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nential decay. We next derive moment recursion relations and the autoco-

variance function of the power λ of the duration process. Finally, we assess
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1 Introduction

The seminal work of Engle and Russell (1998) hoisted a great interest in

the implications of price and trade durations in empirical finance. For in-

stance, the modeling of price duration processes hinges the approaches to

option pricing and intraday risk management recently proposed by Prigent,

Renault and Scaillet (2001) and Giot (2000), respectively. Although Engle

and Russell’s (1998) autoregressive conditional duration (ACD) model is the

starting point of such analyses, the literature carries several extensions.

Bauwens and Giot (2000) work with a logarithmic version of the ACD

model that avoids the nonnegativeness constraints implied by the original

specification so as to facilitate the testing of market microstructure hy-

potheses. Bauwens and Veredas (1999) propose the stochastic conditional

duration process, leaning upon a latent stochastic factor to capture the un-

observed random flow of information in the market. Ghysels, Gouriéroux

and Jasiak (2003) introduce the stochastic volatility duration model to cope

with higher order dynamics in the duration process. Zhang, Russell and

Tsay (2001) argue for a nonlinear version based on self-exciting threshold

autoregressive processes.

This paper develops a family of ACD models encompassing most of the

existing models in the literature, such as the nonlinear ACD specifications

recently put forward by Dufour and Engle (2000). For that purpose, we

exploit the common features shared by the ACD and GARCH processes

and follow a similar approach taken by Hentschel (1995) to build a family of

asymmetric GARCH models. The nesting relies on a Box and Cox’s (1964)

transformation with shape parameter λ ≥ 0 to the conditional duration

process and on an asymmetric response to shocks. The motivation for the

2



latter stems from Engle and Russell (1998), who show that standard ACD

models applied to financial data tend to overpredict after extreme (very long

or very short) durations.

We establish sufficient conditions for the existence of higher order mo-

ments, strict stationarity, geometric ergodicity and β-mixing property with

exponential decay in this class of augmented ACD models. Although there

are no general analytical solutions for the autocorrelation function and mo-

ments of the duration process, we show that it is possible to derive the

autocovariance function and moment recursion relations for the power λ of

the duration process. Alternatively, one must restrict attention to particular

subclasses, e.g. λ → 0 and λ = 1, in order to work out expressions for any

arbitrary moment and the autocovariance function.

We then demonstrate the practical usefulness of our ACD family model-

ing IBM price durations and other financial durations from stocks actively

trading on NYSE. Our findings clearly reject the restrictions imposed by the

existing models in the literature. Further, we show that allowing for a con-

cave shocks impact curve is paramount, because it mitigates the problem of

overpredicting short durations. It is thus no wonder that we find some sort

of substitutability between the Box-Cox transformation and the asymmetric

effects given that both may lead to concavity of the shocks impact curve.

The remainder of the paper is organized as follows. Section 2 outlines the

statistical properties of the family of augmented ACD processes. Section 3

collects the findings of the empirical application to NYSE transactions data,

focusing on IBM price durations. Section 4 summarizes the main results and

offers some concluding remarks.

3



2 The augmented ACD model

Let xi = ti−ti−1 denote the time spell between two events occurring at times

ti and ti−1. For example, price durations correspond to the time interval

needed to observe a certain cumulative change in the stock price, whereas

trade durations stand for the time elapsed between two consecutive trans-

actions. To account for the serial dependence that is common to financial

duration data, Engle and Russell (1998) formulate the accelerated time pro-

cess xi = ψiεi, where the conditional duration process ψi = E(xi |Ωi−1) is

stochastically independent of the iid sequence formed by εi and Ωi−1 is the

set including all information available at time ti−1. As in Hentschel (1995),

we generalize the ACD processes by applying a Box-Cox transformation with

parameter λ ≥ 0 to the conditional duration process ψi, giving way to

ψλ
i − 1

λ
= ω∗ + α∗ ψλ

i−1

[

| εi−1 − b | − c (εi−1 − b)
]υ

+ β
ψλ

i−1 − 1

λ
. (1)

The shape parameter λ determines whether the Box-Cox transformation is

concave (λ ≤ 1) or convex (λ ≥ 1).

The augmented autoregressive conditional duration (AACD) model then

ensues by rewriting (1) as

ψλ
i = ω + α ψλ

i−1

[

| εi−1 − b | + c(εi−1 − b)
]υ

+ β ψλ
i−1, (2)

where ω = λω∗ − β + 1 and α = λα∗. The AACD model provides a flex-

ible functional form that permits the conditional duration process {ψi} to

respond in distinct manners to small and large shocks. The shocks impact

curve g(εi) = [| εi − b | + c(εi − b)]υ incorporates such asymmetric responses

through the shift and rotation parameters b and c, respectively.

Because durations are nonnegative, the shift parameter b is key to the

identification of the asymmetric response implied by the shocks impact
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curve. In turn, the parameter c determines whether rotation is clockwise

(c < 0) or counterclockwise (c > 0). Interestingly, it is not necessarily the

case that shift and rotation reinforce each other. Indeed, the shift parameter

affects mostly small shocks, whereas rotation is dominant for large shocks.

The shape parameter υ plays a similar role to λ, inducing either concavity

(υ ≤ 1) or convexity (υ ≥ 1) to the shocks impact curve. Figure 1 illustrates

the behavior of the shocks impact curve g(·) according to the values of the

shift, rotation and shape parameters.

Figure 1

The original ACD model of Engle and Russell (1998) is recovered by

imposing λ = υ = 1 and b = c = 0, whereas letting λ → 0 and b = c = 0

renders the Box-Cox ACD specification put forward by Dufour and Engle

(2000). Further, (1) reduces to Bauwens and Giot’s (2000) logarithmic ACD

models either if λ → 0, υ = 1 and b = c = 0 (Type I) or if λ, υ → 0 and

b = c = 0 (Type II). Following the GARCH literature, one may build

other conditional duration models by imposing restrictions on (1). The

examples we consider in the sequel include the asymmetric logarithmic ACD

(λ → 0 and υ = 1), asymmetric power ACD (λ = υ), asymmetric ACD

(λ = υ = 1), and power ACD (λ = υ and b = c = 0). Dufour and Engle

(2000) independently propose a version of the asymmetric logarithmic ACD

model with b = 1 under the name of exponential ACD model. We keep

our notation because the linear ACD model with exponential distribution is

sometimes referred to as the exponential ACD model. Table 1 summarizes

the typology of ACD models under consideration.

