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ARE ONE-SIDED S sRULES

USEFUL PROXIESFOR OPTIMAL PRICING RULES?

MARCO BONOMO
GRADUATE SCHOOL OF ECONOMICS
GETULIO VARGAS FOUNDATION
Praia de Botafogo 190 sala 1125, Rio de Janeiro, RJ 22253-900, Brad|

e-mail: bonomo@rfgv.br

Abstract

This article is motivated by the prominence of one-sided Ssrulesin the literature and by the unrealistic strict
conditions necessary for their optimality. It aims to assess whether one-sided pricing rules could be an
adequate individual rule for macroeconomic models, despite its suboptimality. It aims to ansaer two questions.
Firg, ance agents are not fully rational, is it plausible that they use such a non-optimal rule? Second, even if the
agents adopt optimal rules, is the economist committing a serious mistake by assuming that agents use one-sided Ss
rules? Using parameters based on real econonmy data, we found that since the additional cost involved in
adopting the simpler rule is relatively small, it is plausible that one-sided rules are used in practice. We also
found that suboptimal one-sided rules and optimal two-sided rules are in practice similar, since one of the
bounds is not reached very often. We concluded that the macroeconomic effects when one-sided rules are
suboptimal are similar to the results obtained under two-sided optimal rules, when they are close to each other.

However, thisis true only when one-sided rules are used in the context where they are not optimal.

! This paper is a revised verson of chapter 2 of my Ph.D. dissertation (Princeton Universty,
1992), origindly entitled “ Optimal Two-Sided and Suboptimal One Sided State-Dependent Pricing
Rules’. | am grateful to Larry Ball for useful discussons, and Avinash Dixit, and an anonymous for
helpful suggedtions It was firg presented at the X1 Latin American Meeting of the Econometric
Society, in Mexico, August 1992, where | benefited from Peter Diamond's ingghtful comments |
as thank Marcos Antonio Coutinho da Slveira and Carlos Viana de Carvalho for excellent
research assgance. Financia support from CNPq is gratefully acknowl edged.



1. INTRODUCTION

Some recent literature in macroeconomics was dedicated to sudy the macroeconomic
implications of individuas adopting one-5ded Ssrules (e.g., Blinder (1981), Caplin (1985), Caplin
and Spulber (1987), Caballero and Engel (1991,1993), Foote (1998), Tsddon (1991)).

The growing interes in one-dded Ss rules reflects in part the attention shift from time-
dependent to date-dependent policies. State-dependent policies have well-known microeconomic
foundations” and their macroeconomic implications had been little explored until a few years ago.
The focus of the sate-dependent literature on one-sded Ssrules can be judtified on the grounds of
the latter being a reasonable description of redlity. Thisis especialy true in the context of pricing
policy. Other reasons for the emphads are the tractability and the appealing results obtained with
this smple rule. One example of the latter is the money neutrality result of Caplin and Spulber
(1987)".

Given the prominence of the one-9ded Ss pricing policies in the literature, it is time to

devote some effort to the evaluation of their plausibility. This paper intends to reduce this gap’. It

*Sheshinski and Weiss (1977,1983), Caplin and Sheshinski (1987) and Bénabou (1988) derive
one-9ded Sspricing rulesasoptimal policiesin different settings

* A Taylor type of time-dependent rule requires a non-natural assumption about the adjustment
cogs. that the cost of change price cannot be dissociated from the cost of observe the level of
the frictionless optimal process (see Bonomo and Carvalho 1999).

* Thisisaparticular instance of amore general property, which is obtained when the
frictionlessoptimal level of the control variable ismonotonic: if the digtribution of the individual
deviations of the controlled variable from the frictionless optimal level isuniform, the average
deviation isaways condant (see, for example Caballero and Engel (1991) for that and other
E)roperti es).

Thiswork isrelated to Taddon (1993), but its purpose isdifferent. There asuboptimal one-Sded
rule iscalculated only because it has a closed-form ol ution when there isno time discounting. It is
assumed that it is close enough to the optimal two-sded rule to yield agood andytical
approximation to it. Here, because we allow for time discounting, the one-Sded rule does not have
thisanalytical convenience. Rather than assuming the validity of the approximation, our goal isto
asessits pertinence, and our motivation for doing that isto assess how plausble one-sded
suboptimal rulesare.



does it under two aspects’. Fird, since agents are not fully rational, it investigates whether it is
plausble that they actually use such a non-optimal rule. Second, assuming that agents adopt optimal
rules, it evaluates whether the economig is committing a serious misake by assuming that agents
use one-sded Ssrules. In the remaining part of thisintroduction, we explain the approach we used
to answer to appraise those issues.

A date-dependent rule is a natural outcome when there is a determinigtic and non-convex
cog of adjustment.” In this context, we use the term frictionless optimal level to denote the optimal
level of the control variable in the absence of adjusment coss Since optimal adjugments are
infrequent, usually the level of the control variable differs from the frictionless optima level. The
discrepancy between the level of the control variable and its frictionless optimal level is often the
date-variablein thiskind of problen’’. A two-sded rule’ entails both an upper and a lower bound to
thisdiscrepancy, while aone-Sded rule limitsthe discrepancy in only one direction.

