP TW
= sup

�2�
(
dP T�
dP TW

)

where � is the ��algebra of Borel subsets of �:
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Example 2 Making h(�; s;Xt) = �; the above equation leads to the maxi-
mization of f(�) = �XT � �2 T2 ; with solution �̂ = XT=T:

4.2 Discretely Observed Data

4.2.1 The Case in Which the Transition Densities are known

There are three well known cases in which the stochastic di¤erential equation
(1) is easily solvable, and the corresponding transition functions known3:
i) h(�; t;Xt) = �Xt; �(t;Xt) = �Xt; called geometric Brownian Motion,
used, for instance, in the Black and Scholes model; ii) h(�; t;Xt) = �(� �
Xt); �(t;Xt) = �; the Orstein-Uhlenbeck process, used, for instance, by
Vasicek (1977) to analyze the dynamics of the short-term interest rate and;
iii) h(�; t;Xt) = �(� �Xt); �(t;Xt) = �

p
Xt, which is the di¤usion used in

the Cox-Ingersoll-Ross model of the term structure of interest rates. The
�rst of these processes leads to log-normal, the second to normal, and the
third to non-central chi-square transition densities.

Example 3 (Maximum likelihood estimation when the transition functions
are known): Consider the equation that describes the evolution of the price
of the underlying stock in the Black and Scholes model4. This falls into the
�rst case considered above:

dP (t) = �P (t)dt+ �P (t)dW (t); t � 0 (11)

De�ne Yt = log(Pt): Using Itô´ s rule:

dYt = (��
1

2
�2)dt+ �dW (t))

The above equation implies a normal distribution for the transition densities
of Yt. Integrating,

logPt = logP0 + (��
1

2
�2)t+ �W (t) (12)

Pt = P0e
(�� 1

2
�2)te�W (t)

The conditional distribution of Pt given P0 is a log normal with mean logP0+
(� � 1

2
�2)t and variance �2t: The conditional mean of Pt given P0 can be

3Wong (1964) investigates some other particular cases.
4Note that this same di¤usion equation (usually called geometric Brownian motion)

could be used to model di¤erent phenomena, in particular populational growth.
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obtained by using the formula for the moment generating function of a normal
random variable of mean (�� 1

2
�2) and variance �2t :

E(Pt j P0) = P0e(��
1
2
�2)t+�2

2
t = P0e

�t (13)

Since the transition densities of Yt are known, the application of maximum
likelihood in this case follows in a straightforward way. Assuming that the
�rst observation of the Markov process are known, equation (13) leads to the
estimators of the mean (â) and variance (b̂) of logPt � logPt�1 given by:

â =
1

N

XN

t=1
(logPt � logPt�1)

b̂ =
1

N

XN

t=1
(logPt � logPt�1 � â)2

The Maximum Likelihood Estimators � and �2 are then given, respectively,
by â+ b̂

2
and b̂:

One nice feature of continuous modelling is that we can analyze what
happens when the time between observations tends to zero. In the present
case, this can be done with the help of equation (12). If the time between
observations is h; logPt�logPt�h has a Gaussian distribution with mean (��
�2

2
)h and variance �2h: The estimators of both � and �2 (trivially obtained

by maximum likelihood), as well as their asymptotic variances, are functions
of h and T , the number of observations. One can show that the variance of
the volatility parameter depends only on the number of observations T . It
does not depend upon the sampling frequency h. The variance of the drift
parameter �; though, depends on both T and h. The drift parameter � cannot
be consistently estimated when the whole time span of the observations is
�xed, even if h! 0 (with hT ! k 2 R)5:

4.2.2 The Case in Which the Transition Densities are not Known

As mentioned before, the di¤usion for the prices of stocks described in the
Black and Scholes model is usually not supported by the data. Here we
analyze estimations in more general settings.
Given n+1 observations of a di¤usion process like (1), consider the data

X(t) sampled at non-stochastic dates t0 = 0 < t1 < ::: < tn (equally spaced
or not). The joint density of the sample is given by:

p(X0; X1; :::; Xn) = p0(X0; �)�
n
j=1pk(Xtj ; tj j Xtj�1 ; tj�1; �) (14)

