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Abstract

In this paper I obtain the mixed strategy symmetric equilibria of
the first-price auction for any distribution. The equilibrium is unique.
The solution turns out to be a combination of absolutely continuous
distributions case and the discrete distributions case.

1 Introduction

In the early literature1 on auction theory there are two papers that deal
with the sale of one object by sealed bid first price auctions: Vickrey (1961)
and Griesmer, Levitan and Shubik (1967). Vickrey analyses a symmetric
first-price auction with several bidders and a uniform distribution of types.
He also analyses two asymmetric models. One with two bidders and two
uniform distributions with distinct supports. His analysis is incomplete in
this case and supposing one of the distributions degenerated he proceeds
with a complete analysis. The paper by Griesmer, Levitan and Shubik gives
a detailed treatment of the two firms with two distinct intervals of costs,
uniformly distributed case. Perhaps these two papers justify the present
predominance of the symmetric model. They show– by example– that even

∗I acknowledge the comments of Carlos da Costa.
†I acknowledge the financial support of CNPQ
1Here I follow P. Klemperer’s (2000).
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the most natural generalization2 originates a forest of complications and a
need for a very careful analysis. In this paper I consider private values,
symmetric, first-price auctions. My focus will be conceptual. To understand
my motivation let me look at two usual although diametrically opposite cases.
The most common assumption on the distribution of bidders valuations,
F : [a, b] → [0, 1], is that it has a strictly positive density, f = F ′. The
equilibrium bidding function is easy to find3 and has a nice interpretation:
it is the expected value of the second highest valuation given that the bidder
has the highest valuation. The opposite case of a discrete distribution is
considered mainly for examples.4 The equilibrium in the discrete case is in
mixed strategies. There is also a kind of monotonicity in that a bidder with
a higher valuation always bids higher than bidders with lower valuations. To
see this briefly consider a two types distribution, say each type v ∈ {0, 1}
occurs with probability 1

2
. Then a bidder with v = 0 bids 0 and a bidder

with v = 1 bids in the interval [0, b] with probability G (b) = b
1−b

, 0 ≤ b ≤ 1
2
.

What is the equilibrium if the distribution, F , is not absolutely continuous
and is not discrete? We will see that the symmetric equilibrium exists and
has two parts. A pure strategy part at the points of continuity of F and a
mixed strategy part at the points of discontinuities of F .

The second result of the paper is the unicity of the symmetric equilibrium.
It is possible that the equilibrium be unique not only amongst the symmetric
ones. This is probably very difficult to prove in the general case. For example
the techniques of Maskin and Riley (2003) and more recently Lebrun (2006)
uses differential equations.

The last result in the paper find the equilibrium if the set of types is
multi-dimensional. This will be easy. Its main interest being to show that
neither monotonicity nor continuity plays a role in the general case.

2 Preliminaries

In this section I collect some basic definitions and auxiliary results. I begin
recalling the definition of a distribution.

Definition 1 A function F : R → [0, 1] is a distribution if

1. F is increasing: x < y ⇒ F (x) ≤ F (y) ;

2Like distinct supports of uniform distributions.
3Namely b (x) =

R x
a

yF n−1(y)f(y)dy

F n−1(x) .
4Thus Riley (1989) use a discrete distribution to present in simple mathematical terms

the revenue equivalence theorem.
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2. F is right-continuous: F (x) = limy↑x F (y) and

3. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

If F is a distribution so is Fm for every m > 0. If F is a distribution
define

v := inf {x : F (x) > 0} and

v̄ := sup {x; F (x) < 1} .

Throughout this paper I suppose that ∞ > v̄ > v ≥ 0. Abusing notation, I
denote by F the restriction F |[v,v̄]. This entails no confusion. Define C as the
set of continuity of F |[v,v̄] and D the set of discontinuities of F |[v,v̄]. Then D
is countable.5 Moreover

D = {x ∈ (v, v̄]; F (x) > F (x−)} .