The issue in question concerns the conditions for the optimality of the one-dded Ssrule. It
arises because optimality of one-Sded rulesrequires a grict hypothess for the sochagtic process of
the frictionless optimal level of the control variable, which in some applicationsis hardly satisfied™:
that itslevel is monotonic with respect to time. When the contral variable isthe price charged by an
agent, this means that the frictionless optimal level for an individual price never decreases If the

frictionless optimal level of the control variable follows a process that has a trend, but it is not

® Another type of evaluation is provided by Tommas (1996), which eval uates the performance
of one-sded S,srulesasaforecas rule. Hisfindings are that S,srules have a better relative
E)erformance for high inflation, but perform poorly at hyperinflation.

Other recent work consder sochastic adjustment cods, generating individual sochastic rules

e.g. Caballero and Engel 1999,and Dotsey, King and Wolman 1999).

In some few articles the adjustment problem has more than one state-variable (e.g. Bonomo
and Garcia 1998, and Conlon and Liu 1997).
® Caplin and Leahy (1991,1997), Caballero and Engel (1992), and Almeida and Bonomo
(1999) are examples of macroeconomic models based on two-sided pricing rules.
* Thisisclearly the case in pricing applications:



monatonic with repect to time, the optimal policy isatwo-sded rule.

If the drift islarge, when compared to the variance of shocks, it is possble that one of the
bounds will be very little active. For example, when average inflation is very high, when compared
to the variance, the discrepancy between the individua price and its frictionless level will have a
negative drift. Then, the probability that the deviation process increases by a given amount in a
certain interval of time also will be amal. Moreover, the upper bound of the band is likely to be
large. Thus, the probability that the deviation process reaches the upper barrier, in agiveninterval of
time, tends to be very small. Therefore, one may argue that, in practice, it isasif the policy were
one-gded.

One may also argue that in the case above, the loss involved in adopting a smpler
suboptimal one-sded Ssrule is very samall, and consequently the agents are likely to adopt such
rulesin that context. Thiscould be judified by near rationality or, dternatively, by the exigence of a
gmall extracog involved in usng a more complex rule.

Our objective isto assess the validity of those argumentsin the light of plausible parameter
valuesfor the frictionless optimal -price process Our formulation of the control problem is based on
Dixit (1991b), which developed an analyticaly smpler framework for the optima control of
Brownian Mations

Our smulations of both the optimal two-sded and the suboptimal one-sded pricing policies
with parameters for the frictionless optimal price process based on real economy data, show that
these policies are close to one ancther. Furthermore, the additional cogt of adopting a suboptimal
one-9ded rule issmdl, making the adoption of the Smpler suboptimal one-Sded rule plausble.

Because of their closeness, optimal two-9ded and suboptimal one-sded rules have smilar
macroeconomic consequences. However, it isimportant to notice that optimal and suboptimal one-

gded rulesresult from different conditionsfor the frictionless optimal price, and for that reason, they



entail different macroeconomic effects Suboptimal one-Sded rules do not produce the same kind of
neutrality results generated by optimal one-Sded rules. Even when a suboptimal one-sded rule is
close to optimal, there might be small negative shocks that have contractionary effects on output.
Those negative shocks have large effect, as compared to their magnitude. On the other hand, in this
context, pogtive shocks have relatively samall effects Thus, suboptimal one-Sded rules not only are
regligic microeconomic rules but also produce redligic macroeconomic effects generating
substantial price rigidity asymmetry, asfound in the data™.

We proceed asfollows. Section 2 characterizes the solution for the optimal policy, whichis
an asymmetric two-Sded rule, when the frictionless optimal value for the control variable follows a
Brownian motion with drift. It also solvesfor the best one-sded rule. Section 3 derivesthe expected
time until the upper (lower) bound is reached for the firg time. Section 4 makes a numerica
assessment of how close the optimal two-sded and the best one-dded rules are to each other
according to two approaches. Firg, it cal culates the expected time until the upper bound is attained,
which is an inverse measure of how often the upper bound is reached. Second, it evaluates the
additional cog incurred when the suboptimal one-sded Ss rule is adopted, indead of the optimal
one. It then analyses how sengtive the results are to changesin the parameter values Findly, we fix
time-discount and menu cogs parameters, and compare optimal two-sded and suboptimal one-
sded ruleswhen gochadtic processes for the frictionless optimal price are calibrated to replicate the
time pattern of the nominal aggregate demand in selected international experiences Section 5
gpecul ates about the possble macroeconomic implications of the results obtained. The lagt section

concludes.

“'Caballero and Engel (1992) study the effect of the drift and the variance of aggregate shocks
on the asymmetry of shock effects when individua firms adopt symmetric two-sded rules They
also edimate those effects from a pandl, which includes 37 countries Their estimates confirm the
exigence of subdantial asymmetry between the effects of pogtive and negative aggregate shocks



2. OPTIMAL TWO-SIDED AND SUBOPTIMAL ONE-SIDED RULES

In this section, we derive both the optimal pricing policy - which isan asymmetric two-Sded
rule - and the best one-sded palicy.

The following are the basc assumptions related to the individual agent's decison problem.
The optimal price of the firm follows a geometric Brownian motion. So the (uncongrained) optimal

value for the logarithm of the price charged by the firm, p’, will follow a Brownian motion, that is

dp, = mdt+ s dw (1)
where {ws} is a Wiener process However there is a lump-sum adjustment cog, k, which is paid

every time the price is changed, and there is a quadratic flow cogt for being away from the optimal
price. We assume that a deviation of the (log of the) control variable p from the uncongrained
optimal level p* brings an instantaneous flow cost h(p-p: )dt. Time is discounted at the continuous
rate, r , which iscongant through time.