5The asymptotic variance of the MLE estimator of �2 is equal to 2�4=T:
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where p0(X0) is the marginal density function ofX0 and p(Xtj ; tj j Xtj�1 ; tj�1; �)

represents the transition density functions. Such functions are usually not
known. In this section, we examine how this problem can be dealt with by
using Gaussian distributions to approximate the densities. When the dis-
tance between observations is su¢ ciently small, such approximations lead to
reasonable (although biased) estimators.
Sorensen (1995) is the main source of our analysis in this section and the

next. In contrast with other methods which use approximate likelihood ra-
tios [Kutoyants(1984) and Yoshida (1992)] ; the method below uses the exact
likelihood of a discretized process6.
To see how it works (Prakasa Rao (1999), Florens-Zmirou (1989)), let us

start with the di¤usion:

dXt = b(Xt; �)dt+ �(Xt; �)dWt; X0 = x0 (15)

Following Sorensen (1995), we assume that the functions b(Xt; �) and
�(Xt; �) are known, apart from the parameter �; which varies in a subset �
of Rd:We discretize this process by assuming that the drift and the di¤usion
are constant in the time interval7 �i = ti � ti�1 :

Xti �Xti�1 = b(Xti�1 ; �)�i + �(Xti�1 ; �)(Wti �Wti�1)

SinceWti�Wti�1 j Wti�1 �N(0; �2(Xti�1 ; �)�i); we are actually assuming:

E�(Xti j Xti�1) = b(Xti�1 ; �)�i +Xti�1 (16)

E�
�
(Xti � E�(Xti j Xti�1))

2 j Xti�1

�
= �2(Xti�1 ; �)�i (17)

Note that there are two types of approximation here, one regarding the
moments and the other regarding the distribution of the transition densities
(as Gaussian). The former usually introduces biases, whereas the latter leads
to ine¢ ciency (Sorensen, 2002).
The transition density of the discretized process then reads:

p(Xti j Xti�1) =
1p

2��2(Xti�1 ; �)�i

exp(�1
2

(Xti �Xti�1 � b(Xti�1 ; �)�i)
2

�2(Xti�1 ; �)�i

)

6Both methods, though, lead to the same estimators, when the di¤usion coe¢ cient is
constant (see Shoji, 1995).

7For equidistant intervals, such approximation, usually called an Euler-Maruyama
aproximation [Kloeden and Platen (1992)], can be written

Xti �Xti�1 = b(Xti�1 ; �) + �ti ; �ti j Xti�1 � N(0; �2(Xti�1 ; �))
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The joint density of Xt0;:::Xtn is then given by:

Ln(�) =
nY
i=1

p(Xti j Xti�1)p(Xt0) (18)

Using the last two results and taking logs, the parameters of the problem
can be found by the maximization of:

lN(�) = �
1

2

NX
i=1

�
(Xti �Xti�1 � b(Xti�1 ; �)�i)

2

�2(Xti�1 ; �)�i

+ log(2��2(Xti�1 ; �)�i

�
]+log p(Xt0)

(19)
Taking the derivative with respect to � leads to the score function:

HN(�) =

NX
i=1

8<:
b�(Xti�1 ;�)

�2(Xti�1 ;�)

�
(Xti �Xti�1 � b(Xti�1 ; �)�i)

�
+

+
�2�(Xti�1 ;�)

2(�2(Xti�1 ;�))
2�i

�
(Xti �Xti�1 � b(Xti�1 ; �)�i)

2 � �2(Xti�1 ; �)�i

�
9=;

(20)
with the subindex (:)� standing for the vector of partial derivatives with
respect to �:

Example 4 The Cox-Ingersoll-and-Ross process which we have �rst seen in
section 2 (CIR-SR), satis�es the stochastic di¤erential equation:

dXt = (�+ �Xt)dt+ �
p
XtdWt (21)

with � > 0; � < 0 and � > 0: Assume that the distance between observation
times, �; is the same along the sample. As shown by Sorensen (1995), for
this process (20) leads to the estimators:

�̂n =
(Xtn �X0)(

1
n

Xn

i=1
Xti�1)

�1 �
Xn

i=1
X�1
ti�1(Xti �Xti�1)

�
h
n2(
Xn

i=1
Xti�1)

�1 �
Xn

i=1
X�1
ti�1

i
�̂n =

Xn

i=1
X�1
ti�1(Xti �Xti�1)� 1

n
(Xtn �X0)