Table 1
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2.1 Properties

In this section, we build heavily on Carrasco and Chen’s (2002) general re-

sults to establish sufficient conditions that ensure β-mixing and finite higher

order moments for (conditional) duration processes belonging to the aug-

mented ACD family. The first step consists in casting (2) into a generalized

polynomial random coefficient autoregressive model

Xi+1 = A(ei)Xi + B(ei), i = 0, 1, 2, . . . (3)

where {ei} forms an iid sequence. Next, we apply Mokkadem’s (1990) result

for polynomial autoregressive models to derive the mixing properties of {ψi}.

For the duration process {xi}, we take advantage of Carrasco and Chen’s

result on the mixing properties of a process Yi = Xi + εi, where Xi is a β-

mixing homogeneous Markov process and εi is an iid noise with a continuous

density. These two results are collected in Propositions 2 and 4 of Carrasco

and Chen (2002), respectively.

Proposition 1: Let xi = ψiεi, where ψi satisfies (2) and εi is an iid ran-

dom variable that is stochastically independent of ψi. Assume further that

the probability distribution of εi is absolutely continuous with respect to the

Lebesgue measure on (0,∞) and such that the density is positive almost

everywhere. Suppose that |β | < 1 and

E |β + α[| εi − b | + c(εi − b)]υ|
m

< 1, (4)

for some integer m > 1. Then, {ψi} is a geometrically ergodic Markov

process and, if initialized from its ergodic distribution, is also strictly sta-

tionary and β-mixing with exponential decay. Further, E
(

ψλm
i

)

< ∞ and

E
(

xλm
i

)

< ∞. Condition (4) with m = 2 is also necessary to entail geomet-

ric ergodicity of {ψi} and E
(

ψ2λ
i

)

< ∞. Lastly, if initialized from its ergodic
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distribution, {xi} is strictly stationary and β-mixing with exponential decay.

Proof: The first two results follow immediately from Carrasco and Chen’s

Proposition 2 with Xi = ψλ
i , A(ei) = β + α [| εi − b | + c(εi − b)]υ, and

B(ei) = ω, where ei = (|εi − b|, εi)
′. The need for condition (4) with m = 2

stems from Lemma 2 of Pham (1986). The last result follows from Carrasco

and Chen’s Proposition 4 with Yi = log xi, Xi = log ψi, and εi = log εi. ¥

If the interest were only in deriving sufficient conditions for the dura-

tion processes xi to be nondegenerate and covariance stationary, one could

alternatively use the tools provided by Nelson (1990, Theorems 1 to 3) as

in Hentschel (1995). Actually, for most of the models in the family spanned

by the augmented ACD process, the conditions in the proposition above

are both necessary and sufficient. The exceptions are formed by the models

that ascertain a positive conditional duration even when at least one of the

following restrictions are violated: ω > 0, α > 0, β > 0, and | c | ≤ 1 for

some odd integer υ. For instance, letting λ → 0 ensures nonnegativeness of

the duration process without imposing further restrictions.

For the sake of completeness, we establish similar properties for the ACD

models belonging to the family of augmented ACD processes. At first glance,

it seems that it suffices to consider the parametric restrictions implied by

each model in condition (4) to extract the corresponding result. That is

not the case, though. To derive (4), one must impose restrictions on A(·)

and B(·), which vary according to the specification of the model. More

specifically, Carrasco and Chen’s (2002) results require that |A(0)| < 1 and

that, for some integer m ≥ 1, E|A(ei)|
m < 1 and E|B(ei)|

m < ∞.

The generalized polynomial random coefficient autoregressive represen-

tation of the asymmetric logarithmic ACD process ensues from Xi = log ψi,
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A(ei) = β, and B(ei) = ω + α[| εi − b | + c(εi − b)], implying that con-

dition (4) becomes E (εm
i ) < ∞. For the asymmetric power ACD model,

A(ei) = β+α[| εi−b |+c(εi−b)]λ and B(ei) = ω, so that it suffices to impose

that E
∣

∣

∣
β + α[| εi − b | + c (εi − b)]λ

∣

∣

∣

m
< 1. The latter condition also holds

for the asymmetric ACD model with λ = 1 and for the power ACD specifica-

tion with b = c = 0. While the Box-Cox ACD process asks for E (ευm
i ) < ∞,

the logarithmic ACD models of Bauwens and Giot (2000) require either that

E (εm
i ) exists (Type I) or that |α + β | < 1 and E| log εi|

m < ∞ (Type II).

As advanced by Carrasco and Chen (2002), in the linear ACD model, condi-

tion (4) reduces to E |β + αεi |
m < 1, which is equivalent to assuming that

α + β < [E (εm
i )]−1/m is finite.

2.2 Higher-order moments and autocovariance function

In general, there is no analytical solution for the moments and autocorrela-

tion function of duration processes belonging to the augmented ACD family.

Nonetheless, it is possible to derive moment recursion relations and the au-

tocovariance function of the power λ of the duration process by extension

of He and Teräsvirta’s (1999) results for the family of GARCH models.

To derive the λm-th moment µλm of the duration process, we write (2) in

its generalized polynomial random coefficient autoregressive representation

ψλ
i = Ai−1ψ

λ
i−1 + B, (5)

where B = ω and Ai = β + α g(εi). Raising both sides to the power m > 0

and then applying recursions give

ψλm
i =

(

Ai−1ψ
λ
i−1 + B

)m

= Am
i−1ψ

λm
i−1 +

m
∑

j=1

(

m
j

)

BjAm−j
i−1 ψ

λ(m−j)
i−1
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= ψmλ
i−n

n
∏

k=1

Am
i−k +

m
∑

j=1

(

m
j

) n
∑

k=1

BjAm−j
i−k ψ

λ(m−j)
i−k

k−1
∏

`=1

Am
i−`. (6)

We are now ready to state the next proposition that documents moment

recursion relations for the augmented ACD class of processes.

Proposition 2: Let xi = ψiεi, where ψi satisfies (5) with 0 < EAm
i < 1

and {εi} is an iid process stochastically independent of {ψi}. Assume further

that the process started at some finite value infinitely many periods ago. It

then follows that

µλm =
Eελm

i

1 − EAm
i

m
∑

j=1

(

m
j

)

BjEAm−j
i

Eε
λ(m−j)
i

µλ(m−j) (7)

for some integer m ≥ 1 and µ0 = 1.