Thisis what is called a problem of impulse contral. In this type of control problem, the
adjugment cog function makes optimal infrequent jumps of the control variable, indead of
continuous small adjugments. An impulse control problem, smilar to this was fird solved by
Harrison, Selke and Taylor (1983)."* Making use of a Smpler framework, Dixit (1991b) presents
the solution for clases of cog functions, which include the ones used here. We follow his
approach.

We define the cog function as the loss of value imposed by the exigence of adjustment

cods if the agent acts in an optimal way. Therefore, if there were no adjugment cods the agent

12

Following a different approach, Tsddon (1993) characterizesthe optimal policy for the



would st the control variable aways equal to the frictionless optimal value and the cogt function
would be identicaly to zero.

Formally, the cog function can be written as

C(x)= minE[c‘i hx?e"dt+ & ke | xo= x] (2)

where

X = pt_ p:
That is, the problem can be gated in terms of controlling the difference between the log of

the original control variable and the log of itsfrictionlessoptimal value. It isclear that if no contral is
exerted, x will follow a Brownian motion with drift h=-m and variance s=s. The problem consgs
infinding the optimal value for three numbers, a<c<b, such that if either a or b isreached, contral is
exercised and x isreset to .

If a<x<b, no jump takes place in a amal interval of time dt. Then, the cog function at time
zero can be written as the flow codt at the next infinitesmal interval of time plus the expectation of

the cog function at the end of thisinterval:

C(x)= hx*dt+e" " E[C(x+ dx. )| x = X] (4)
Since a<x<b, x isfollowing a Brownian mation at the next infinitesmal time. So, we can apply Ito's

Lemma to dC(x) and take expectations conditioned on the knowledge of x: to arrive at an
expresson for the expectation term in the equation above. Subdituting it into (4) and then

rearranging it, we obtain the following differential equation for C:

%s 2Cax)+ hC4¥)- r C()+ = 0 (5)

undiscounted problem.
** That the optimal resetting from both the upper and lower barrier is made to the ssme placeisa
feature of the lump-sum adjugment cods



which impliesthat C hasthe following general form:

2 2
C(X)= Ae™+ Be™+ h + th—+ h—+ 2hh— (6)
r r r

where:

(7)

The firg two terms in equation (6) are the solutions for the homogeneous equation. The
remaining ones conditute a particular olution, namely, the expected discounted cogt of the
uncontrolled process . The cost functions of the uncontrolled process and of any process controlled
by barriers follow the same differential equation (5)°. The control adds other retrictions that

determine the val ues of the congants A and B in the cod function (6).

A. The two-sided optimal rule
The Value Matching Conditions (VMC) date that the cod at a (b) should be equal to the

cogt at ¢ plus what is paid for moving from a (b) to c, that is k*°. So, V(a)= V(c)+k and

“This can be found by integrating the expression of the expected present value of the cost of the
uncontrolled process

“Thisis a feature of the differential approach where the probability of reaching a barrier at the
next infinitesmal time, from apoint indde the band, isaso infinitesmal.

*The VMC introduce mathematically the control into the solution. For chosen values a,c,b the
VMC dlow usto determine A and B, in order to find the cogt function generated by thispolicy. The
VMC arejus condgency requirementsfor the expected present cogt of a given palicy.



V(b)=V(c)+k . Usng (6) we have the following equations

A&+ B(e™- &) T (- 2 - = K (®)
r r 17

A6+ B(E™- &)+ I (1701 27500 = K (9
9

The Smooth Pagting Conditions (SPC) tell usthat the derivative of the value function at the
pointsa,c and b should be equal to the derivative of the adjustment cogt™’. So, V'(a)=V'(c)=V'(b)=0
. Together with the VMC (8) and (9), they alow usto find the optimal valuesfor a,c and b. Usng

(6) we get the following SPC:

h o

a A+ b Be™+ hg— a+2—z= (10)
g
h o

a Ae+ b Be™+ h —b+ 2— (11)
r 2

bc h
a Ag°+ b Be +hg c+2— —0 (12)
g

The VMC and SPC equations , (8,9,10,11,12), conditute a non-linear sysem of five

“"The SPC are optimality conditions for policy parameters For a smple derivation of the SPC,
see Dixit (1991h).



equationsand five unknowns, which can only be solved numerically*®.

B. The one-sided suboptimal rule
Now we impose the form of the policy to be a one-sded rule, and determine the best policy

of itsform.

Fird, observe that the cogt function for the one-Sded rule, for the same reasons given above
for the two-sded rule, should satidy the differential equation given by (5). Thus, it has a genera
solution given by (6), where a and b are the roots of the characteridic equation of (5) and have
oppodte sgns a<0, b>0. The form of our suboptimal one-sded rule will depend on the Sgn of the
drift. In order to keep the mog useful barrier, we will drop the upper barrier, if the drift of the
uncontrolled processisnegative, and will drop the lower one, if it ispodtive.