Xn

i=1
X�1
ti�1

�
h
n� (

Xn

i=1
Xti�1)(

Xn

i=1
X�1
ti�1)=n

i
�̂2n =

1

n�

Xn

i=1
X�1
ti�1

h
Xti �Xti�1 � (�̂n + �̂nXti�1�)

i2
By making, in (20), �2(Xti�1 ; �) = v(Xti�1 ; �) we obtain equation [(2:3)] de-
rived in Sorensen (1995). By deleting the quadratic term (which would be the
case when �2 is known), we get:

~HN(�) =
NX
i=1

�
b�(Xti�1 ; �)

v(Xti�1 ; �)

�
(X(ti) �X(ti�1) � b(Xti�1 ; �)�i

��
(22)
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Consistency and Asymptotic Distribution:
This estimating function has been studied by Dorogovcev (1976), Prakasa

Rao (1983, 1988), Florens-Zmirou (1989) and Yoshida (1992) in the case when
the di¤usion coe¢ cient is constant and the parameter � is unidimensional.
Basically, theses authors have shown that expecting these estimators to be
consistent and asymptotically normal requires assuming that the length of
the observation interval (n�n) goes to in�nity and that the time between
consecutive observations (�n) goes to zero. Yoshida (1992) proved asymp-
totic normality imposing n�2

n ! 0; whereas Florens-Zmirou (1989) used the
less restrictive assumption n�3

n ! 0.
Summing up, the estimation by discretization of the transition function

works reasonably well when the distance between observation times, �; is
su¢ ciently small. Kloeden et al. (1992) con�rmed this fact through simula-
tion, whereas Pedersen (1995a) and Bibby and Sorensen (1995) have shown
that if � is not small the bias can be severe.

Improving the Approximations for theMoments Lemma 1 in Florens-

Zmirou8 (1989) provides an expansion of E�(X� j X0 = x) which can be used
to improve (16) and (17) to second or higher order. This Lemma will allow
us to get better approximations of the average and of the variance of the
Gaussian approximations to the transition functions. It reads:

Lemma 3 (Lemma 1 in Florens-Zmirou, 1989): Let f 2 C(2s+2) and denote
by Ek the conditional expectation w.r.t. �(Xu; u � k�) (the ��algebra gener-
ated by (Xu; u � k�)): Then; with Ek�1 denoting the conditional expectation
w.r.t the information available at date k � 1:

Ek�1f(Xk�) =

sX
l=0

�l

l!
Llf(X(k�1)�)+

Z �

0

Z u1

0

:::

Z us

0

Ek�1(Ls+1f)(X(k�1)�+�)du1:::dus+1

(23)

Notice in the expression above the presence of the operator L derived in
section 3. This expression, among other things, can be used to determine
the bias of the estimator ~� derived from (22).

8Florens-Zmirou refers to Dacunha-Castelle and Du�o (1982) as the original reference
for the Lemma.
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The new equations for the conditional average and variance in (16) and
(17) (writing b for b(x; �) and v for v(x; �)) read:

E�(X� j X0 = x) = x+�b+
1

2
�2

�
bbx +

1

2
vbxx

�
+O(�3) (24)

and :

V ar�(X� j X0 = x) = v�+�
2

�
1

2
bvx + v

�
bx +

1

4
vxx

��
+O(�3) (25)

Note that (16) and (17) are a particular case of these expressions, for the
cases when l = 1 in (23).
In order to derive these expressions, note that, from Lemma 1 in Florens-

Zmirou, making f(x) = x, we have::

E�(X� j X0 = x) = x+�Lx+
�2

2
L2x+

+

Z �

0

Z u1

0

Z u2

0

E(L3x)(Xz)du1du2du3

Xz standing for X(k�1)�+� in Lemma 1.
Since Lx = b(x; �); L2x = Lb(x; �) = bbx+ 1

2
vbxx we get (24). The remain-

ing O(�3) derives from the fact that the (absolute value of the) integrand in
(23) is supposed to be bounded (Sorensen, 1995 provides su¢ cient conditions
in some particular cases) by some M 2 R+ and ui � �; i = 1; 2; in which
case, Z �

0

Z u1

0

Z u2

0

��E(L3x)(Xz)du1du2du3
�� �M�3

To get (25) we need E�(X2
� j X0 = x): Again, using (23):