Proof: Because the process started at some finite value infinitely many

periods ago, we can let n → ∞ in (6) and take expectations, resulting in

Eψλm
i = Eψmλ

i (EAm
i )n +

m
∑

j=1

(

m
j

)

BjEAm−j
i Eψ

λ(m−j)
i

n
∑

k=1

(EAm
i )k−1

=
1

1 − EAm
i

m
∑

j=1

(

m
j

)

BjEAm−j
i Eψ

λ(m−j)
i .

To complete the proof, it suffices to observe that ψi and εi are stochastically

independent, and hence µλm = Eελm
i Eψλm

i . ¥

Before moving to the autocovariance function of the power λ of the dura-

tion process, two remarks are in order. First, assuming that 0 < EAm
i < 1 is

analogous to imposing condition (4) in Proposition 1. Second, the moment

recursion relation in (7) involves moments that are possibly of fractional

order. Unfortunately, it is not possible to derive expressions for a moment

of an arbitrary order for such a general family of processes without restrict-

ing the shape parameter λ of the Box-Cox transformation of the conditional

duration process. For instance, imposing linearity (λ = 1) suffices to extract
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a recursion relation involving moments of any integer order. Alternatively,

one could also consider the subclass of conditional duration processes deter-

mined by the limiting case λ → 0. We follow the latter approach in the end

of this section in view that the log-transformation of the duration process is

quite convenient for avoiding nonnegativeness constraints.

Proposition 3: Let xi = ψiεi, where ψi satisfies (5) with 0 < EAm
i < 1 for

some integer m ≥ 2. Let εi form an iid sequence stochastically independent

of {ψi} such that EAiε
λ
i is finite. It then follows that the autocovariance

function γλ,n = Exλ
i xλ

i−n − µ2
λ of order n ≥ 1 reads

γλ,n =
B2Eελ

i

1 − EAi





n−1
∑

j=0

(EAi)
j +

(EAi)
n−1EAiε

λ
i (1 + EAi)

1 − EA2
i

−
Eελ

i

1 − EAi



 . (8)

Proof: Multiplying both sides of (5) by ψλ
i−n yields

ψλ
i ψλ

i−n =
(

Ai−1ψ
λ
i−1 + B

)

ψλ
i−n

=
[

Ai−1

(

Ai−2ψ
λ
i−2 + B

)

+ B
]

ψλ
i−n

=



B + B
n

∑

j=2

j−1
∏

k=1

Ai−k +
n

∏

k=1

Ai−kψ
λ
i−n



ψλ
i−n.

Multiplying now both sides by εiεi−n and then taking expectations give

Exλ
i xλ

i−n = Eελ
i B



1 +
n

∑

j=2

(EAi)
j−1



Eψλ
i + Eελ

i (EAi)
n−1EAiε

λ
i Eψ2λ

i

= Eελ
i



B Eψλ
i

n−1
∑

j=0

(EAi)
j + (EAi)

n−1EAiε
λ
i Eψ2λ

i



 .

The result then ensues from the fact that equation (6) implies that the

first and second moments of ψλ
i are respectively Eψλ

i = B/(1 − EAi) and

Eψ2λ
i = B2(1 + EAi)/[(1−EAi)(1−EA2

i )], whereas the moment recursion

relation in (7) gives µλ = BEελ
i /(1 − EAi). ¥
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As an example, consider the linear ACD process with an exponential

noise introduced by Engle and Russell (1998), which results from λ = 1,

Ai = β + αεi and B = ω. Proposition 2 then implies that

µm =
Γ(m + 1)

1 − E(β + αεi)m

m
∑

j=1

(

m
j

)

E(β + αεi)
m−j

Γ(m − j)
ωjµm−j

provided that α + β < 1. Solving for m = 1 and m = 2 yields the first two

moments as derived in Engle and Russell (1998). In turn, it follows from

Proposition 3 that the autocovariance function of order n reads

γn = ω2

{

1 − (α + β)n

1 − (α + β)
+

(α + β)n−1(1 + α + β)(2α + β)

[1 − (α + β)] [1 − (α + β)2 − α2]

}

.

This expression provides a sharper result than Bauwens and Giot’s (2000)

recursive formula for computing the autocovariance function of a linear ACD

process with exponential errors.

We now focus on a particular subclass of the augmented ACD family

that permits working out expressions for any arbitrary moment as well as

the autocorrelation function. This subclass is determined by shrinking the

Box-Cox shape parameter to zero (λ → 0), yielding

log ψi = ω + α g(εi−1) + β log ψi−1. (9)

This subclass is particularly interesting for ensuring that the duration pro-

cess is always positive regardless of the sign and magnitude of the pa-

rameters. In particular, it nests the asymmetric logarithmic ACD model,

Bauwens and Giot’s (2000) logarithmic ACD specifications, and the Box-Cox

ACD process put forward by Dufour and Engle (2000). He, Teräsvirta and

Malmsten (2002) derive analogous results for a class of exponential GARCH

models.

To derive the m-th moment µm = Exm
i of the duration process, it is

convenient to write equation (9) in the exponential form. Raising both sides
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to the power m > 0 and then applying recursions give

ψm
i = exp [mω + mα g(εi−1)] ψ

m β
i−1

= exp

(

mω

n−1
∑

k=0

βk

)

n
∏

k=1

exp
[

mα βk−1g(εi−k)
]

ψm βn

i−n .

Assuming that E {exp [κ g(εi)]} < ∞ for κ ∈ (0,∞) and that |β| < 1, yields

Eψm
i = exp

(

mω
1 + βn

1 − β

) n
∏

k=1

E
{

exp
[

mαβk−1g(εi)
]}

Eψm βn

i . (10)

We are now ready to state the next result that reports the m-th moment of

the duration process defined in (9).

Corollary 1: Let xi = ψiεi, where ψi satisfies (9) with |β| < 1 and {εi} is

an iid process stochastically independent of {ψi}. Assume that the process

started at some finite value infinitely many periods ago. If both Eεm
i and

E {exp [mα g(εi)]} are finite for some integer m ≥ 1, it then follows that

µm = Eεm
i exp

[

mω(1 − β)−1
]

∞
∏

k=1

E exp
{[

mαβk−1g(εi)
]}

. (11)

Proof: Because the process started at some finite value infinitely many

periods ago, we can let n → ∞ in (10), resulting in

Eψm
i = exp

[

mω(1 − β)−1
]

∞
∏

k=1

E
{

exp
[

mαβk−1g(εi)
]}

.

The result then follows from the fact that ψi and εi are stochastically

independent. ¥

Next we move to the autocovariance function of duration processes in

the (λ → 0)-subclass of augmented ACD models. As before, the exponential

form of (9) facilitates the task.