We will assume the drift is negative. Therefore, we will not have any upper barrier. The
processis allowed to take any arbitrary large value. Starting from a very large value, the probability
of hitting the lower barrier within a reasonable amount of time is very small, and, consequently, the
codt function should be close to the cogt function of the uncontrolled process When x isvery large,
thefirg term of (6) isclose to zero (a isnegative), but the second also becomesvery large, unlessB
is zero. For the cog function to be approximated by the four lagt termsin (6) (the cogt function of
the uncontrolled process) when x becomes very large, it is necessary that B=0. Hence, our genera

equation for the cogt function, when the control rule isa one-gded resetting policy is

2 2 2
A+ h)r(—+ 2h%x+ h%+ 2h%:o (13)

Equation (13) together with the VMC linking b and ¢ determine the cod function

for an arbitrarily chosen one-sded policy (b,c). Usng (13), the VM C becomes

®When the uncontrolled process has no drift, the problem becomes much smpler with a=-b and



&l h 0
/¥€“€ﬂ+hg%a“cﬁ+2—ﬂ&ﬁt=k (14)
r r o
Again, the SPC give optimality conditions for the choice of the parameters, a and c. The

SPC are:
5
a Ag?+ hg— at+2 12;: 0 (15)
r
0
a A€+ hg c+2 12;: 0 (16)
%]

Equations (14), (15) and (16) determine the cogt function and the suboptimal policy
parameters a and c. As before, it is gill not possble to find explicit solutions, forcing us to use
numerical techniques

The increase in cog of adopting the suboptimal one-sded rule, as a fraction of the cost
when the optimal two-sded rule isadopted (r), can now be eadly calculated. Let the expected cos
garting from x usng the optimal rule, Cx(x), be given by the cogt function (6) when the congants A
and B are calculated solving the equations (8) to (12). Let the expected cog garting from x when
the suboptimal one-sded rule is used, C4(X), be given by (13) when A is caculated solving the
equations (14) to (16). Then, the relative increase in cog darting at x isgiven by:

a9y

"6)= C.(¥)

(17)

c=0. Dixit (19914) finds an approximated analytical solution for thiscase.

10



3. THE EXPECTED TIME OF HITTING A SPECIFIC BARRIER FOR THE FIRST

TIME

In order to assess how far the two-sded policy isfrom a one-Sded one, it would be useful
to have an idea of the time gpent before an pecific barrier (the one that is not hit very often) is hit,
darting from a pogtion x. Notice that calculating the digribution of the time until hitting a specific
barrier for the fird time, is much more involving than finding the didribution of the time until hitting
any barrier for the fird time. The latter depends only on the probability law of the Brownian motion,
whereas the former hasto take into account that a possble resetting in the other barrier may occur,
before the specific barrier ishit. Furthermore, the digribution that would interest us does not have a
closad form solution. Nevertheless following a relatively smple approach, we can find an explicit
formula for the expected time until reaching a specific barrier garting from x. So, we chose to do it
ingead.

The approach we use is amilar to the one employed to calculate the value function
corresponding to a specific policy (ac,b).**Let To be the time the controlled process X hits the
barrier b for the firgt time. We define qu(X) = E'Ts , thet is, gu(X) isthe expected time, starting at X,
until the process X hits the barrier b for the fird time. So, qp satisfies the following Bellman
equation:

qu(¥)= dt+ E[qp(X+ dx )| x.= X] (18)
Applying Ito's Lemma to dg(x;) and taking expectations conditioned on the knowledge of x: , one

can arrive at an expresson for the expectation term in the equation above. After subgtituting it into

(18) we obtain the following differential equation for g:

25 “a®9+hq )+ 1= 0 (19)

“Thisisan extenson of Karlin and Taylor (1981,pp192-3).

11



The genera solution to thisdifferential equation is

X
qo(X)= Aes? ot B

(20)

Now, consgency conditions analogous to VMC, alow us to find the condants A and B

corresponding to the policy parameters (a,c,b).”

The conditions are;

q»(b)=0
gn(@=qs(c)

(21)

Equations (21) have obvious interpretations The expected time until hitting b for the fird time

garting from b is 0. The expected time of hitting b from a has to be equal to the expected time of

hitting b from ¢, ance when the processisin a, it isingantaneoudy reset to c.

Usng conditions (21) to determine the congants A and B in equation (20), we arrive at the

following formulafor gp:

c-a ho X b c-a)g? "
qb(X)= - h h e252 '_+H+ ( h)
h(ezga_ezszb) h h(e-zga_ez 2c)

The formula of ga can be easly found by symmetry:

h

-2—a

qa.(¥)=- l?-b h é2§X'§+E+ (C-hb)esh
h(e'z?b-ez?a) h h h(e-Z?b'e-Z?C)

4. NUMERICAL ANALYSS

**Observe that in equation (19) the policy parameters do not appear explicitly.

12
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To do numerical exercises with parameters based on real data, it is necessary to have an
equation that relates the optimal individual price with the aggregate and idiosyncratic shocks We

asume that the (log of) the optimal individual price, p’, isgiven by™:

*

p=Yte (24)
where y is the (log) of nominal aggregate demand and e is an idiosyncratic component. In the

absence of control, a change in the nominal aggregate demand will have an effect on the difference
between the actua price and the optimal frictionless price of the same magnitude and opposite
direction. We assume that the (log of) nominal aggregate demand follows a Brownian maotion. We
choose the drift and diffuson parameters of the deviation process by equating them to the
symmetric of the mean and the sandard deviation of the changesin the (log of) nominal aggregate
demand observations, respectively. As for the idiosyncratic component, we assume it follows a
Brownian motion without drift, independent of the sochagtic process followed by the nominal

aggregate demand. So,

y: I’Yﬂt + S ydWl
e = S edWei ( 25)
p, = mdt+ sdw
where s=sytse.
This section assesses how different optimal two-9ded Ss rules are from suboptimal one-
Sded Ssrules We use two notions for that. The firs isrelated to the obsarvationa difference of the

processes controlled by the two rules. Does the trgjectory of the control variable under the optimal

two-sded rule look as the one controlled by a suboptimal one-sded Ssrule? If the upper bound is

*"Thisformulation impliesthat a 1% shock in nominal aggregate demand has a 1% impact in the
frictionless optimal price. Since we fix the reference period for the flows in one year, thisis not
without |oss of generdity.