E�(X
2
� j X0 = x) = x

2 +�Lx2 +
�2

2
L2x2 +

+

Z �

0

Z u1

0

Z u2

0

E(L3x2)(X2
z )du1:::du3

We have: Lx2 = 2bx+v; L2x2 = L(2bx+v) = b(2b+2xbx+vx)+ 1
2
v(2bx+

2bx + 2xbxx + vxx): Hence,

E�(X
2
� j X0 = x) = x

2 +�(2bx+ v) +
�2

2
(b(2b+ 2xbx + vx) (26)

+
1

2
v(2bx + 2bx + 2xbxx + vxx))

16



From (24) we get:

[E�(X� j X0 = x)]
2 = x2 +�2bx+

�2

2
(2b2 + 2xbbx + xvbxx) +O(�

3) (27)

By subtracting (27) from (26) one gets (25).
Following Sorensen (1995), suppose X is an ergodic di¤usion with in-

variant probability �� when � is the true parameter. Assuming the process
departs from the invariant measure, the expressions (22) and (24) imply a
bias of the estimating function (22) given by:

E� ~HN(�) =
1

2
�2nE��

�
bx(�)

�
b(�)bx(�)=v(�) +

1

2
bxx(�)

��
+O(n�3)

This expression can be obtained by expanding ~HN(�) in (22):

~HN(�0)� ~HN(~�) = ~H
0

N(
~�)(�0 � ~�) (28)

Since ~HN(~�) = 0, we have

(�0 � ~�) =
~HN(�0)
~H
0
N(
~�)
!
�E��

�
bx(�)

�
b(�)bx(�)=v(�) +

1
2
bxx(�)

�	
2E�� fb2x(�)=v(�)g

+O(�2)

When the quadratic term in (20) is taken into consideration, the bias (when
� is the true parameter value) turns out to be:

E� ~HN(�) =
1

2
�nE��

�
@� log v(�)

�
1

2
b(�)@x log v(�) + @xb(�) +

1

4
@2xv(�)

��
+

+O(n�2)

The important point to notice above is that the bias of the estimating
function is of order �2n; being therefore considerable even when � is small.

Improving the Estimators by Using Better Approximations for the
Moments Under certain technical conditions, Kessler (1997) devised ways
to reduce the bias described above. He retained the idea of approximating
the transition densities by a Gaussian distribution, but improved the ap-
proximation of the mean and of the variance. In order to follow Kessler�s
approach to the problem we need one de�nition.
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De�nition 4 Make

rk(�; x; �) =
kX
i=0

�i

i!
Li�f(x)

where f(x)=x, and where Li� denotes the i
th application of the di¤erential

operator L�:

Using the same ideas as the ones detailed in the previous section, but
now dealing with expansions of order k (instead of order 2 only), Kessler ob-
tained new approximations for the mean and for the variance of the transition
function 	k (now, with a remainder term of order O(�k+1)): 9:

E�(X� j X0 = x) = rk(�; x; �) +O(�
k+1) (29)

	k(�; x; �) =
kX
j=0

�j

k�jX
r=0

�r

r!
Lr�g

j
x; (x) (30)

where gjx; (y) ; j = 0; 1; :::k is de�ned by the expression:

(y � rk(�; x; �))2 =
kX
i=0

�jgjx; (y) +O(�
k+1)

As shown in Sorensen (1995), the new approximation of (18) with (29)
and (30) replacing (16) and (17) leads to a new approximate score function
and to new estimators that perform better than the previous one.

Example 5 Suppose Xt is governed by:

dXt = �Xtdt+ �dWt

Sorensen (1995) has shown that the estimating function based on the approx-
imation detailed in this subsection (with equidistant observations) leads to
the estimators (for k = 2):

~�2;n = �
�1(
p
2Qn � 1� 1) (31)

~�22;n =

1
n

Xn

i=1
(Xti �Xti�1Qn)

� + ~�2;n�2 + 2
3
~�
2

2;n�
3

(32)

9Remember that in the previous subsection we made an assumption about the bound-
edness of the integrand.
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where

Qn =

Xn

i=1
XtiXti�1Xn

i=1
X2
ti�1

(33)

provided that Qn � 1=2:

With these modi�cations, one gets another score function (which replaces
(20)) and other estimators. The estimators so obtained are only slightly bi-
ased [Sorensen, 1995] ; when � is not too large. Under additional conditions,
Kessler (1997) shows that the new estimators are consistent and asymptoti-
cally normal.