Corollary 2: Let xi = ψiεi, where ψi satisfies (9) with |β| < 1 and is

stochastically independent of the iid process {εi}. Assume further that both

12



E {exp [α g(εi)]} and E {εi exp [α g(εi)]} are finite. It then follows that the

autocovariance function γn = Exixi−n − µ2
1 of order n ≥ 1 reads

γn = EεiE
{

εi exp
[

αβn−1g(εi)
]}

n−1
∏

k=1

E
{

exp
[

αβk−1g(εi)
]}

×
∞
∏

k=1

E
{

exp
[

α (1 + βn)βk−1g(εi)
]}

exp

(

2ω

1 − β

)

− µ2
1. (12)

Proof: Consider the exponential form of the conditional duration process

(9), then

ψiψi−n = exp

(

ω

n−1
∑

k=0

βk

)

n
∏

k=1

exp
[

αβk−1g(εi−k)
]

ψβn+1
i−n ,

which means that

xixi−n = εiεi−n exp

(

ω
n−1
∑

k=0

βk

)

n
∏

k=1

exp
[

αβk−1g(εi−k)
]

ψβn+1
i−n .

Taking expectations in both sides yields (12). ¥

3 Empirical application

In this section, we estimate different ACD specifications using IBM price

durations at the New York Stock Exchange (NYSE) from September to

November 1996. Data were kindly provided by Luc Bauwens and Pierre

Giot, who have formed a broad data set using the NYSE’s Trade and Quote

database. We define price duration as the time interval needed to observe a

cumulative change in the mid-price of at least $0.125 as suggested by Giot

(2000). Price durations are closely tied to the instantaneous volatility of

the mid-quote price process (Engle and Russell, 1997 and 1998); hence it

is not surprising that they may have serious implications to option pricing

(Prigent et al., 2001) and intra-day risk management (Giot, 2000).

Apart from an opening auction, NYSE trading is continuous from 9:30 to

16:00. Overnight spells, as well as durations between events recorded outside

13



the regular opening hours of the NYSE, are removed. As documented by

Giot (2000), durations feature a strong time-of-day effect. We therefore

consider diurnally adjusted durations xi = Di/%(ti), where Di is the plain

duration in seconds and %(·) denotes the diurnal factor determined by first

averaging the durations over thirty minutes intervals for each day of the

week and then fitting a cubic spline with nodes at each half hour. The

resulting (diurnally adjusted) durations serve as input for the remainder of

the analysis.

Table 2

Table 2 describes the main statistical properties of the IBM price du-

rations. We compute descriptive statistics for both plain and diurnally ad-

justed data. It takes on average 4.4 minutes for a cumulative price change of

$0.125 to take place, though the median waiting time is much lesser than 2

minutes. Overdispersion is robust to the time-of-day effect, thus it is not an

artifact due to data seasonality. Sample autocorrelations reveal that persis-

tence is slightly changed if one accounts for the diurnal factor. Altogether,

the combination of overdispersion and autocorrelation in the price durations

warrants the estimation of autoregressive conditional duration models.

We then estimate by maximum likelihood the ACD models listed in

Table 1 assuming that εi is iid with Burr density

fB (εi; θB) =
κ µκ

B,1 εκ−1
i

(

1 + γ µκ
B,1 εκ

i

)1+1/γ
, (13)

where κ > γ > 0 and

µB,m ≡
Γ(1 + m/κ) Γ(1/γ − m/κ)

γ1+m/κ Γ(1 + 1/γ)

14



denotes the m-th moment, which exists for m < κ/γ. The Burr family

encompasses both the Weibull (γ → 0), exponential (γ → 0 and κ = 1), and

log-logistic (γ → 1) distributions.

Table 3

Tables 3 and 4 report respectively the estimation results for the existing

models in the literature and the novel specifications. Asymptotic standard

errors are based on the outer-product-of-the-gradient (OPG) estimator of

the information matrix since the absolute value function in the shocks impact

curve makes Hessian-based estimates tricky to compute due to numerical

problems.

Table 4

It is interesting to observe that the estimates of the Burr parameters κ

and γ are quite robust regardless of the specification of the duration process.

They imply that the baseline hazard rate function is nonmonotonic and that

there are at most three finite moments in view that κ̂/γ̂ ∈ [2.7173, 3.0438].

The parameter estimates of the linear and logarithmic ACD models are very

much in line with the previous results in the literature (see columns ACD,

LACD I and LACD II, respectively). Interestingly, the log-likelihood value

of the logarithmic ACD Type I model substantially differs from the values

of the linear and logarithmic ACD Type II specifications. The asymmet-

ric logarithmic ACD model with b = 1 introduced by Dufour and Engle

(2000) palpably increases the log-likelihood value (-4,920.5 versus -4,950.5),

suggesting that asymmetry may play a role (see column EXACD). The last

column BCACD shows however that letting the power υ of εi−1 free to vary

in the logarithmic ACD processes amplifies even more the log-likelihood
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value than introducing asymmetric effects. Indeed, in the Box-Cox ACD

model, υ̂ is significantly different from both zero and one, lending some

support against the logarithmic ACD Type I and II models, respectively.

In the power ACD specification, we notice that the shape parameter λ of

the Box-Cox transformation is also significantly different from both zero and

one (see column PACD). This indicates that the restrictions imposed by the

linear and the logarithmic ACD Type I models seem inconsistent with the

data, even though the latter is only marginally inferior to the power ACD

model in terms of log-likelihood value. Introducing an asymmetric effect to

the power ACD specification ameliorates only marginally the fit of the model

(see column A-PACD). Despite the fact that b is significantly different from

zero, the standard error of c is quite large, showing that the shocks impact

curve features no rotation. Although both shift and rotation parameters

are significant in the asymmetric ACD specification (see column A-ACD), it

violates the constraints usually imposed to ensure the nonnegativeness of the

duration process, namely α > 0 and | c | < 1. The A-LACD column shows

that all parameters are significantly different from zero in the asymmetric

logarithmic ACD model. In particular, given that α̂ is negative, the shift

and rotation effects are such that the shocks impact curve is concave.

The figures displayed in the column AACD demonstrate that the dou-

ble Box-Cox transformation (λ 6= υ) brings about further improvements as

indicated by the value of the log-likelihood of the augmented ACD model.

The difference between υ̂ and λ̂ is striking. Indeed, there is strong evidence

supporting that λ converges to zero (i.e. the log transformation), whereas

0.1310 < υ̂ < 0.5178 with 99% of confidence. The fact that λ̂ is close to zero

also explains why the estimate of α is not statistically different from zero.