13



very rarely achieved the two-9ded Ssrule, in practice, looks like a one-Sded one, and has Smilar
macroeconomic implications”. The expected time until reaching the upper bound provides us with
ussful information for this assessment. We chose to evaluate the expected time of reaching the
upper bound at 0, when the actual price isequal to the optimal one, gs(0)>. The expected time until
reaching the mog often reached bound - the lower bond a- is also calculated to give us a notion of
how often a price adjusment occursin thiseconomy.

The s=cond is related to the likelihood that an economic unit adopts the suboptimal one-
gded rule ingead of the optimal two-sded one. We evaluate how codly it is to adopt the
suboptimal one-sded rule ingead of the optimal two-sded one. For this purpose, we evaluate
r(0)**, which givesthe increase in cost of adopting the suboptimal one-sided rule asa fraction of the
cog when the optimal two-9ded ruleisadopted, evaluated at x=0.

We proceed in two deps Fird, we perform some smulations in order to get some
qualitative assessment on how changes in parameter values affect the comparison. This helps us

build intuition for the comparison based on numbers for actual economies rendered in the second

step.

?As explained in section 5 below, it has smilar macroeconomic implications to the ones of
one-sded rules, when those rules are used in the same environment — an environment where
the one-sded rules are not optimal.

?*In Bonomo (1992) the expected time until reaching each barrier sarting from ¢ - the point to
which the difference between actua and optimal pricesreturns after an adjusment - isalso reported.

*The function r(.) can be defined over the intersection of the regions delimited by the upper and
lower bounds of the two rules In al smulations we made, O fell indde both regions However, it is
possble for O to fall outsde the control region of a suboptimal one-sded rule. A suboptimal rule
may call for rexetting a (low) actual price to a value lower than the optimal one to compensate for
the absence of the upper barrier.

14



A. Evaluating the parameter effects
In Table 1, we vary one parameter at a time to appraise the influence of that parameter on

the comparison™. The first column gives results for the base values we chose for the parameters
h=-0.1, s=0.1, r=2.5% and k=0.01 (snce k and h enter the solution only through k/h, we

normalize h to one)**”’

. Every time the actua price becomes 14% lower (a=-14%) or 20%
(b=20%) higher than the optimal price, it isreset to a vaue 5% (c=5%) higher than the optimal one.
Observe that the price is not reset to the value of the optimal price itsalf, because the optimal price
has a tendency to increase. So, anticipation of this tendency, and knowledge that the price should
remain fixed for a while because of the menu cogs lead the agent to reset the price to a level a
higher than the frictionless optimal one. Since the magnitudes of the upper and lower edges of the
band are not o different, and there is a Szeable downward drift, the lower edge is reached much
more often than the upper edge. Thisiis reflected in the much higher value for the expected time
until reaching the upper extreme than the expected time until reaching the lower extreme. Starting at
the resetting price (c), the expected time until reaching the lower barrier for the fird time is 1.82
years, while doing the same computation for the upper barrier gives 30.42 years. When we use the

bes one-sded policy, ingead of the two-sded policy, A, a and ¢ are very smilar to what we had

before. The absence of an upper barrier makes it safer to reset to a price a little bit lower than

*We keep the discount rate congtant at r =0.025 since it does not affect substantially the optimal
or the suboptimal policies In Bonomo (1992) we report the result of anincreasein r to 0.10 while
keeping the other parameters condant.

**The value of k is chosen to give reasonable predictions for the frequency of price adjustments
when the model is calibrated to the U.S. The value chosen for r is gandard in the literature, and
alternative reasonabl e val ues produce very Smilar results

?’In Bonomo (1992), the resuits for the parameters A and B of the cost function are also shown.
Recdl that A and B give the reduction in cog achieved by the use of resetting from below and
above, regpectively. We get relatively large valuesfor A and low valuesfor B, as a consequence of
the lower barrier being very active and the upper one being little active.
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before, s0 ¢ is dightly smaller now. The percentage increase in cogt caused by the use of the
suboptimal one-9ded rule iscalculated in 6.6%, when we use base valuesfor the parameters

In the second column, we increase K, the ratio between the menu cos and the flow cod,
from 0.01 to 0.05. Theincreae in k affects drametically the results turning the optimal policy much
closer to the suboptimal one. The band becomes much wider, increasng the expected time until
reaching the lower and the upper barrier. The effect on the expected time until reaching the upper
barrier isgriking. It increases from 31.16 to 216.06 years So, the upper bound becomes somewhat
superfluous and the adoption of the one-Sded rule becomes almos codless(] (0) is0.9 %).