Measuring the Loss of Information Due to Discretization Dacunha-

Castelle (1986) assumes that the sampling is equidistant and provides a mea-
sure of the amount of information lost by discretization in the nonlinear case.
The loss is measured, as a function of �, in terms of the asymptotic variance
of the MLE estimator of the parameters. Such a procedure allows for a de-
termination of how spaced in time the observations can be without leading to
a signi�cant problem. The author studies the model (15) [called model E�]
and also the particular case when �(Xt; �) = � (a constant) [called model E] :
The method expresses the transition density of the Markov chain, p�; as

a combination of Brownian Bridge functionals10. This is achieved through
the use of Girsanov�s theorem and Itô�s formula. The author concludes that,
when � is known, the loss of precision on account of discretization is of order
�2; whereas when � is unknown the loss is of order �:

5 Martingale Estimating Functions (MEF)

This section is based on Kessler and Sorensen (1999). We start this section
with a Proposition showing that the score function used to derive the MLE
in the previous subsections are themselves Martingale estimating functions.
The proofs are standard in the literature.

10If fX(t); t � 0g is a Brownian process, a Brownian Bridge is the stochas-
tic process fX(t); 0 � t � 1 j X (1) = 0g : It has mean zero and covariance function
Cov(X(s); X(t) j X(1) = 0; s � t � 1) = s(1 � t): It can also be represented as Z(t) =
X(t)� tX(1) and is very useful in the study of empirical distribution functions.
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Proposition 5 Under regularity conditions (u.r.c.), the score function is a
Martingale.

Proof. First we show that the likelihood function is a Martingale and
then that the Score Function is a Martingale.
I- The likelihood function is a Martingale:
Let P and Q be two di¤erent probability measures on the space (
;F);

and let Fn;n2N be a �ltration de�ned in this space. For each n, let Pn and Qn
be the restrictions of P and Q to Fn: Suppose Qn is absolutely continuous
with respect to Pn and make Zn the likelihood function (Radon-Nikodym
derivative) dQn=dPn: Then, for sets A in the ��algebra Fn�1 we have (be-
cause the restriction of P and Q to Fn and the restriction of P and Q to
Fn�1 must agree on sets in Fn�1):Z

A

Zn�1dP = Q(A) =

Z
A

ZndP

By the de�nition of conditional expectation, since A is in Fn�1 :Z
A

EFn�1ZndP =

Z
A

ZndP

Since the probability measure is �nite, these equalities imply EFn�1Zn =
Zn�1; P -a.e.
II- The score function is a Martingale:
Now working with densities de�ned with respect to the Lebesgue measure,

consider the likelihood function �n = exp(ln(�) � ln(�0)): Taking the �rst
derivative with respect to theta yields d�n=d� = �ndln=d�: Assuming the
derivative can be passed through the integral:

E
Fn�1
�0

�ndln=d� = E
Fn�1
�0

d�n=d� = (d=d�)E
Fn�1
�0

(�n)

= (d=d�)�n�1 = �n�1dln�1=d�

The demonstration is concluded by setting �0 = �:

We have seen that the use of Gaussian approximations of the transition
function leads to biased estimators. We have also seen the biases of such es-
timators can be somewhat reduced (but not eliminated) by the use of better
approximations to the mean and to the variance of the transition density.
Such a problem can be avoided by the use of more general MEF. By more
general we mean MEF that are not necessarily based on Gaussian approxi-
mations to the transition densities of the di¤usion processes.
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Trying to mimic the score function, such estimating functions Gn(�) are
usually of the form:

Gn(�) =

nX
i=1

g(�i; Xti�1 ; Xti ; �) (34)

where the functions g(�i; Xti�1 ; Xti ; �) satisfy:Z
g(�i; Xti�1 ; Xti ; �) p(�; x; y; �) = 0 (35)

Here x stands forXti�1and y forXti : Part of the literature considers functions
g(�i; Xti�1 ; Xti ; �) as polynomials in y

11: The approach followed by Kessler
and Sorensen does not require that the functions g(:) are polynomials, even
though, in some cases, they happen to be. The example below details one
such case.

Example 6 Take the Cox-Ingersoll-and-Ross (21) model presented before in
this text. As shown by Kessler and Sorensen, for n = 0; 1; :::; this model leads
to the spectrum:

�� = f�n�g
with eigenfunctions:

�i(X) =
Xi

m=0
(�1)m

�
i+ 2���2 � 1

i�m

�
Xm

m!
(�2�X��2)

They are based on the eigenfunctions of the generator of the di¤usion process12.