16



From equations (1) and (2), it happens that α = α∗λ only if λ > 0, while α

and α∗ are equivalent in the limiting case λ → 0. Table 4 reports α̂ = α̂∗λ̂

and the corresponding standard error as computed by the delta method. It

is therefore straightforward to retrieve the estimate of α∗ from the figures

in Table 4: Indeed, α̂∗ = 0.3898 with standard error equal to 0.1839.

To have a better idea about the fit of the models, we undertake an infor-

mal log-likelihood comparison that accounts for overparameterization. We

do not pursuit a formal analysis based on log-likelihood ratio tests because,

due to the presence of inequality constraints in the parameter space, the

limiting distribution of the test statistic is a mixing of chi-square distribu-

tions with probability weights depending on the variance of the parameter

estimates (Wolak, 1991). Accordingly, it is extremely difficult to obtain

empirically implementable asymptotically exact critical values. As an alter-

native, Wolak suggests applying asymptotic bounds tests. However, bounds

are in most instances quite slack, often yielding inconclusive results.

We compute the Akaike information criterion, AIC ≡ −2(logL − k)/T ,

where logL denotes the value of the log-likelihood, k the number of param-

eters and T the number of observations. In terms of AIC values, the horse

race winners are augmented ACD, the Box-Cox ACD, the asymmetric power

ACD, and the asymmetric logarithmic ACD models.1 The rewards of the

extra flexibility granted by these specifications are in contrast to the poor

performance of the linear and logarithmic ACD Type II models. Further,

letting λ free to vary and accounting for asymmetric effects seem to oper-

ate as substitute sources of flexibility. For instance, it is very rewarding to

1 The result does not change much if one considers the Bayesian information criterion
so as to penalize more strongly the number of parameters. The only noticeable difference is
that the performances of the logarithmic ACD type I and the power ACD models become
as good as the above specifications.
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introduce asymmetric responses to shocks in specifications with fixed λ.

Figure 2

Figure 2 portrays the effective shocks impact curves of each specification

by depicting the variation of the conditional duration ∆ψi ≡ ψi − ψi−1 in

response to a shock εi−1 at time ti−1. We fix the conditional duration process

ψi−1 at time ti−1 to one, while we vary the shock εi−1 from zero to five.2

It is striking that, in all instances, ∆ψi reacts in a very similar fashion to

the shock. In particular, it seems that the concavity of the shocks impact

curve is the most important feature to account for when modeling IBM price

durations, alleviating the problem of overpredicting short durations. In the

sequel, we argue that the apparently substitutability between the Box-Cox

transformation and the asymmetric effects is chiefly caused by the need to

achieve concavity of the shocks impact curve.

The asymmetric linear and logarithmic ACD’s shocks impact curves are

concave only for certain values of the shift and rotation parameters, namely

b > 0 and c < −1. From this perspective, the parameter estimates reported

in the column EXACD in Table 3 and columns A-ACD and A-LACD in Ta-

ble 4 are not surprising. The estimates of the shift and rotation parameters

are significantly different from zero and inferior to minus one, respectively.

In contrast, if the shape parameter υ is inferior to one, both the Box-Cox

and augmented ACD models produce concave shocks impact curves. In the

case of the AACD, this holds regardless of the shift and rotation parame-

ters, hence it comes with no wonder that the corresponding estimates are

not jointly significant in the AACD specification. As the power ACD model

2 We refrain from plotting the shocks impact curve for larger shocks because it is merely
a byproduct of the assumed specification of the duration process, without necessarily
representing some meaningful property of the data (Hentschel, 1995).
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imposes λ = υ, the estimate of λ̂ sets in towards the estimates of υ in

the Box-Cox and augmented ACD models so as to entail a concave shocks

impact curve. The same happens with the asymmetric power ACD model,

despite the fact that, at first glance, one could also induce concavity through

the shift and rotation parameters. It turns out, however, that to ensure a

concave shocks impact curve the absolute value of the rotation parameter

must exceed one, running counter to the nonnegativeness constraint.3 In-

deed, the augmented ACD model avoids this problem by letting λ converge

to zero, thereby mimicking the asymmetric logarithmic ACD specification.

All in all, Figure 2 illustrates some of the pitfalls from the specific to gen-

eral modeling approach: There are various ways to achieve a concave shocks

impact curve that the data call for and failing to start from a sufficiently

general specification may point to quite misleading directions.

We now infer about the statistical properties of the duration processes by

checking whether they satisfy the sufficient conditions for strict stationarity

derived in Proposition 1. The aim is to illustrate how to use Proposition 1

for testing purposes. Maximum likelihood requires strict stationary of the

duration process to ensure consistency, hence estimates that violate either

|β | < 1 or (4) are not very reliable. In the linear ACD model, this is

equivalent to verifying whether |α+β | < µ
−1/m
B,m < ∞ for some integer m >

1. The second inequality poses no problem as µB,m exists for m < κ̂/γ̂ =

3.0139. However, α̂ + β̂ = 0.9915, whereas m = 2 yields µ̂
−1/2
B,2 = 0.4348. In

contrast, all other specifications seem to satisfy the sufficient conditions put

forth in Proposition 1. For both versions of the logarithmic ACD model,

3 Unlike what occurs in the asymmetric ACD case, the estimation of the asymmetric
power ACD model depends heavily on this constraint, since if the shocks impact curve is
negative complex numbers would arise disrupting the maximum likelihood algorithm.
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condition (4) holds in view that | α̂ + β̂ | < 1 in Type I and | β̂ | < 1 in

Type II. Further, | β̂ | < 1 guarantees that both restricted (EXACD) and

unrestricted (A-LACD) versions of the asymmetric logarithmic ACD model

as well as the Box-Cox ACD process are strictly stationary. The power ACD

model requires that E|β +α ελ
i |

2 < 1 for some integer m > 1, which reduces

to |α + β | < µ
−1/2
B,2λ for m = 2. The latter inequality is empirically satisfied

as the parameter estimates are such that 0.9738 = α̂ + β̂ < µ̂
−1/2

B,2λ̂
= 1.0058.

Numerical results based on 10,000 Monte Carlo simulations also show that

(4) holds for the asymmetric ACD and asymmetric power ACD models. As

λ → 0 in the augmented ACD model, strict stationarity follows from the

fact that | β̂ | < 1.

To check for misspecification, we first inspect whether the standardized

durations display any serial correlation by looking at the sample autocorre-

lation function of n-th order with n varying from 1 to 60. Tables 3 and 4

document that there is no sample autocorrelation greater than 0.05 (in mag-

nitude) irrespective of the specification of the conditional duration process.