It is intuitive that when the absolute value of the drift increases, ceteris paribus, the loss
involved in adopting the suboptimal one-9ded rule decreases In addition, Snce the sochadic
component is symmetric, when the variance increases ceteris paribus the lossinvolved in adopting
the one-sded rule increases. Therefore, we pursue the more obscure question of what happens
when both the variance and the drift vary in the same direction. In the third column, we double both
the drift and the gandard deviation. A higher variance makes the expected time until reaching a
barrier for the fird time, subgantially smaller. So, the Sze of the band widens as a response, but the
expected time continues to be smaller than before. We see that the effect of the increase in the
variance dominates the effect of the higher drift Snce the additional cos of imposng a one-Sded
rule increased from 6.6% to 24.8%. In the fourth column, we double the drift and variance. Now
the effect of the drift is prevalent (r(0) isreduced from 6.6% to 3.1%), athough the resulting effect
is of smdler magnitude than the one we had before. Since the additional cogt of adopting a
suboptimal one-sded pricing rule is not a function alone of mV<, it becomes interesting to
investigate what isthe shape of the relation between m and < that keepsr congtant.

Figure 1 depicts the relation between m and € for r equal to 0.01, 0.05 and 0.10. The

uppermogt curve is the one with the smalles r, Snce for the same variance an increase in the drift
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makes the optimal policy closer to the best one-dded rule. We see that the relation is not a Sraight
line: the increase in m necessary to compensate a given increase in < in order to keep r congtant, is
decreasingin €. Hence, anincreasein € requires a less than proportional increase in mto maintain r
condant. In Figure 2, we explore the influence of k in the shape of the iso-r. We see that the lower
is k the higher the concavity of the curve. Figure 3 illustrates that if we subdtitute s for & in the
ordinate, the curve becomes convex. Thus, in general, to keep r congant when misincreased, it is
necessary to increase the variance more than proportionally, but by less than the addition that would

cause a proportional increase in the sandard deviation.

B. Comparison of the rules based on real economies
In Table 2, we present results with parameter val ues based on real economy data. We chose

one low inflation economy (U.S.), one high inflation economy (Colombia), and an average of 43
countries (Inter)?®. We base our values on Ball, Mankiw and Romer (1988) data. For each process,
we calibrate the drift to the repective average increase in the log of the nominal aggregate demand.
As for the diffuson coefficient, an alowance for the gandard deviation of idiosyncratic shocks is
added to the gandard deviation of the log of the nomina aggregate demand. For the U.S,, we
assume that the gandard deviation of the idiosyncratic shocksis 5.3% (an assumption that exceeds
the 3% used in Ball, Mankiw and Romer (1988)). For the set of countries we use 8.8%, and for
Colombia, 8.2%. The implicit assumption is the dandard deviation of the idiosyncratic shocks
increase with inflation, but not dramatically. Observe that, when we use k=0.01, the model produces

reasonable predictions for the U.S. economy. The expected time until an upward price adjustment

**In Bonomo (1992), we chose Brazil as the high inflation country. However, the inflation
process of Brazil has different means in different periods, what causes an upward bias in the
diffuson parameter edimate when one tries to fit a geometric Brownian motion for prices
Colombia wasthe country with highest sable inflation processwe could find.
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garting from ¢ (the value at which the price is reset) isa good approximation for the time between
adjugments, snce a downward adjustment does not happen often. So, according to the model, the
elapsed time between adjusments should be a little bit more than two years (snce g:(c)=2.25),
which is condstent with the microeconomic evidence™. However, the expected time until a
downward revison, seems to be very big, 154 years As a contragt, uing Colombia data, the
number obtained for the expected time until adjusment is lower, 77.22 years despite the larger
inflation. This may sugges that the one-sded Ssrule is a better approximeation of the optimal two-
sded rule for the parameters based on the US data than for the parameters based on the Colombia
data. However the additional cog of adopting a one-sded Ss rule is smdler for the Colombia
numbers (0.4% as compared to 0.8% for the US values). The effect of the higher drift for the
Colombia inflation is not totally offset by its higher gandard deviation. For the international set, the
loss of adopting a one-gded rule is subgantially higher because the gandard deviation of the
international average is higher than the Colombian one, and the drift islower.

We can notice two features from those reaults that deserve attention. The fird is that the
additional cogt of imposng a suboptimal one-gded rule isrelatively amall in all cases However, the
results depend on unobservable parameter values as k and r. The value of k should be st to
provide redidic price adjugment frequencies A lower k would Smultaneoudy decrease the
frequency of price adjusments and increase the additional cost of adopting a suboptima one-sded
rule. It ssemsdifficult at the level of generality of the analyssto decide what isa good value for k.
The indeterminacy of r isnot as problematic, Snce any value in the acceptable range from 1% to
10% will not give subgantially different results

The second feature isthat the effect of the variance is dominant on the reults We saw that

?’For microeconomic evidence on price adjustments, see Cechetti (1986).
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if anincrease in s requires a more than proportional increase in m in order to keep r congant
(Figure 3). However, inreal economiesan increase in the inflation trend isin general associated with
a close to proportional increase in standard deviation™. Thus, according to our model, it is not
assured that one-9ded Ssrulesare closer to optimal in high inflation economies.

From the discusson in this section, we conclude that it is possble that in real world
gtuations one-9ded Ss pricing rules are good approximations of the optimal asymmetric two-sded
ones. It is even posshle that the one-Sded rules are used in practice. The reason is that the cos
involved in adopting the Smpler and suboptimal one-ded rule, rather than the optimal two-sded
one, isrelatively modedt, and the reference cod - the cost imposed by the exigence of menu cods -
is very amall. However, evaluations based solely on the ratio between the mean and the variance

parameters of the sochadtic processfollowed by the optimal price are unsafe.

