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ABSTRACT 

 

We present explicit formulas for evaluating the difference between Markowitz weights 

and those from optimal portfolios, with the same given return, considering either 

asymmetry or kurtosis. We prove that, whenever the higher moment constraint is not 

binding, the weights are never the same. If, due to special features of the first and 

second moments, the difference might be negligible, in quite many cases it will be very 

significant. An appealing illustration, when the designer wants to incorporate an asset 

with quite heavy tails, but wants to moderate this effect, further supports the argument. 
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1. Introduction. 

 

Is the Markowitz optimal solution very different from the one obtained when 

considering, say, skewness ? Or kurtosis ? 

In this paper we show that, though it might be close to the new optimal solution 

in some instances, the answer most of the times will be a round yes. Indeed, by calling 

attention to how “wrong” it may be to stick to the Markowitz solution, the results below 

stress a pledge for due introduction of higher moments in portfolio optimisation. In the 

next section, after presenting our notation, we develop the analytical results that allow 

to compare the Markowitz solution with two special higher moments cases, in which 

variance is minimised given the same expected portfolio excess return and either a 

given skewness or kurtosis. In particular, we prove that apart from a zero-measure set 

the Markowitz solution is never equal to the other two. We then move a little further in 

section 3, by studying a theoretical example, when only one marginal kurtosis is taken 

into account. Even in this apparently simple case, the differences can be strikingly.  

We believe that the implications of results as those shown here have not been 

fully exploited yet. Undoubtedly, final testing of the gains brought out by using higher 

moments relies in extensive practical applications of the idea. If a work like Harvey and 

Siddique (2000) points to one of the needed directions, the task has however only 

begun.  

 

2. A general framework. 

 

Portfolio optimisation taking into account moments higher than the second cannot be 

considered a new theme any more. A mature text like Barone-Adesi (1985), nearly 

twenty years old, pays witness to the seniority of the problem. However, several issues 

still contribute to the fact that, though acknowledged by most as an important – or rather 

crucial – point in actual portfolio construction, no systematic approach to globally deal 

with it, from the practical to the theoretical instances, has been widely accepted yet by 

the profession. 

Since Athayde and Flôres (1997), we have been developing such a systematic 

way, which has as departure point  the treatment of key optimisation problems that are 

posed to anyone dealing with higher moments in portfolio design. The approach allows 

several theoretical insights as well as the setting up of software to perform the search of 



the optimal weights. This encompassing nature is greatly due to a new notation 

explained in the next sub-section1. 

 

2.1. A matrix notation for the higher moments arrays. 

Given a n-dimensional random vector, the set of its p-th order moments is, in general, a 

tensor. The second moments tensor is the popular  n x n  covariance matrix, while the 

third moments one is a  n x n x n  cube in three-dimensional space. As the 

(mathematical) tensor notation, which is so useful in physics, did not appear convenient 

in the portfolio choice problem, we developed a special notation for the case. 

Motivation also came from the need to treat the problem in an absolutely general setting 

– be it either in a utility maximising context or if the optimal portfolio is defined by 

preference relations -, leaving open the maximum order p of portfolio moments of 

interest and the possible patterns of their corresponding (higher order) tensors. Beyond 

providing a synthetic way to treat complicated expressions, it allows performing all the 

needed operations within the realm of matrix calculus.   

We transform the full p-th moments tensor, with np elements, into a matrix of 

order  n x np-1  , called Mp ,obtained by slicing all bidimensional  n x np-2  layers defined 

by fixing one asset and then taking all the moments in which it figures at least once and 

pasting them, in the same order, sideways. Row i’ of the matrix layer corresponding to 

having held the i-th asset fixed gives – in a pre-established order – all the moments in 

which assets i and i’ appear at least once. Of course, assets must be ordered once and for 

all and this order respected in the sequencing of the layers and in the numbering of the 

rows of each layer. Accordingly, a conformal ordering must be chosen, and thoroughly 

used, for the combinations (with repetitions) of the n assets into groups of p-2 elements 

which will define the columns of each matrix layer.  