An important property of an estimating function is being unbiased and
being able to identify the correct value of the parameter. Formally, if �0
stands for the true value of the parameter, one must have:

E�Gn(�) = 0, � = �0

p(�; x; y; �); the transition density from state x to state y, is usually not
known.
11This was the case, for instance, of the score function (20). However, we have seen that

the approximation given by (20) was biased when the time intervals between observations
were bounded away from zero.
12To get some intuition linking the eigenfunctions to the estimators of the di¤usion

process, remember (e.g., Karlin and Taylor, 1981) that the transition density of a di¤usion
process can be expressed as a series expansion using the eigenfunctions.
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Note that (35) meansE
Fti�1
� g(�i; Xti�1 ; Xti ; �) = 0; implying that Gn(�) is

a (di¤erence) martingale and, by the law of iterated expectations, E�Gn(�) =
0. By an analysis following the same �rst order-expansion used in (28), equa-
tions (34) and (35) imply that the estimator �̂ obtained by making Gn(�) = 0
is unbiased.
It remains, though, choosing the most adequate MEF according to some

optimizing criterion. In order to do so, consider a class of MEF given by
making, in (34):

g(�i; Xti�1 ; Xti ; �) =

NX
j=1

�j(�; x; �)hj(�i; Xti�1 ; Xti ; �) (36)

Since for each j; the event [�j(�; x; �) 2 B;B borelian in Rn] 2 Fti�1
(where x = Xti�1); such functions satisfy (35) if hj(�i; Xti�1 ; Xti ; �) does.
Godambe and Heide (1987) proposed two possible criteria for the choice of
the MEF. The �rst, called �xed sample criterion, minimizes the distance to
the (usually not explicitly known) score function. The second, called asymp-
totic criterion, chooses the MEF that has the smallest asymptotic variance.
Kessler and Sorensen (1999) provide an analysis of the �xed-sample-

criterion type. Under this technique, the estimating function can be viewed
as a projection of the score function onto a set of estimating functions of
the form (36). Such estimating functions are de�ned by using the eigenfunc-
tions and eigenvalues of the generator L of the underlying di¤usion process
(which was the object of our analysis in section 3). An important part of
their analysis is showing that MEF can be so obtained. This is done in their
equation 2.4, which we present below as a Proposition.

Proposition 6 Consider the di¤usion process (8). Let �(x; �) be an eigen-
function and �(�) an eigenvalue of the operator L�: Then, under weak regu-
larity conditions (u.r.c.):

E� [�(y; �) j Xt�1 = x] = e
��(�)��(x; �)

for all x in the state space of X under P�, implying that

g(y; x; �) = �(x; �)
�
�(y; �)� e��(�)��(x; �)

	
is a martingale-di¤erence estimating function.

Proof. Make:
Zt = e

�t�(Xt) (37)
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Then, by Itô�s formula:

dZt = e
�t

�
��(Xt)dt+ �0(Xt)dXt +

1

2
�00(Xt)(dXt)

2

�
Taking into consideration that (dXt)2 = �2dt, and using (8) one gets:

dZt = e
�t [(��(Xt) + L�(Xt)dt+ �0(Xt)�dWt]

Since by assumption �(Xt) is an eigenfunction of the operator L with eigen-
value (��); L�(Xt) + ��(Xt) = 0 we have:

dZt = e
�t [�0(Xt)�(Xt)dWt]

Integrating this expression,

Zt = Z0 +

Z t

0

e�s(�0(Xs)�(Xs))dWs

Since
R t
0
e�s(�0(Xs)�(Xs))dWs is a martingale, Zt is a Martingale (for u < t;

EuZt = Zu):Using this fact in (37) and the de�nition of Zt one concludes
that Et�1�(Xt; �) = e

��(�)��(Xt�1; �) = 0; as required.

Kessler and Sorensen show that the estimators so obtained are, u.r.c.,
consistent and asymptotically normal (by using the Martingale Central Limit
Theorem, (Billingsley, 1961)).

The consistency and asymptotic normality of the estimators derived by
Kessler and Sorensen do not require the assumption, as the analysis in section
4 did, that the time between observations tends to zero. This is an important

advantage of such estimators, since � ! 0 is usually not observed by real
data.