As usual F (x−) := sup {F (y) ; y < x} = limy↑x F (y). The following func-
tion is the main ingredient of the equilibrium strategy:

Definition 2 Define bF : [v, v̄] → R by bF (v) = v and

bF (v) = v −
∫ v

v
F n−1 (y) dy

F n−1 (v)
, v ∈ (v, v̄]. (1)

Remark 1 It is easy to check, using integration by parts that

bF (v) =

∫ v

v− ydF n−1 (y)

F n−1 (v)
. (2)

This expression shows that bF can be interpreted as the expected value of the
second highest valuation given that the highest valuation is v. If F has a

density f we may rewrite bF (v) =
R v

v y(n−1)F n−2(y)f(y)dy

F n−1(v)
.

In the next lemma I prove the basic properties of bF .

Lemma 1 The following properties are true:

(i) bF (v) < v if v > v;

(ii) F (v′) < F (v′′) if and only if bF (v′) < bF (v′′);

5Since F is monotonic.
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(iii) bF is right-continuous, increasing and

{x ∈ [v, v̄]; bF is continuous at x} = C.

(iv)
(v − b (v−)) F n−1 (v−) = (v − b (v)) F n−1 (v) . (3)

Proof:

(i) Suppose v > v. The definition of v implies that F (y) > 0 in a neighbor-
hood of v. Thus

∫ v

v
F n−1 (y) dy > 0 and from (1), bF (v) < v.

(ii) Suppose F (v′) < F (v′′) . Then v′ < v′′ and writing b = bF :

b (v′′) =

∫ v′′

v− ydF n−1 (y)

F n−1 (v′′)
=

∫ v′

v− ydF n−1 (y) +
∫ v′′

v′
ydF n−1 (y)

F n−1 (v′′)
=

b (v′) F n−1 (v′) +
∫ v′′

v′
ydF n−1 (y)

F n−1 (v′′)
.

Thus using (i) above,
∫ v′′

v′
ydF n−1 (y) > b (v′) (F n−1 (v′′)− F n−1 (v′))

and b (v′′) > b (v′) . Now if F (v′) = F (v′′) then
∫ v′′

v′
ydF n−1 (y) = 0 and

b (v′′) = b (v′) .

(iii) From (1) the right-continuity of bF follows directly from the right-

continuity of F . The left limit of b is b (v−) = v −
R v

v F n−1(y)dy

F n−1(v−)
. Thus

b is continuous at v if and only if F is continuous at v. Moreover b is
discontinuous at v if and only if b(v−) < b(v).

(iv) This item follows from

(v − b (v)) F n−1 (v) =

∫ v

v

F n−1 (y) dy = (v − b (v−)) F n−1 (v−) .

QED
The next lemmas finishes our preliminary work.

Lemma 2 For any v ∈ [v, v],

max
y

(v − b (y)) F n−1 (y) = (v − b (v)) F n−1 (v) .
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Proof: Rewrite

(v − b (y)) F n−1 (y) = vF n−1 (y)− b (y) F n−1 (y) =∫ y

v−
vdF n−1 (x)−

∫ y

v−
xdF n−1 (x) =

∫ y

v−
(v − x) dF n−1 (x) .

Since v − x ≥ 0 if and only if x ≤ v the last integral is maximized at y = v.
QED

Lemma 3 Suppose v ∈ D and v > v. Then the following is true:

1. The function Gv : [b (v−) , b (v)] → [0, 1]

Gv (x) =
F (v−)

F (v)− F (v−)

(
−1 +

(
v − b (v−)

v − x

) 1
n−1

)
, (4)

is a continuous, strictly increasing distribution.

2. For any x ∈ [b (v−) , b (v)],

(v − x)
(
F (v−) + (F (v)− F (v−)) Gv (x)

)n−1
= (v − b (v)) F n−1 (v) .

(5)

Proof: (1) It is immediate that Gv (b (v−)) = 0 and that Gv is continuous.
Moreover since v − b (v−) > 0 the function Gv is strictly increasing. Finally
using (3) we have that

Gv (b (v)) =
F (v−)

F (v)− F (v−)

(
−1 +

(
v − b (v−)

v − b (v)

) 1
n−1

)
=

F (v−)

F (v)− F (v−)

(
−1 +

(
F n−1 (v)

F n−1 (v−)

) 1
n−1

)
= 1.