In the case of kurtosis, for instance, two indices/assets must be held constant in 

each row of a given layer. Calling σijkl a general (co-) kurtosis, when n=2, the final 2 x 8 

(=24-1)  matrix will result from the juxtaposition of two 2 x 4 (=24-2) layers – one 

corresponding to the first, and another to the second asset – as shown in Figure 1. 

Notice that, as pointed out in the figure, the four columns in each layer correspond to 

ordering the two-by-two combinations, with repetition, of the two assets. 

                                                           
1 The basis of the notation has been previously sketched in, for instance, Athayde and Flôres 
(2004, 2005). We present here a fuller (and hopefully clearer) explanation, making the paper 
self-contained. 



 

Figure 1: Building up the 2 x 8 matrix  M4  corresponding to the kurtosis tensor, in the 

case of two assets (or a two-dimensional random vector): 

   “asset 1” row  ➹     1111 1112 1121 1122 1211 1212 1221 1222

2111 2112 2121 2122 2211 2212 2221 2222

σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ
 
 
 

           

                                    <-----  “asset 1” layer  ----><-----  “asset 2” layer  ----> 

“columns’ meaning”     (11)    (12)    (21)    (22)       (11)    (12)    (21)    (22) 

 

As happens in a covariance matrix, with the exception of the marginal moments, 

all other entries in the Mp matrices will share identical values with others in 

“symmetrical” positions. We shall not pursue this combinatorics here – which can be 

very important in dealing with special features of the higher moments set -, but only 

provide a glimpse on its structure, still in the two assets case, in Figure 2. 

 

Figure 2: The general pattern of the 2 x 8 matrix  M4  corresponding to the kurtosis 

tensor, in the case of two assets (each Roman letter corresponds to one of the (three) 

possible co-kurtoses): 

 

1111

2222

a a b a b b c
a b b c b c c

σ
σ

 
 
 

          . 

                         

Earlier works generalising portfolio choice to higher moments considered only 

the marginal higher moments of the returns vector, plainly disregarding any co-moment 

of the same order2. Though the full set of co-moments can quickly become too big – 

even at the third order -, and simplifying assumptions on its pattern will usually be 

imposed in practice, it is important to have a way to study the general solution to the 

problem, irrespective of the simplifying assumptions that might be imposed. In a second 

step, due consideration of the shape of the higher moments’ structures – which will give 

way to special patterns of zeroes in our Mp matrices - is a must for grasping a full 

knowledge of the market one is dealing with.   

                                                           
2 This is still the, nowadays unacceptable, hypothesis of most applications 



Now suppose that a vector of weights α ∈  Rn is given, and x, M2 , M3 , ... and Mp 

stand for the matrices, constructed as above, containing the expected (excess) returns, 

(co-)variances, skewnesses ... and p-moments of a random vector of n assets. The mean 

return, variance, skewness ... and p-th moment of the portfolio with these weights will 

be, respectively:  

 

α’x  , α’M2α  ,  α’M3 (α⊗α )  ... and  α’Mp (α⊗α⊗α  ... ⊗α )≡α’Mpα⊗ p-1    , 

 

where ‘⊗ ’ stands for the Kronecker product and  α⊗ p stands for the (Kronecker) product 

of vector α  by itself, p times .  

It is immediate to see that, as real functions of α, all expressions above are 

homogenous functions of the same degree as the order of the corresponding moment. 

This means that Euler’s theorem can be easily used in computing derivatives with 

respect to α . As an example, the derivative of the portfolio kurtosis with respect to the 

weights will be: 

3
4[ ]Mα α

α
⊗∂ ′

∂
= 4M4α⊗ 3         .                                                                      

 

2.2. Solving the classical portfolio problem controlling for skewness and kurtosis. 

With the aid of the above notation we shall derive a general solution to the problem of 

minimising the portfolio variance given a specified set of (expected excess) return, 

skewness and kurtosis values, for the portfolio.  