6 GMM Estimation

As detailed in the seminal paper by Hansen (1982), a GMM estimator is
obtained by minimizing a criterion function of sample moments which are
derived from orthogonality conditions. Hansen and Scheinkman (1995) show
how to generate moment conditions for continuous-time Markov processes
with discrete-time sampling. The basic idea pursued by the authors is that
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such processes can be characterized by means of forward or backward in�n-
itesimal generators (see section 3). Also, when the processes are stationary
these generators can be employed to derive moment conditions that can be
used for estimation purposes by the application of Hansen�s (1982) GMM.

Note that, by the law of iterated expectations:Z
Rn
fdQ =

Z
Rn
�tfdQ (38)

Using the framework developed in section 3, since 1
t
(�tf � f) converges in

L2(Q) to �tf; (38) implies:Z
Rn
�fdQ = lim

t!0

1

t

Z
Rn
(�tf � f)dQ = 0

and the (�rst set of) moments conditions13:

E [�f(Xt)] = 0 for all f 2 	 (39)

This is a well-known link between the generator and the stationary dis-
tribution. A second set of moment conditions is derived by the authors using
the reverse-time process:

E
�
�f(Xt+1) �f(Xt)� f(Xt+1)�� �f(Xt)

�
= 0 for all f 2 	; �f 2 �	 (40)

where �f and �	 are de�ned as in section 3, but now with respect to the
reverse process. Note that only the second set of moments, by depending on
the variables measures in two consecutive points of time, directly captures
the Markovian features of the model.
In practice, GMM estimation usually starts with the employment of an

Euler-Maruyama discretization. Using the notation here developed, take, for
instance, the di¤usion process:

dXt = g(Xt)dt+ �dWt

By using the Eulyer-Maruyama approximation:

Xt �Xt�1 = g(Xti�1) + �(Xti �Xti�1)

Next, de�ne eti = Xti�Xti�1�g(Xti�1); fti = (Xti�Xti�1�g(Xti�1))
2��2�t

and zt = (eti ; fti ; Xti�1eti ; Xti�1fti): Under the null, Et�1zti = 0: Replace this
conditional expectation by its sample counterpart to obtain a quadratic form,
the maximization of which leads to the parameter estimates (see the second
example below).

13Remember the de�nition of 	 from Section 3.
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Example 7 Consider the di¤usion process:

dp = �a(p� �)dt+ �dWt; p(0) = p0 > 0; a > 0 (41)

Campbell et al. (1997) present a heuristic development of this example. The
direct use of the results we proved in section 3, though, allows for a direct
formal approach. Taking f as the identity function and applying the generator
� to (41):

�(dp) = �a(p� �) (42)

Using (39) leads to the �rst moment condition:

Ep = � (43)

Now, instead of taking f = I (Identity) in the above procedure, take a generic
test function f (for instance, f(:) = (:)n; n 2 N): Make Yt = f(pt) and apply
Itô�s Lemma:

df(pt) = dYt =

�
�f 0(p)a(p� �) + 1

2
f 00(p)�2

�
dt+ f 0(p)�dW

Using (39) once more:

E

�
�f 0(p)a(p� �) + 1

2
f 00(p)�2

�
= 0 (44)

Using (40):

E

��
�a(p� �)�0(Xt+1) +

1

2
�2�00(Xt)

�
��(Xt)� �(Xt+1)

�
�a(p� �)��0(Xt) +

1

2
�2��

00
(Xt

��
= 0

Equations (39) and (40) de�ne an in�nite number of moment conditions,
depending on the choice of f: Under the regularity conditions provided by the
authors, GMM can then be applied.

Example 8 As a second example, and also for the purpose of comparison
with one of the other estimation procedures we have seen in this paper, let�s
go back to the CIR-SR model of interest rates presented in section 2 and in
example 4. Chan et al. (1992) estimate this process using GMM. Denoting by
Xt the interest rate at time t, these authors estimate a discrete time version
of the CIR-SR model given by:

Xt+1 �Xt = �+ �Xt + �t+1
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in which E �t+1 = 0 and E(�t+1)2 = �2Xt. The estimation goes as follows.
Make � = (�; �; �2). Next, de�ne:

ft(�) =

2664
�t+1
�t+1Xt

�2t+1 � �2Xt

(�2t+1 � �2Xt)Xt

3775
Under the null, Eft(�) = 0: The estimators associated with the GMM method
are then found simply by replacing Eft(�) with its sample counterpart. The
process leads to a minimization of a quadratic form.