Moreover, the Ljung-Box statistics also show no evidence of serial correla-

tion in the residuals.4 We therefore conclude that the conditional duration

models are doing a great job of accounting for the serial dependence in the

IBM price durations.

Next, we apply Fernandes and Grammig’s (2003) D-test to gauge the

closeness between the parametric and nonparametric estimates of the den-

sity function of the residuals. Under the correct specification of the condi-

tional duration process, both the parametric and kernel density estimates

4 To check for nonlinear serial dependence, we also regress the residuals on indicators
for the magnitude of the previous duration as in Engle and Russell (1998). As the F-
statistic is very close to zero in all instances, we find no evidence supporting any kind of
nonlinear dependence.
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of the residuals ε̂i = ψi

ψ̂i

εi converge to the true Burr density. In contrast,

misspecification gives rise to a mixture of Burr distributions since the fac-

tor ψi

ψ̂i

does not converge to one in probability. The kernel density estimate

will then converge to this mixture of Burr densities, whereas the parametric

estimate always belongs to the Burr family. The test statistic is thus pre-

sumably close to zero under the null, whereas it should be large under the

alternative. The motivation to apply the D-test is twofold. First, although

it is slightly conservative, the D-test entails excellent power against both

fixed and local alternatives. Second, it is nuisance parameter free in that

there is no asymptotic cost in replacing errors with estimated residuals.

To avoid boundary effects in the kernel density estimates due to the non-

negativeness of standardized durations, we work with log-residuals rather

than plain residuals. All nonparametric density estimates use a Gaussian

kernel, whereas the bandwidths are chosen according to an adjusted-version

of Silverman’s (1986) rule of thumb. The adjustment is necessary because

the asymptotic theory of the D-test requires a slight degree of undersmooth-

ing so as to avoid additional bias terms (see Fernandes and Grammig, 2003).

Despite the fact that the p-values of the D-test seem to decrease with the

degree of smoothing, the results are qualitatively robust to minor variations

in the bandwidth value.

The D-test results illustrate the rewards of the extra flexibility provided

by the AACD family. There is no standard specification that performs well

as seen in Table 3. At the 1% level of significance, we soundly reject the

linear and logarithmic Type I ACD models, whereas we find a borderline

result for the asymmetric logarithmic ACD model with b = 1 proposed by

Dufour and Engle (2000). At the 5% level, rejection ensues for the Box-Cox
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ACD model, while rejecting the logarithmic ACD Type II specification is

somewhat arguable given that the p-value is very close to 0.05. The figures

in Table 4 are much rosier: There is indeed no clear rejection, though we find

a borderline result for the asymmetric ACD model at the 5% significance

level. The D-test results also indicate that the asymmetric logarithmic ACD

specification is the most successful model, achieving a quite large p-value.

Figure 3 illustrates this pattern by plotting the kernel and parametric density

estimates of the log-residuals for the two groups of models in the first and

second column, respectively. While there are striking discrepancies in the

first column, the nonparametric density estimates nicely oscillate around the

parametric density estimates of the log-residuals in the second column.

Figure 3

To provide further empirical evidence, we consider price duration data,

from September to November 1996, relating to four actively traded stocks

on NYSE: Boeing, Coca-Cola, Disney, and Exxon. We also examine volume

and trade durations referring to the above stocks and IBM. Trade durations

measure the time between two successive transactions, whereas volume du-

rations denote the time interval needed to observe a cumulative trading

volume of 25,000 shares. We deal with intraday seasonality in the same

fashion as before. As expected, all durations keep featuring autocorrelation

and overdispersion even after adjusting for the time-of-day effect.

Tables 5 to 7

Tables 5 to 7 respectively summarize the results for price, volume and

trade durations. We report the Akaike information criterion (AIC) and the

p-values for the D-test and Ljung-Box Q statistics of 1st and 12th order.
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Restricting attention to the models that are not rejected by the specification

tests, the horse race winners (according to the information criterion) belong

to the subclass of logarithmic ACD processes given by (9). In particular, we

select the LACD Type I model for the Boeing and Disney price durations as

well as for the Exxon volume duration data. Furthermore, the asymmetric

logarithmic ACD specifications (EXACD and A-LACD) perform well not

only for the Coke price and volume durations, but also for the Boeing vol-

ume duration. In contrast, we find no suitable ACD specification to model

either the IBM volume duration or any trade duration. The rejections are

mainly due to the residual serial dependence. We therefore deem that fur-

ther research must pay more attention to the logarithmic subclass of the

AACD family given that it is quite flexible and easy to manipulate in the

context of higher order autoregressive structures.

Figure 4

Lastly, the concavity of the shocks impact curve appears to be a quite

general feature of financial duration data. Figure 4 displays the shocks im-

pact curves for the models with best overall performance. Although it seems

more pronounced for price durations, concavity shows up in all instances.

4 Conclusion

This paper introduces a family of augmented ACD models that encom-

passes most specifications in the literature. The nesting leans upon a Box-

Cox transformation to the conditional duration process and an asymmet-

ric shocks impact curve. The motivation for the latter stems from Engle

and Russell’s (1998) empirical findings, evincing that the linear ACD model
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tends to overpredict after either very long or very short durations. We de-

rive sufficient conditions for the existence of higher-order moments, strict

stationarity, geometric ergodicity and β-mixing property with exponential

decay in this class of ACD models.

Our empirical results on IBM price durations show that the restrictions

imposed by the existing models in the literature are incompatible with the

data, warranting the extra flexibility granted by the augmented ACD mod-

els. Actually, inspecting the parameter estimates of the different specifica-

tions reveals that imposing concavity in the shocks impact curve is pivot.

The Box-Cox transformation and the asymmetric response to shocks indeed

work, to some extent, as substitutes. In particular, the power ACD and

asymmetric logarithmic ACD models produce the best fit.