(2) Suppose x ∈ [b (v−) , b (v)] . Then

(F (v)− F (v−)) Gv (x) + F (v−) = F (v−)

(
v − b (v−)

v − x

) 1
n−1

.

Therefore

(v − x) ((F (v)− F (v−)) Gv (x) + F (v−))n−1 =

F n−1 (v−) (v − b (v−)) = F n−1 (v) (v − b (v)) .

QED
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3 The equilibrium

There are n bidders participating in a first-price auction. Values are private
and bidders types are independent identically distributed according to the
distribution F : [v, v] → [0, 1] . The equilibrium is in mixed strategies. How-
ever it is not very wild. The mixed part occurs only at the discontinuities of
F (which are countable). Moreover the support of the mixed strategies are
non-intersecting and monotonic.

The equilibrium strategy is composed of two parts. First if v ∈ [v, v] ∩ C
the bidder bids b (v) where b = bF is defined by (1). If v ∈ D the bidder
bids the mixed strategy µGv . Thus for every x ∈ [b(v−), b(v)] he bids in the
interval [b (v−) , x] with probability Gv (x) . Define M = (µv)v∈[v,v̄] where

µv =

{
pure strategy b (v) if v ∈ C,
mixed strategy Gv if v ∈ D.

Thus the pure strategy b (v) is played at the continuity points of the distribu-
tion and the mixed strategy Gv is played if the distribution is discontinuous
at v. I need the distribution of bids generated by M. The next two lemmas
complete this step.

Lemma 4 For every x ∈ [v, b (v̄)] there exists the smallest ω ∈ [v, v̄] such
that b (ω−) ≤ x ≤ b (ω) .

Proof: Define for x ∈ [v, b (v̄)], ωr = ωr (x) := inf {ω; b (ω) ≥ x}. From the
right-continuity of b we conclude that x ≤ b (ωr). For any ω < ωr it is true
that b (ω) < x and therefore b (ωr−) ≤ x. That ωr is the smallest is clear
from its definition. QED

The following corollary is follows immediately:

Corollary 1 Let Bi be the random variable of bidder i bids. The distribution
of Bi is

Pr (Bi ≤ x) = F (ωr−) + (F (ωr)− F (ωr−)) Gωr (x) .

In particular Pr (Bi = x) = 0 for every x > v.

Theorem 1 The mixed strategy M is a symmetric equilibrium of the first-
price auction.

Proof: Suppose bidders i = 2, . . . , n bids the mixed strategy M. Suppose
bidder 1 has valuation v. The corollary above shows that if bidder 1 bids
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x the probability of a tie is null. Thus if he bids x = b (y−) + δ, 0 ≤ δ ≤
b (y)− b (y−), his expected utility is

φ = (v − x)
(
F (y−) + (F (y)− F (y−)) Gy (x)

)n−1
.

From lemma (5),

(y − x)
(
F (y−) + (F (y)− F (y−)) Gy (x)

)n−1
= (y − b (y)) F n−1 (y) .

Therefore

φ =
v − x

y − x
(y − b (y)) F n−1 (y) .

Since6 φ increases in x if and only if v > y it follows that:

if v > y, φ ≤ (v − b (y)) F n−1 (y) ;

if v < y, φ ≤ v − b (y−)

y − b (y−)
(y − b (y)) F n−1 (y) =

(v − b (y−)) F n−1 (y−) = (v − b (y)) F n−1 (y) .

In any case

φ ≤ (v − b (y)) F n−1 (y) ≤ (v − b (v)) F n−1 (v) .

Thus y = v is the best reply. And if v is a point of discontinuity, x ∈
[b (v−) , b (v)] is bid accordingly to Gv (·) is a best response. QED

4 Unicity of the mixed strategy equilibrium

In this section I show that the mixed strategy equilibrium M is unique.

Theorem 2 Suppose Υ = (τv)v∈[v,v] is a mixed strategy symmetric equilib-
rium. Then Υ = M.

To simplify the notation a bit I suppose v = 0. Define H i as the distri-
bution of bids of i when Υ is played. Thus H = H1 = . . . = Hn and

H (x) =

∫ v̄

0−
τy [0, x] dF (y) .