5. MACROECONOMIC IMPLICATIONS

A more thorough analyss relating the drift and diffuson parameters of the frictionless
optimal price process to the effects of shocks is provided in Bertola and Caballero (1990), for the
case of optimal two-9ded rules. Here we focus on the case of suboptimal one-Sded rules and
compare to their analyd's, which we summarize for compl eteness.

The effect of an aggregate shock depends on the pricing rule (assumed the same for all
units), on the cross-section didribution of price deviations ingde the inaction band, and on the

idiosyncratic shocksthat affect each unit. Since the cross-section digtribution depends on the higory

*Aninformal evidenceisfigure 3 of Ball, Mankiw and Romer (1989).
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of aggregate shocks, we use the ergodic digribution (see the Appendix for the derivation), that isan
average of the possble cross-section digtributions, in our consderations. In what follows we neglect
the dmultaneous effect of idiosyncratic shocks, snce it has no qualitative importance in the
comparison of suboptimal one-sded ruleswith optimal two-sided rules®* The case where the ruleis
one-9ded and the crosssection didribution is uniform conditutes a useful benchmark for the
analyss Within these circumgtances, while a pogtive shock in the money supply is neutra, ance it
preserves the same digribution, a negative shock has maximum effect because there is never a price
reduction. What is interesing about this benchmark case, is the extreme asymmetry of the effects
average price istotaly rigid downwards and totally flexible upwards It isimportant to remark that
because thisrule is optimal only when there are no negative shocks its effect was never consdered
inthe one-dded rule literature. Since we treat one-Sded rulesexplicitly assuboptimal rules it makes
sense to cong der the effect of negative shocks

When the rule is two-dded, the effects of both podtive and negative shocks depend on the
parameters of the rule and on the crosssection didribution. The former fixes the sze of the
adjugment while the latter determines the fraction of units changing prices. A symmetric two-sded
rule is optima when the sochagtic process followed by the frictionless optimal price is driftless In
this case, the ergodic digribution of the individual price deviations is obvioudy symmetric. When
there isa pogtive drift in the frictionless optimal price process the didribution of the price deviation
becomes asymmetric, tilted downwards (see Figure 4). The fraction of units close to the upper
bound decreases 0 negative monetary shocks trigger fewer adjugments and the effect of a

monetary contraction isincreased. On the other hand, the fraction of units close to the lower bound

*For aformal analysis of the macroeconomic implications of two-sided rulesin presence of both
aggregate and idiosyncratic shocks see Cabdlero and Engd (1992). The analyss is smplified
because of the particular assumptions made for the individual rules and the digtribution of the price
deviationsingde an indudry.
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increases 0 the effect of pogtive monetary shocks decreases.

When the rule is one-sded, but the driving sochagtic process has shocksin both directions,
the ergodic didribution of the individual price (in log) deviations has postive decreasng dendty for
values higher than the resetting point, c. For valuessmaller than ¢, the dendty isincreasng fromato
c. The higher isthe drift, the lower isthe probability of having an individua price deviation greater
than ¢, and the flatter is the dope of the dengty between a and ¢ (see Figure 5). When the drift
becomes very large (with a fixed variance), the ergodic didribution of the price deviations
approaches the uniform didribution between a and c.. Like the two-9ded case, the effect of a
monetary expanson is larger when the cross-section digtribution of price deviations is the ergodic
didribution of individual price deviations corresponding to a process with a smaller drift. When the
drift issmall, ance the dendty of the ergodic digtribution increases with a seeper dope from a to c,
a pogtive monetary shock induces a smaler number of units to adjug. The effect of a monetary
contraction is independent of the crosssection didribution: snce there is never a downward
adjugment when the units are following one-Sded rules, al reductionsin nomina money supply are
red .

Hence, when the drift is pogtive, both one-sded and two-sded rules provide asymmetric
responses to pogtive and negative monetary shocks Average price is gickier downwards than
upward. This realisic macroeconomic feature of Sate-dependent pricing rules was emphasized by

Caballero and Engel (1992)*. The asymmetry is always bigger when the rule is one-sded, when

*When the presence of idiosyncratic shocks is taken into account, the effect of a monetary
contraction on the output is always negative, but the magnitude depends on the cross-section
digribution. For example, if the drift isrelatively large, there will be an important fraction of units
close to the lower bound. Thus the idiosyncratic shocks will trigger some price increases making
the effect of the money contraction sronger.

* Thisisin contrast with models based on time-dependent rules, where the effects of aggregate
shocks are symmetric (e. g. Ball, Mankiw and Romer (1988). Ball and Mankiw (1994) use a
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average price istotally rigid downwards However, when the drift increases (for a given variance),
the difference between the effects of one-sded and two-Sded rules are reduced and both rules and
ergodic digributions converge to our benchmark case. Thus, the one-ded and two-gded rules have
amilar effectswhen the adoption of a suboptimal one-Sded ruleisplausble.

