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Exploratory semiparametric analysis of two-dimensional

diffusions in finance
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ABSTRACT

We examine bivariate extensions of Aït-Sahalia’s approach to the estimation of

univariate diffusions. Our message is that extending his idea to a bivariate setting is not

straightforward. In higher dimensions, as opposed to the univariate case, the elements of the

Itô and Fokker-Planck representations do not coincide; and, even imposing sensible

assumptions on the marginal drifts and volatilities is not sufficient to obtain direct

generalisations. We develop exploratory estimation and testing procedures, by

parametrizing the drifts of both component processes and setting restrictions on the terms

of either the Itô or the Fokker-Planck covariance matrices. This may lead to highly non-

linear ordinary differential equations, where the definition of boundary conditions is

crucial. For the methods developed, the Fokker-Planck representation seems more tractable

than the Itô’s. Questions for further research include the design of regularity conditions on

the time series dependence in the data, the kernels actually used and the bandwidths, to

obtain asymptotic properties for the estimators proposed. A particular case seems

promising: “causal bivariate models” in which only one of the diffusions contributes to the

volatility of the other. Hedging strategies which estimate separately the univariate

diffusions at stake may thus be improved.

(Preliminary version: February 2000)
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In spite of the landmarks in continuous-time derivatives pricing by Black and Scholes

(1973) and Merton (1973), which opened a path followed by Vasicek (1977), Cox,

Ingersoll and Ross (1985a, b) and Hull and White (1990), among others, the empirical

literature has not followed this generally much more tractable and elegant alternative to

discrete-time modelling. Indeed, the estimation of such pricing models usually abandons

the continuous time environment, restricting itself to the discrete character of the data

available.

The most commonly used estimation method for univariate diffusions in finance

consists in parametrizing the drift and volatility functions and then discretize the model

before estimating it. Lo (1988)’s pioneering proposal, based on the method of maximum-

likelihood, suffered the drawback of requiring, except for very particular cases, the

numerical solution of a partial differential equation for each optimising iteration. Nelson

(1990) analysed the behaviour of discrete approximations when the interval between the

observations goes to zero. Duffie and Singleton (1993) and Gourieroux, Monfort and

Renault (1993) proposed the estimation of diffusions by simulation – given parameter

values, sample paths are simulated, and their moments should be rendered as close as

possible to the sample moments.

Aït-Sahalia (1996) sought to reconcile both the theoretical and empirical literature

in option pricing. Though working with discrete data, he did not resort to discretizations of

the model. Firstly, one parametrizes the drift, for instance, which guarantees the

identification of the model and makes possible not to restrict the volatility specification.

Next, one proceeds to estimate non-parametrically the marginal density of the process.

Given the estimated (coefficients of the) drift and marginal density, a semiparametric

estimator of the volatility is obtained through the Kolmogorov forward equation. The

process can be improved by using the volatility estimates now as input to re-estimate (i) the

drift parameters using Feasible Generalised Least Squares and (ii) the volatility itself.

In the case of interest-rate derivatives, parametrizing the drift makes sense given the

importance of the instantaneous volatility in derivatives pricing and the difficulty in

forming an D�SULRUL idea of its functional form. Moreover, as Pritsker (1998) pointed out,



the availability of long time-series of daily data of spot interest rates is crucial for the good

performance of the method.

The purpose of this paper is to explore the possibilities of bivariate extensions of

Aït-Sahalia (1996)’s semiparametric framework. Since Brennan and Schwartz (1979),

bivariate diffusions have appeared in several two-factor models and are many times treated

independently. It would certainly be interesting to have a powerful estimating method for

investigating, and testing, different relationships among the two univariate processes.

However, when moving to a multivariate framework things become much more

complicated. Actually, our main message is that extending Aït-Sahalia (1996)’s idea to a

bivariate setting is by no means straightforward. First, the functions in the Itô’s and Fokker-

Planck’s representations do not coincide in higher dimensions, as opposed to the univariate

case. As a matter of fact, in the bivariate case, the Fokker-Planck volatilities turn out to be

more adequate than those in the Itô representation. Second, even when imposing sensible

assumptions on the drift and volatility functions, one can not obtain a direct generalisation

of the univariate method.

In spite of these issues, the method might be interesting as an exploratory technique

for uncovering certain relationships between the two processes, without imposing a fully

parametric structure. Further work is however needed for rigorously establishing the

asymptotic properties of the various possible estimators, as well as to acquire a better grasp

of relevant potential applications.