Define also G as the distribution of the maximum bid of bidders j 6= i. Thus
G (x) = Hn−1 (x) . Denote by P the set of Borelean probabilities measures
on R. The following lemma is basic.

6Note that d
dx

(
v−x
y−x

)
= v−y

(y−x)2
.
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Lemma 5 Suppose φ : R → R is measurable and bounded, µ̄ ∈ P and that∫
φ (z) dµ̄ (z) = sup

µ∈P

∫
φ (z) dµ (z) .

Then φmax := maxz∈R φ (z) exists and µ̄ ({z; φ (z) 6= φmax}) = 0.

Proof: Define M = sup φ (R). Let δx denote the Dirac measure at x ∈ R.
Then{∫

φ (z) dµ (z) ; µ ∈ P
}
⊃
{∫

φ (z) dδx (z) ; x ∈ R
}

= {φ (x) ; x ∈ R} .

Thus

M ≥ sup
µ∈P

∫
φ (z) dµ (z) ≥ M.

Therefore ∫
(M − φ (z)) dµ̄ (z) = M −

∫
φ (z) dv̄ (z) = 0.

Hence φ (z) = M for almost every z with respect to µ̄ and therefore the
supremum is achieved and µ̄ ({z; φ (z) 6= φmax}) = 0. QED

Let us now consider bidder i with valuation v. Since Υ is an equilibrium the
best reply is τv. If there is a tie we suppose that the tie is solved with equal
probability amongst the winners. Thus if a bidder i bids x he wins with
probability

G̃ (x) =
n−1∑
j=0

(n− 1)!

j! (n− 1− j)!
Hn−1−j (x−) · (H (x)−H (x−))j

j + 1
. (6)

Thus ∫
(v − b) G̃ (b) dτv (b) = sup

τ∈P

∫
(v − b) G̃ (b) dτ (b) .

The lemma above implies that

Av =

{
x̄ ≥ 0; (v − x̄) G̃ (x̄) = max

x≥0
(v − x) G̃ (x)

}
6= ∅, (7)

and τv (Ac
v) = 0.

Lemma 6 For every v > 0, H (v) > 0.
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Proof: Let ṽ = inf {v; H (v) > 0} . Suppose ṽ > v ≥ 0. If τv(ṽ, v̄] > 0

then there is a b′ > ṽ such that b ∈ Av. However (v − b′) G̃ (b′) < 0 since

G̃ (b′) ≥ Hn−1 (b′−) > 0. Thus τv(ṽ, v̄] = 0. From

H (ṽ) =

∫ v̄

0−
τy[0, ṽ]dF (y) ≥ F (ṽ−) > 0

we conclude that H (ṽ) > 0. Thus since G̃ (ṽ) ≥ Hn−1 (ṽ) > 0 the reasoning
above implies ṽ /∈ Av. Hence τv[0, ṽ) = 1 for every v < ṽ. Now

0 = H (ṽ−) =

∫ v̄

0−
τy[0, ṽ)dF (y) ≥ F (ṽ−) > 0,

a contradiction. Therefore ṽ = 0. QED

Lemma 7 For any v the distribution H is continuous on Av.

Proof: First note from expression (6) that H (x) = H (x−) if and only if

G̃ (x) = Hn−1 (x) . Now if b̄ ∈ Av and bm ↓ b̄ through points of continuity of

H then G̃ (bm) = Hn−1 (bm) and

G̃
(
b̄
)

= lim
m→∞

G̃ (bm) = lim
m→∞

Hn−1 (bm) = Hn−1
(
b̄
)
.

Thus H
(
b̄
)

= H
(
b̄−
)
. QED

Lemma 8 If v′ < v′′ then sup Av′ ≤ inf Av′′ .

Proof: Suppose v′ < v′′ and that there exist b′ ∈ Av′ , b
′′ ∈ Av′′ such that

b′′ ≤ b′. It is always true that

(v′ − b′) G̃ (b′) ≥ (v′ − b′′) G̃ (b′′) , and

(v′′ − b′′) G̃ (b′′) ≥ (v′′ − b′) G̃ (b′) .