Further empirical investigation reveals that the concavity of the shocks

impact curve is not a specific feature of the IBM price durations. Our

findings evince the same concave pattern using other financial duration data,

though less pronounced for volume and trade durations.
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Figure 1: Feasible shocks impact curves for the augmented ACD model
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Figure 2: Empirical shocks impact curves
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Figure 3: Density estimates for the log-residuals
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Figure 4: Shocks impact curves for selected models
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Table 1

Typology of ACD models

Augmented ACD

ψλ
i = ω + α ψλ

i−1

[

| εi−1 − b | + c (εi−1 − b)
]υ

+ β ψλ
i−1

Asymmetric Power ACD (λ = υ)

ψλ
i = ω + α ψλ

i−1

[

| εi−1 − b | + c (εi−1 − b)
]λ

+ β ψλ
i−1

Asymmetric Logarithmic ACD (λ → 0 and υ = 1)

log ψi = ω + α
[

| εi−1 − b | + c (εi−1 − b)
]

+ β log ψi−1

Asymmetric ACD (λ = υ = 1)

ψi = ω + α ψi−1

[

| εi−1 − b | + c (εi−1 − b)
]

+ β ψi−1

Power ACD (λ = υ and b = c = 0)

ψλ
i = ω + α xλ

i−1 + β ψλ
i−1

Box-Cox ACD (λ → 0 and b = c = 0)

log ψi = ω + α ευ
i−1 + β log ψi−1

Logarithmic ACD Type I (λ, υ → 0 and b = c = 0)

log ψi = ω + α log xi−1 + β log ψi−1

Logarithmic ACD Type II (λ → 0, υ = 1 and b = c = 0)

log ψi = ω + α εi−1 + β log ψi−1

Linear ACD (λ = υ = 1 and b = c = 0)

ψi = ω + α xi−1 + β ψi−1
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Table 2

Descriptive statistics

IBM price durations plain adjusted

sample size 4,484 4,484

mean 262.55 1.239

median 128 0.714

maximum 7170 29.121

minimum 1 0.004

overdispersion 1.610 1.330

n-th order sample autocorrelation

n = 1 0.256 0.179

n = 2 0.231 0.184

n = 3 0.240 0.166

n = 4 0.168 0.121

n = 8 0.127 0.106

n = 12 0.095 0.099

n = 16 0.061 0.072

n = 20 0.018 0.062

n = 24 0.021 0.073

n = 28 0.000 0.050

n = 32 -0.008 0.047

n = 36 0.004 0.054
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Table 3

Estimation results for the AACD family of models

IBM price durations ($0.125 mid-price change)

parameter ACD LACD I LACD II EXACD BCACD

ω 0.0171 0.0774 -0.0865 -0.0964 -0.5230

(0.0038) (0.0069) (0.0063) (0.0131) (0.1708)

α 0.1116 0.1250 0.0912 -0.1157 0.5843

(0.0088) (0.0083) (0.0067) (0.0152) (0.1768)

β 0.8799 0.8327 0.9759 0.9614 0.9616

(0.0089) (0.0127) (0.0042) (0.0064) (0.0067)

υ 0.2371

(0.0772)

c -1.4927

(0.1288)

κ 1.2616 1.3036 1.2592 1.2892 1.2954

(0.0318) (0.0331) (0.0318) (0.0327) (0.0330)

γ 0.4186 0.4808 0.4137 0.4519 0.4635

(0.0471) (0.0487) (0.0469) (0.0478) (0.0486)

logL -4,952.4 -4,924.8 -4,950.5 -4,924.5 -4,920.5

AIC 1.6836 1.6742 1.6830 1.6741 1.6728

D-test 0.0029 0.0025 0.0488 0.0140 0.0266

Q(4) 0.1965 0.0845 0.1152 0.5821 0.4990

Q(8) 0.0898 0.1433 0.1136 0.2410 0.2327

Q(16) 0.0836 0.0534 0.1569 0.1956 0.1891

Q(24) 0.0496 0.0897 0.1084 0.2853 0.2698

max ACF 0.0326 0.0403 0.0344 0.0370 0.0378

min ACF -0.0282 -0.0264 -0.0259 -0.0310 -0.0320

Figures in parentheses correspond to standard errors based on the OPG
estimator of the information matrix. logL reports the value of the log-
likelihood function, whereas AIC denotes the Akaike information crite-
rion. D-test displays the p-values of the nonparametric test proposed
by Fernandes and Grammig (2003) applied to the log-residuals. Q(n)
correspond to the p-values of Ljung-Box statistic for up to n-th order
serial correlation. The last two rows report the maximum and minimum
values of the sample autocorrelations from order 1 to 60, respectively.
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Table 4

Estimation results for the AACD family of models

IBM price durations ($0.125 mid-price change)

parameter PACD A-ACD A-LACD A-PACD AACD

ω 0.0378 0.0208 0.0217 0.0378 0.0361

(0.0067) (0.0049) (0.0147) (0.0061) (0.0064)

α 0.1352 -0.1990 -0.2294 0.1270 0.00001

(0.0110) (0.0452) (0.0448) (0.0268) (0.1022)

β 0.8386 0.9760 0.9639 0.8468 0.9639

(0.0123) (0.0168) (0.0062) (0.0116) (0.0891)

λ 0.1751 0.2573 0.00003

(0.0848) (0.0681) (0.2621)

υ 0.3244

(0.0747)

b 0.4456 0.5066 0.0411 0.0451

(0.0741) (0.0680) (0.0019) (0.0015)

c -1.4294 -1.3172 0.2326 0.1117

(0.1099) (0.0724) (0.9446) (1.1718)

κ 1.2976 1.2882 1.2926 1.2979 1.2935

(0.0331) (0.0328) (0.0329) (0.0330) (0.0329)

γ 0.4688 0.4556 0.4589 0.4685 0.4588

(0.0487) (0.0484) (0.0485) (0.0482) (0.0483)

logL -4,922.7 -4,930.1 -4,921.1 -4,921.0 -4,918.4

AIC 1.6735 1.6760 1.6730 1.6729 1.6721

D-test 0.0955 0.0494 0.4039 0.1353 0.1370

Q(4) 0.3011 0.1794 0.4259 0.3866 0.5031

Q(8) 0.2085 0.0600 0.1182 0.2100 0.1840

Q(16) 0.1447 0.0719 0.1124 0.1447 0.1726

Q(24) 0.2224 0.1085 0.1536 0.2262 0.2594

max ACF 0.0378 0.0351 0.0352 0.0386 0.0381

min ACF -0.0301 -0.0341 -0.0370 -0.0316 -0.0331

Figures in parentheses correspond to standard errors based on the OPG
estimator of the information matrix. logL reports the value of the log-
likelihood function, whereas AIC denotes the Akaike information crite-
rion. D-test displays the p-values of the nonparametric test proposed by
Fernandes and Grammig (2003) applied to the log-residuals. Q(n) cor-
respond to the p-values of the Ljung-Box statistic for up to n-th order
serial correlation. The last two rows report the maximum and minimum
values of the sample autocorrelations from order 1 to 60, respectively.
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Table 5
Estimation results for price durations ($0.125 mid-price change)