The smulations in section IV suggest that the one-Sded rules are Smilar to the two-Sded
rules for parameter values based on real economies. Not surprisngly, the corresponding ergodic
digributions are a0 close (see figures 6 and 7). The rules are close because the upper bound of the
two-sded rule is not reached often. This corresponds to a cross-section digtribution where the
fraction of units close to the upper bound is smdll, and therefore, the effect of a negative monetary
shock should be large. Thus, our numerical exerciseslead usto conclude that an analyssbased on a
suboptimal one-sded rule would not give results that are subgtantially different from those derived
from an optimal two-sded rule. In both cases, there isa subgantial asymmetry between the effects

of positive and negative monetary shocks

V1. Conclusons

One-dded S;s pricing rules are rarely optimal. This paper argues that they are often very
close to the optimal rule. Since the additional cogt of adopting a suboptimal one-sded rule issmall,
it isposshle that it isused in practice. Furthermore, the macroeconomic implications of one-sded
ruleswhen they are close to optimal are smilar to those of optimal two-sded rules. However, thisis
true only when one-dded rules are used in the context where they are not optimal, which isnot the

practice in the literature. The implications of suboptimal one-Sded rules are different from optimal

time-and-state-dependent pricing rule to generate the desirable asymmetry.
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ones Negative shocks are possble and have large effects reproducing the subgtantial asymmetry
between pogitive and negative shocksfound in the data.

Thus, the macroeconomigt would not commit a serious mistake by usng one-Sded Ssrules
when they are close to optimal, provided the original macroeconomic environment isnot subgtituted
for one that makes one-sded rules optimal. This is true for two reasons agents could be near
rationa and adopt the smpler suboptimal rule, and even if they do not do so, the misake the

economis might incur by usng the wrong model would be small.
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APPENDI X
Ergodic Digributionsfor Two-sded and One-sded Rules

Two-9ded Rules

The derivation of the ergodic didributions for optimal two-gded rules is shown in Bertola and
Caballero (1990). The dendty function of the ergodic didribution for the two-sded rule has the
following form (see Bertola and Caballero (1990)):

_i'M e+ N; aEz£c

f@=i Pe+Q; cE£2£D (AL)

} 0; otherwise

with g=-2m/s.
Because the dendty should die continuoudy, it should be zero at the extremes, thet is, f(a)=f(b)=0.
Those conditionsyield the following equations

MeF+ N=0 (A2)
Pe®*+Q=0 ( A3)

Continuity of the dendty function at ¢ requiresf(c)"=f(c), which resultsin:
Me®+ N = Pe®+Q (Ad)

Of course, the integral of the dendty function over the appropriate range should be equal to one.
Thisgivesthe fourth equation:

D& (&) Ne-apr Qo-0)=1 (45)

Equations (A2-A5) determine the congantsM,N,P,Qin (Al).

One-9ded Rules

The (suboptimal) one-gded is the limit of a two-9ded rule when b tends to infinity. The dendty of
the ergodic distribution, which exigts only g<O, should have the following form:

| 0; zEa
f(z):_{M &+ N; af zEc ( A6)
L Pe+Q; cEz



Continuity at aand c yidds

Me¥+ N=0 (A7)
MeF+ N = pPe¥+Q (A8)

The following additiona conditions should be satisfied in order to make f adendty function:

Q=0 (A9)
%(e‘f-ega)-ape“ N(c-a)=1 ( A10)

The conditions (A7-A10) determine the condantsin (A6).



TABLE 1: Numerical exercises

h=-0.1 h=01 |h=02 |h=-02
s=0.1 s=0.1 s=0.2 s=0.1 2
k=0.01 k=0.05 |k=001 |k=0.01
a 0.14 0.21 -0.20 -0.16
c 0.05 0.11 0.05 0.07
b 0.20 0.32 0.25 0.24
9(C) 1.82 3.12 1.12 1.15
TWO
C 30.42 21606  |8.24 3257
sipep | P9
q(0) 1.35 2.06 0.92 0.81
(0) 31.16 21777 |854 33.11
C0)  [0.400 1.050 0.732 0.603
a 0.14 0.21 0.21 0.17
ONE 0.04 0.10 0.02 0.06
SIDED
Ci(0) [042 1.05 0.91 0.62
1 (0) 6.6% 0.9% 248%  |3.1%

Note: we assumed r =2.5%




TABLE 2: Numerical exercises based
on real economy data

INTER u.s. COLOMBIA
m=0.149 m=0.073 m=0.184
$=0.125 0062 | s=0.104

a -0.15 -0.11 -0.14
c 0.06 0.06 0.08
b 0.22 0.17 0.23
wo L% 1.39 2.25 1.50
speED | 400 29.03 154.38 77.22
q+(0) 1.02 1.48 0.95
5(0) 29.65 155.62 78.02
C(0) 0.51 0.29 0.53
a -0.16 -0.11 -0.14
ONE ¢ 0.05 0.06 0.08
SIDED | ¢0) 0.54 0.29 0.53
| (0) 5.1% 0.8% 0.4%

Note: we assumed k=0.01 and r =2.5%.



0.4 -

Q2

o.o2

204

0.06

Figure 1

k=000

0.08

21

Q.12

0.02

0.08

Figure 2

0.08



e
Q.05 0.1 0.15 az 0.25 Q2 .35
Figure 2
flz}
-1.15 .1 -0.05 - 005 0,1 J.15 0.2 0.25



=0 2
IIII =03
v m=3.4
. a |
/ i
|
0.15 | s 2.05 1 0.15 .2 1.25

Figure &

Figurs 6

(8]



Figure 7

0.0%