Adding and collecting terms (v′′ − v′)
(
G̃ (b′′)− G̃ (b′)

)
≥ 0. Hence

Hn−1 (b′′) = G̃ (b′′) ≥ G̃ (b′) = Hn−1 (b′). Thus H (b′) = H (b′′) > 0. This
implies

v′ − b′ ≥ v′ − b′′

and therefore b′ ≤ b′′. Thus b′ = b′′. QED

Lemma 9 Suppose now that #Av > 1. Then v ∈ D.
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Proof: Take b′, b′′ ∈ Av, b′ < b′′. Thus (v − b′) G̃ (b′) = (v − b′′) G̃ (b′′).
Therefore

Hn−1 (b′′) = G̃ (b′′) > G̃ (b′) = Hn−1 (b′) .

Thus H (b′′) > H (b′) . Now if ε < b′′ − b′l,

0 < H (b′′ − ε)−H (b′) =

∫
(τy ([0, b′′ − ε])− τy ([0, b′])) dF (y) =∫

τy(b
′, b′′ − ε]dF (y) = τv(b

′, b′′ − ε] (F (v)− F (v−)) . (8)

In (8) I used Lemma 8. Thus F (v)− F (v−) > 0. QED

Lemma 10 For every b ≥ 0, v ∈ D we have that τv (b) = 0. In particular H
is continuous in (inf Av, sup Av) .

Proof: If b /∈ Av then 0 ≤ τv (b) ≤ τv (Ac
v) = 0. If b ∈ Av then

0 = H (b)−H (b−) =

∫
τy {b} dF (y) .

Therefore τy {b} = 0 for almost every y with respect to F. Hence τv {b} = 0.
QED

Lemma 11 Suppose b′ < b′′ are elements of Av, v ∈ D. Then (b′, b′′) ∩Av 6=
∅.

Proof: Since (v − b′) Hn−1 (b′) = (v − b′′) Hn−1 (b′′) and b′ < b′′ it follows
that H (b′′) > H (b′) . Now

0 < H (b′′)−H (b′) =

∫
τy(b

′, b′′]dF (y) = τv(b
′, b′′] (F (v)− F (v−))

and therefore τv (b′, b′′) = τv(b
′, b′′] > 0 ending the proof.

Lemma 12 For every v ∈ D, Av ⊃ (inf Av, sup Av) .

Proof: Suppose v ∈ D. For any x ∈ (inf Av, sup Av) define

x̄ = inf {b ∈ Av; b > x} .

If x̄ /∈ Av there exist bl ∈ Av bl ↓ x̄. Then if we define

φmax = max
{

(v − b) G̃ (b) ; b ≥ 0
}
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it is true that

φmax = (v − bl) Hn−1 (bl) → (v − x̄) Hn−1 (x̄−) = (v − x̄) G̃ (x̄) .

Thus x̄ ∈ Av. Analogously we define x :

x = sup {b ∈ Av; b < x} .

Thus x ∈ Av. Now if x < x̄ then (x, x̄) ∩ Av = ∅ a contradiction. Hence
x = x̄ = x. QED

Define b (v) as the pure strategy played when v ∈ C. And if v ∈ D define
b (v) = infω>v b (ω). Thus b is increasing and right-continuous. We have that

H (b (v)) =

∫
τy ([0, b (v)]) dF (y) = F (v) .

Theorem 3 For every v, b (v) = bF (v) .

Proof: Suppose v ∈ C. Then for every ω ∈ C,

(v − b (v)) F n−1 (v) ≥ (v − b (ω)) F n−1 (ω) .

By the right-continuity of b and F this is also true for every ω and for every
v. The inequality above is equivalent to

v
(
F n−1 (v)− F n−1 (ω)

)
≥ b (v) F n−1 (v)− b (ω) F n−1 (ω) .

Interchanging v with ω we get:

ω
(
F n−1 (ω)− F n−1 (v)

)
≥ b (ω) F n−1 (ω)− b (v) F n−1 (v) .