ACD LACD I LACD II EXACD BCACD PACD A-ACD A-LACD A-PACD AACD

Boeing sample size: 1,746 observations

AIC 1.9989 1.9759 2.0030 1.9890 1.9770 1.9771 1.9945 1.9815 1.9789 1.9800

Q(1) 0.551 0.734 0.210 0.539 0.732 0.708 0.754 0.585 0.736 0.679

Q(12) 0.320 0.219 0.460 0.353 0.220 0.221 0.484 0.417 0.214 0.225

D-test 0.103 0.173 0.006 0.283 0.157 0.160 0.113 0.140 0.121 0.097

Coke sample size: 1,072 observations

AIC 1.8885 1.8823 1.8909 1.8811 1.8833 1.8833 1.8923 1.8827 1.8863 1.8882

Q(1) 0.138 0.233 0.224 0.232 0.132 0.137 0.139 0.206 0.131 0.135

Q(12) 0.502 0.482 0.608 0.501 0.436 0.435 0.506 0.494 0.430 0.434

D-test 0.615 0.059 0.733 0.270 0.250 0.250 0.624 0.184 0.360 0.369

Disney sample size: 1,439 observations

AIC 2.2148 2.2104 2.2146 2.2127 2.2118 2.2118 2.2176 2.2130 2.2145 2.2159

Q(1) 0.926 0.869 0.874 0.877 0.866 0.856 0.889 0.836 0.833 0.848

Q(12) 0.685 0.500 0.673 0.543 0.524 0.512 0.670 0.430 0.514 0.519

D-test 0.133 0.271 0.213 0.371 0.295 0.281 0.188 0.087 0.295 0.303

Exxon sample size: 1,810 observations

AIC 1.9556 1.9521 1.9554 1.9549 1.9532 1.9533 1.9536 1.9529 1.9535 1.9545

Q(1) 0.219 0.241 0.267 0.232 0.234 0.267 0.149 0.231 0.304 0.304

Q(12) 0.228 0.265 0.251 0.224 0.250 0.258 0.208 0.308 0.272 0.272

D-test 0.099 0.006 0.136 0.043 0.029 0.033 0.091 0.017 0.012 0.012
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Table 6
Estimation results for volume durations (cumulative trading volume: 25,000 shares)

ACD LACD I LACD II EXACD BCACD PACD A-ACD A-LACD A-PACD AACD

Boeing sample size: 1,050 observations

AIC 1.8016 1.8054 1.7990 1.7983 1.8000 1.8021 1.8046 1.7999 1.8044 1.8063

Q(1) 0.964 0.762 0.831 0.772 0.802 0.935 0.898 0.724 0.850 0.849

Q(12) 0.537 0.367 0.586 0.516 0.542 0.510 0.551 0.503 0.515 0.516

D-test 0.573 0.478 0.767 0.781 0.703 0.567 0.507 0.790 0.610 0.607

Coke sample size: 2,014 observations

AIC 1.8031 1.8060 1.8022 1.7993 1.8009 1.8018 1.8014 1.7994 1.8023 1.8033

Q(1) 0.033 0.029 0.031 0.064 0.057 0.053 0.072 0.091 0.062 0.060

Q(12) 0.096 0.006 0.096 0.059 0.066 0.065 0.054 0.052 0.052 0.053

D-test 0.390 0.834 0.137 0.499 0.634 0.658 0.696 0.691 0.636 0.631

Disney sample size: 1,184 observations

AIC 1.8913 1.8967 1.8924 1.8915 1.8918 1.8918 1.8941 1.8907 1.8943 1.8960

Q(1) 0.364 0.130 0.284 0.329 0.358 0.364 0.352 0.330 0.368 0.367

Q(12) 0.524 0.297 0.524 0.463 0.493 0.494 0.526 0.517 0.483 0.493

D-test 0.000 0.010 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000

Exxon sample size: 1,362 observations

AIC 1.6471 1.6400 1.6486 1.6404 1.6413 1.6413 1.6435 1.6416 1.6438 1.6453

Q(1) 0.732 0.456 0.947 0.486 0.446 0.446 0.526 0.535 0.417 0.435

Q(12) 0.575 0.572 0.587 0.593 0.573 0.572 0.598 0.598 0.563 0.593

D-test 0.886 0.989 0.818 0.961 0.964 0.964 0.909 0.987 0.962 0.962

IBM sample size: 2,869 observations

AIC 1.8300 1.8393 1.8282 1.8264 1.8259 1.8286 1.8311 1.8271 1.8274 1.8280

Q(1) 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.001 0.000 0.000

Q(12) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D-test 0.811 0.894 0.941 0.856 0.580 0.866 0.812 0.860 0.664 0.649
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Table 7
Estimation results for trade durations

ACD LACD I LACD II EXACD BCACD PACD A-ACD A-LACD A-PACD AACD

Boeing sample size: 15,952 observations

AIC 2.0765 2.0754 2.0762 2.0730 2.0733 2.0736 2.0738 2.0730 2.0733 2.0735

Q(1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Q(12) 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D-test 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Coke sample size: 26,414 observations

AIC 1.8109 1.8142 1.8111 1.8083 1.8086 1.8091 1.8110 1.8082 1.8084 1.8085

Q(1) 0.267 0.000 0.150 0.298 0.289 0.165 0.268 0.270 0.225 0.224

Q(12) 0.007 0.000 0.009 0.034 0.022 0.016 0.007 0.028 0.033 0.033

D-test 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Disney sample size: 21,880 observations

AIC 2.1042 2.1051 2.1042 2.1027 2.1028 2.1029 2.1044 2.1028 2.1029 2.1030

Q(1) 0.011 0.000 0.007 0.023 0.024 0.019 0.011 0.025 0.018 0.019

Q(12) 0.027 0.000 0.025 0.043 0.040 0.037 0.028 0.046 0.034 0.035

D-test 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Exxon sample size: 18,913 observations

AIC 1.9689 1.9641 1.9695 1.9629 1.9633 1.9635 1.9639 1.9629 1.9632 1.9632

Q(1) 0.619 0.094 0.062 0.644 0.779 0.589 0.362 0.641 0.812 0.770

Q(12) 0.031 0.107 0.025 0.115 0.095 0.116 0.133 0.113 0.106 0.095

D-test 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IBM sample size: 40,302 observations

AIC 2.0749 2.0705 2.0745 2.0680 2.0682 2.0687 2.0750 2.0677 2.0680 2.0681

Q(1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Q(12) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D-test 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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