Consider a portfolio with n risky equities and a riskless asset with rate of return 

rf . Let  [1]  stand for a nx1 vector of 1’s and M1 be the vector of the equities’ expected 

returns and call    x = M1 – [1] rf    , the vector of mean excess returns. Minimising the 

variance, for a given mean return, skewness and kurtosis, amounts to finding the 

solution to the problem: 

 

3 4
, , , 2 , 3

2 1 2 3 3 4[( ( ) ) ] ( ) ( )p f p pMin L M E r r x M Mα α α λ α λ σ α α λ σ α α⊗ ⊗= + − − + − + −  ,    (1) 

 

where  M2 , M3 and M4  are, resp., the matrices related to the second, third and fourth 

moments tensors, α  is the vector of n portfolio weights – where short sales are allowed, 



the lambdas are Lagrange multipliers and the three remaining symbols are the α-

portfolio given mean return, skewness and kurtosis.  

If   R  = E(rp) – rf denotes the given excess portfolio return,                           

the first order conditions  (foc) corresponding to (1) are:  

 
2 3

2 1 2 3 2 42 3 4M x M Mα λ λ α λ α⊗ ⊗= + +                                                 

,R xα=                                                                                                                            (2) 

3
, 2

3p Mσ α α ⊗=                                                                  

4
, 3

4p Mσ α α ⊗=                                                                                   . 

                                        

 Multiplying the first expression by the inverse of M2 and then successively 

imposing in it each of the three scalar restrictions leads to the system: 

 

1 0 2 2 2 32 3 4R A A Aλ λ λ= + +                                                                                               (3) 

3 1 2 2 4 3 52 3 4
p

A A Aσ λ λ λ= + +                                                                  

4 1 3 2 5 3 62 3 4
p

A A Aσ λ λ λ= + +                                                                 , 

 

where the new coefficients are: 
, 1

0 2A x M x−=                                                                                , 

, 1 2
2 2 3A x M M α− ⊗=                                                                        , 

, 1 3
3 2 4A x M M α− ⊗=                                                                        , 

2 1 2
4 3 2 3' 'A M M Mα α⊗ − ⊗=                                                             ,           (4) 

2 1 3
5 3 2 4' 'A M M Mα α⊗ − ⊗=                                                             ,            

3 1 3
6 4 2 4' 'A M M Mα α⊗ − ⊗=                                                             ,            

the subscript of the A’s corresponding to their degree of homogeneity as real functions 

of the vector α. Notice that A0 , A4 and A6 are positive because the inverse of the 

covariance matrix is positive definite. 



 System (3) can be solved by a straightforward use of Cramer’s Rule. 

Substitution of the solution in the expression below, derived from the first foc in (2): 

 
1 1 12 3

1 2 2 2 3 2 2 42 3 4M x M M M Mα λ λ α λ α− − −⊗ ⊗= + +                                                            (5) 

 

yields the nonlinear system that characterises the optimal weights. The algebra, though 

not difficult, can be formidable, and use of a symbolic calculator (software) is advisable. 

We show the explicit final expression in two particular cases: 

i) when skewness is not taken into account: calling αK  the weights, we have 

 

4 46 3 0 31 1 3
2 2 42 2

0 6 3 0 6 3( ) ( )
p p

K K

A R A A A R
M x M M

A A A A A A

σ σ
α α− − ⊗

− −
= +

− −
                                 .                      (6) 

 

ii) when kurtosis is not taken into account: calling αS  the weights, we have 

 

3 34 2 0 21 1 2
2 2 32 2

0 4 2 0 4 2( ) ( )
p p

S S

A R A A A R
M x M M

A A A A A A

σ σ
α α− − ⊗

− −
= +

− −
                                 .                      (7) 

  

We shall be interested in making comparisons with the classical Markowitz 

solution, αM  , which does not take into account both skewness and kurtosis. From (5), 

and the relevant lines in (2), it is immediately: 

1
2

0
M

R M x
A

α −=                                                            .                             (8) 

  Let’s define as  ∆S = αS - αM  and  ∆K = αK - αM  , the differences between each 

higher moment solution and the Markowitz one. Using (6), (7) and (8), it is not very 

difficult to find that: 

 



30 2 1 1 2
2 2 32

0 4 2 0

1( ' )
( )

p
S n S

A A R
M I xx M M

A A A A

σ
α− − ⊗

−
∆ = −

−
                                 ,                      (9) 

40 3 1 1 3
2 2 42

0 6 3 0

1( ' )
( )

p
K n K

A A R
M I xx M M

A A A A

σ
α− − ⊗

−
∆ = −

−
                                 ,                      (10) 

 

two expressions which, thanks to our notation, reveal themselves to be strikingly 

similar. Both can be used as starting points for sensitivity analyses, of the difference 

between the respective sets of weights, with respect to either the given value for the 

(portfolio) higher moment or a specified (sub)set of the equities’ higher moments.  