Thus for every v and ω :

v
(
F n−1 (v)− F n−1 (ω)

)
≥ b (v) F n−1 (v)− b (ω) F n−1 (ω) ,

b (v) F n−1 (v)− b (ω) F n−1 (ω) ≥ ω
(
F n−1 (v)− F n−1 (ω)

)
. (#)

Take ω0 = v < ω1 < . . . < ωN = v̄ a partition of [v, v̄] such that
maxj |ωj+1 − ωj| < 1

N
. We have that

ωj+1

(
F n−1 (ωj+1)− F n−1 (ωj)

)
≥ b (ωj+1) F n−1 (ωj+1)− b (ωj) F n−1 (ωj)

∫ N−1∑
j=0

ωj+1χ(ωj ,ωj+1] (y) dF n−1 (y) =
N−1∑
j=0

ωj+1

(
F n−1 (ωj+1)− F n−1 (ωj)

)
≥

N−1∑
j=0

(
b (ωj+1) F n−1 (ωj+1)− b (ωj) F n−1 (ωj)

)
= b (v) F n−1 (v) .
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Since

sup
v≤y≤v̄

∣∣∣∣∣
N∑

j=1

ωj+1χ(ωj ,ωj+1] (y)− y

∣∣∣∣∣ ≤ max
j
|ωj+1 − ωj| <

1

N

by making N →∞ we get:∫ v

v−
ydF n−1 (y) ≥ b (v) F n−1 (v) . (9)

The other inequality is obtained from the inequality in (#). QED

Thus the pure strategy part is unique. The unicity of the mixed strategy is
proved in an analogous manner.

Theorem 4 The mixed strategy τv is unique for each v ∈ D.

Proof: Let us consider v ∈ D. Suppose b ∈ Av, b < sup Av. Then

H (b)−H (b (v−)) =

∫
τy(b (v−) , b]dF (y) = τv(b (v−) , b] (F (v)− F (v−)) .

Therefore

H (b) = F (v−) + τv(b (v−) , b] (F (v)− F (v−)) .

Since τv cannot have mass points,

(v − b)
(
F (v−)+τv(b (v−) , b] (F (v)− F (v−))

)n−1
= (v − b (v−)) F n−1 (v−) .

Therefore

τv(b (v−) , b] =

(
−1 +

(
v − b (v−)

v − b

) 1
n−1

)
F (v−)

F (v)− F (v−)
.

QED

5 Example and application.

I now show how the general multi-dimensional set of types case is reduced
to a one dimensional case in complete generality. Suppose the set of types
is the probability space (T, T , P ). A bidder with type t ∈ T has a utility
U (t) when receiving the object. The function U : T → R is bounded and
measurable. Define

F (x) = Pr (U (t) ≤ x) , x ∈ U (T )
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the distribution of U. Define v = inf U(T ) and v̄ = sup U(T ). Define also
bU = bF ◦ U and GU

t = GU(t). The equilibrium is then to bid bU (t) if F
is continuous at U (t) and the mixed strategy GU

t if F is discontinuous at
U (t) . I finish with an example showing how to calculate the mixed strategies
support.

Example 1 Suppose there are two bidders and three possible valuations v ∈
{0, 1, 2} . And

Pr (v = 0) = a,
Pr (v = 1) = b
Pr (v = 2) = 1− a− b

, a > 0, b > 0, a + b < 1.

The bidders with a zero valuation bids 0. A bidder with valuation 1 bids in
the interval [b (1−) , b (1)] ,

b (1−) = 0, b (1) =

∫ 1

0− ydF (y)

F (1)
=

b

a + b
.

A bidder with valuation 2 bids in the interval [b (2−) , b (2)] :

b (2−) =

∫ 2−
0− ydF (y)

F (2−)
=

b

a + b
, b (2) = 2 (1− a− b) + b = 2− 2a + b.

If a = b = 1/2 we recover the example in the introduction.
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mes.Produtividade Agregada Brasileira (1970–2000): declı́nio robusto e fraca
recuperaç̃ao. Ensaios Econ̂omicos da EPGE 594, EPGE–FGV, Jul 2005.
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[606] Marcelo Ĉortes Neri, Luisa Carvalhaes, e Alessandra Pieroni.Inclus̃ao Digital
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