Example 9 (Brazilian Financial Time Series) For an estimation of the

CIR-SR model (and other interest-rate models as well) with Brazilian �nan-
cial time series, the reader can refer to Barrossi-Filho and Genaro Dario
(2003). In another section of the paper, these authors also use Monte Carlo
simulation methods to compare �nite-sample distribution properties of the
GMM and of the Euler-Maruyama approximation.

7 Comparing Di¤erent Estimators

Comparisons of the estimators studied in this (partial) survey are relatively
scarce in the literature. Changes of the time interval used for the simula-
tions is one reason for this. The unavoidable aliasing phenomenon (the fact
that distinct continuous-time processes may look identical when sampled at
discrete points of time), can lead to di¤erent results, making it extremely dif-
�cult to make general statements about relative e¢ ciencies of one or another
estimator.
Checking the in�uence of changes in discrete-time sampling interval re-

quires repeating the experiments several times (once the number of sample
paths has been set, depending upon the discrete time intervals, the number
of sample points will, of course, vary accordingly).
There is still the problem that, when the di¤usion term is state dependent,

it is possible that the numerical values of the sample path diverges, because
the variance becomes large. This usually implies the necessity of a transfor-
mation of variables (in order to obtain a stochastic di¤erential equation with
a constant di¤usion coe¢ cient), and of a reversal of the transformation later.
Shoji and Osaki (1997) is one of the few examples performing such com-

parisons. This paper develops Monte Carlo experiments using �ve di¤erent
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methods of obtaining MLE estimators (including the Euler-Maruyama ap-
proach and GMM, both of which we have reviewed here). Two di¤erent di¤u-
sion processes are considered, the �rst with linear drift and state-dependent
di¤usion coe¢ cients and the other with nonlinear drift and constant di¤usion
coe¢ cients:

dXt = (�+ �Xt)dt+ �XtdWt (45)

and
dXt = �X

3
t dt+ �dW (46)

In the experiments, the number of sample paths is �xed and the number
of sample points varies depending upon the discrete time interval. Note, in
(45), that the di¤usion term is state dependent, thereby causing the type
of problem we have mentioned above in this section, requiring a change of
variable.
After making Monte Carlo simulations, these authors concluded, regard-

ing (45), that the GMM performed somewhat inferior to the Euler-Maruyama
approach (a poorer performance of GMM estimators is also found by Barrossi-
Filho and Genaro Dario (2004)). The GMM, though, did a little better in
(46) than in (45).
The interested reader can refer to Jiang and Knight (1999) and Mykland

and Ait-Sahalia (2000) for further study of the comparison among di¤erent
estimators. Jiang and Knight (1999) use Monte Carlo simulation to investi-
gate the �nite-sample properties of various estimators, including GMM esti-
mators and some others which we have not reviewed here. Ait-Sahalia and
Mykland (2000) provide a general method to compare the performance of
a variety of estimators of di¤usion processes, when the data are not only
discretely sampled in time but, in addition, the time separating successive
observations may possibly be random. GMM and the Euler-Maruyama ap-
proximation are among the methods assessed by these authors.

8 Conclusion

In this paper, we have provided a partial review of the literature regarding
the statistical estimation of di¤usion processes by investigating three of the
available estimation methods: an improvement of the Euler-Maruyama dis-
cretization scheme, the employment of Martingale Estimating Functions and
the application of Generalized Method of Moments (GMM).
In order to interest the reader in this important area of statistical re-

search, we have provided several examples, a �nal section with a brief review
of a comparison between the performance of two of the methods that we
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have investigated, as well as detailed formalizations of some of the analyt-
ical developments made in the original texts. This is an area of research
that is presently very active and of particular interest to economists, partic-
ularly, at the present stage, because of its several applications in �nance and
macroeconomics.
A research parallel to this one involves studying the statistical conse-

quences of the random sampling (as opposed to the e¤ects on which we have
concentrated here, of the discrete sampling) of the di¤usion processes. Ait-
Sahalia and Mykland (2003) are a seminal reference in this area, where a
new body of research is expected to emerge.
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[549] Márcio Ant̂onio Salvato, F́abio Augusto Reis Gomes, e João Victor Issler.Prin-
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