Nevertheless, such analyses must be carried out with care, as the weights 

themselves figure in the r.h.s. of the equations, either explicitly or through the 

“numbers” A2, A4 or A3, A5 . We shall however prove a more fundamental result: 

 

Proposition. Let a given expected return R be fixed and suppose that a higher moment 

optimal portfolio (either (6) or (7)) exists   THEN   if the corresponding higher moment 

constraint is binding, the Markowitz solution is never equal to the higher moment 

solution.  

Proof: we prove for the αK case, the reasoning being identical for αS . Notice first, from 

(5) and (6), that if the kurtosis constraint is not biding,  

                              40 3pA A Rσ =             ,                                                                             

and this is enough to make (6) equal to (8). Now suppose the constraint is binding: this 

means that the number that multiplies the vector expressed in (10) is non-zero and so 

the two solutions can only coincide if the vector itself in (10) is zero. As this vector is 

the image of another one, by a positive definite operator, it ensues that  

1 3
2 4

0

1( ' )n KI xx M M
A

α− ⊗−  



must be the null vector. As 3
4 0KM α ⊗ ≠  , a little algebra shows this implies that, again, 

the higher moment constraint is not binding. As a consequence, the two solutions will 

never coincide. 

 

The above proposition gives a more conclusive finish to results as some in 

Athayde and Flôres (2004), where a complete solution to the three moments portfolio 

problem is discussed and the (linear) manifold of “common” Markowitz and αS 

solutions is characterised within the geometric structure of the solutions set in moments 

space. For the practitioner, it says that – apart from the zero (Lebesgue) measure set 

where the higher moment constraint is not binding – he will be incurring in error by not 

considering the higher moment. His “Markowitz weights” will certainly be sub-optimal. 

But, by how much ? 

  

3. A “one non-zero kurtosis” example. 

 

We shall exploit here the case when the fourth moment is considered, but the structure 

of the kurtosis tensor has only one non-negligible value, related to the marginal kurtosis 

of the first asset.  

Two remarks are due before pursuing. First, as use of the qualifier “non-

negligible” calls attention, kurtoses are usually non-zero3; what is at stake is which ones 

to consider as relevant, as signalling heavier (than normal) tails. This means that the 

analyst will be setting to zero all those values for which, taking standardised assets X 

and Y, for instance, moments like EX4, EY4, EXY3, EX2Y2, etc, won’t be very far from 

34. The second is that this very assignment of “zero values” must be made in a 

consistent way. Considering the same two assets, if one decides not to disregard the two 

marginal kurtosis, very likely the cross-kurtosis EX2Y2 won’t be possible to be 

discarded, and – though not necessarily – the same may apply for the pair EXY3, EX3Y. 

The moral contained in the two remarks is that a much deeper empirical knowledge of 

the (multivariate) assets distributions is required, for a sensible modelling of the base 

                                                           
3 Though not very common, some co-kurtoses can be negative. 
4 The reader may consider that all entries in the (standardised assets’) kurtosis tensor are 
subtracted from 3.  



higher moments structure. Though this means more additional preparatory work, we 

consider it positive, as obliging a deeper knowledge of the market. 

If only one kurtosis is non-zero, the problem in the previous section simplifies 

greatly, as the kurtosis constraint in (2) directly supplies the weight of the first asset: 

 

4
1/ 4

1 4(1)( / )pα σ σ=                                 ,                                    (12) 

 

where the notation used for the relevant kurtosis is self-explanatory. Moreover, the 

crucial product                
3

4M α ⊗        , 

becomes a vector of n-1 zeroes but for the first position, whose ordinate is:                         

4
3 3 1/ 4
1 4(1) 4(1)( )pα σ σ σ=        , 

a weighted geometric average of the two kurtoses at stake. 

 With these values in hand, one can quickly compute: 

 

             4 4
3 1/ 4 3 1/ 2

3 4(1) .1 6 4(1) 11( ) ' ( )
p p

A x m A mσ σ σ σ= =        , 

 

where m.1 and m11 stand, respectively for the first column and entry of matrix   

M2
-1 = [mij]                              . 

It is now a standard matter to go to expressions (6) and (10) and compute the 

values of the remaining vector of optimal weights and the vector of differences. We 

shall concentrate on the latter. After not too cumbersome manipulations, one arrives at 

the following expression for ∆K :  

 

1 .1
0 .1 .12

0 11 .1

' [ ( ' ) ]
( ' )K

Rx m A m x m x
A m x m

α −∆ = −
−

                                                  .       (13) 

 

 The above expression conveys two relevant insights: 

 

i) the vector of differences between the Markowitz and the “kurtosis” solution is 

determined by the structure of the first and second moments arrays; in the case 

of the latter, particularly the first column of its inverse; 



ii) the influence of the kurtosis considered is through the scalar that multiplies all 

ordinates of the vector mentioned in i). 

 

As, from (12):  

4
1/ 41

4(1) 1
4(1) 4(1) 4(1)

1 1( / )
4 4p

α σ σ α
σ σ σ
∂ = − = −

∂
       ,                      (14) 

the sensitivity of the difference with respect to the kurtosis is easily found to be: 

 

1
0 .1 .12

4(1) 4(1) 0 11 .1

1 [ ( ' ) ]
4 ( ' )K A m x m x

A m x m
α

σ σ
∂ ∆ = − − =

∂ −
                      ,          (15) 

    
4

1/ 4

0 .1 .15/ 4 2
4(1) 0 11 .1

1 1 [ ( ' ) ]
4 ( ' )

p A m x m x
A m x m

σ
σ

= − −
−

                         . 

 

 Changes at the vicinity of a given σ4(1) change the signs of the term in (13) 

which is multiplied by α1 ; moreover, but for a factor of 1/4σ4(1), they are of the same 

intensity as the term itself. They are also, in absolute terms, directly proportional to the 

set portfolio kurtosis5, and indirectly, to the non-negligible marginal one. 

The last interpretation may be linked to an interesting situation. Suppose the 

portfolio designer wants to include asset 1 which has a “too” heavy tail. He’s not against 

heavy tails but wants his portfolio to have a much more moderate one. He’ll then be in 

the situation of our example, (12) defining a low α1. If this value can be considered 

quite small with respect to the relevant elements in (13), he’ll design an optimal 

portfolio distant from the Markowitz one of: 

 

.1
0 .1 .12

0 11 .1

' [ ( ' ) ]
( ' )K

Rx m A m x m x
A m x m

−∆ ≅ −
−

                                                  ,        (16)   

 

a vector invariant to actual values of both kurtoses, provided their ratio allows to discard 

the corresponding term in (13). Clearly, if a high R is aimed at, the differences might be 

rather significant. 

 Finally, still under this assumption, the difference between the weights allotted 

to the riskless asset (in the Markowitz less the kurtosis solution) will simply be: 

                                                           
5 More precisely, its fourth root (or standardised version). 



 

.1
0 .1 .12

0 11 .1

' [ ([1]' ) ( ' )([1]' )]
( ' )

Rx m A m x m x
A m x m

− −
−

                          .                        (17)   

 

 Irrespective of this last case, it is worth reminding that, from (8) and (12), it 

should be expected that at least the first weight will always be significantly different 

from the Markowitz one. Anyhow, the set of formulas in this section provides a 

complete toolkit to analyse the effects of the “one non-zero kurtosis” solution. 

 

4. Concluding remarks. 

 

We have presented explicit formulas for evaluating the difference between Markowitz 

weights and those from optimal portfolios, with the same given return, considering 

either asymmetry or kurtosis. We proved that, whenever the higher moment constraint is 

not binding, the weights are never the same. 

 If, even by special features of the first and second moments, the difference, 

though not the null vector, might be negligible, in quite many cases it will be very 

significant. This is fully exemplified in a simple and appealing case, when the designer 

wants to incorporate an asset with quite heavy tails, but wants to moderate this effect. 

The results add further support that Markowitz weights are not robust to the 

introduction of higher moments.  
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