The paper is organised as follows. Section 2 briefly recovers Aït-Sahalia’s

univariate approach, while the following section analyses the bivariate case. Section 4

proposes several semiparametric estimators for the covariance between the processes. The

next section applies the bivariate approach to a pair of assets: the main stock indexes of

Brazil and Argentina. Section 6 concludes.
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Aït-Sahalia (1996) considers the univariate Fokker-Planck (FP) equation (or the

Kolmogorov forward equation, Karlin and Taylor (1981), p. 219), which describes the

transition densities of continuous-time Markov processes without jump:
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where:

)’,;,( W\W[I := transition density from point �\�W¶� to �[�W�;

)([µ := drift of the process;

)(2 [σ := volatility of the process.

The drift is parametrised as in Vasicek (1977) - himself inspired in the Ornstein-

Uhlenbeck process -, with the mean-reverting property. Parametrization of the drift is

fundamental to the  identification of the pair ( 2,σµ ): imposing no restriction on the pair

makes it impossible to distinguish it from the pair ( 2, σµ DD ), where D is a constant, when

considering a discrete sample with fixed time-intervals.

Supposing a general parametrization  µ�[�θ� , under the assumption that the process

is stationary – or rather, that it has converged to a steady state – we can write

)(),( [W[ ππ = , for its marginal density. Multiplying both sides of (1) by )(\π  and

integrating with respect to y, one obtains,
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integrating twice (3) with respect to [ and using the boundary condition 0)0( =π :
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It is then possible to write the volatility as an explicit function ϕ�θ� �π�[�� of the

marginal density and the parameter vector characterising the drift. If these two objects are

estimated, a semiparametric estimate of the volatility function can be obtained as:

))(ˆ;ˆ()(ˆ 2 [[ πθϕσ =                          .                                      (5)

Aït-Sahalia (1996), with the help of a functional version of the delta method, shows

that this estimator is point-wise consistent and asymptotically normal.
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Consider now the bivariate Fokker-Planck equation, already with a parametrization on the

drift:
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where

)’,;,( W\W[I  := transition density from point �\�W¶� to �[�W�;

),( θµ [
L

, i = 1,2 := drifts of the two processes;

)([E
LM

, i, j = 1,2 := volatilities of the Fokker-Planck representation.

It is worth to stress the correspondence, at least locally, between the Itô

representation and the Fokker-Planck equation (Gardiner (1990), chapter 3). The bivariate

version of the Itô stochastic differential equation is:
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where [W = ([�W���[�W), and { 2,1)( =LLW
% , W�≥��} is a standard two-dimensional Brownian motion.

The functions µi(.) and σii
2(.), i = 1,2 , are, respectively, the drift and the “volatility” of each

process, and σij(.), i, j = 1,2, i≠j are instantaneous “covariances” between them.

The relation between the volatilities in both representations, i.e. in (6) and (7), is:
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To obtain an analytical solution for the bivariate version of the FP equation in the

spirit of the previous section, one needs assumptions that make the analysis more than a

simple extension of the univariate method. First of all, we assume again stationarity of the

process, and notice that E���  � E��, which means that the “covariances” of the FP



representation are equal. We then introduce the hypothesis  that each drift depends only on

its underlying process, which means,

                             ),(),( θµθµ
LLL
[[ = , i = 1, 2                 .                                                 (9)

Multiplying both sides of (6) by the joint density π(\1 , \2) ≡ π(\), integrating with

respect to \ and recalling that stationarity makes the left side equal to zero and one obtains:
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Integrating now with respect to [1 and [2:
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where all integration constants were set to zero.

Calling πi([i), i = 1,2, the marginal densities, in fixed-income analysis it is quite

natural to assume π1(0) = π2(0) = π(0,0) = 0. Intuitively, this means assigning a probability

zero to the event [nominal interest rate = 0]. When considering stock returns, for example,

the integration interval is [xi
min , xi

max] and an analogous hypothesis is π1(x1
min) = π2(x2

min)

= π(x1
min, x2

min) = 0 , and one obtains integration constants equal to zero once again.

Now, if in addition, each “variance” of the FP representation depends only on its

own process,

 )()(
LLLLL
[E[E = , i = 1,2                   ,                          (11)

it is possible to write the FP “covariance” explicitly:
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However, it is still necessary to identify the system (8), relating the FP and the Itô

volatilities.
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The correspondence between the volatilities in the FP and Itô representations is much

simpler in the univariate case than in the bivariate one. While the FP equation is more

convenient in operational terms for developing our estimation procedure, the Itô



representation has an intuitive appeal, especially when considering a continuous-time

counterpart of a covariance matrix. The aim here is to analyse (10) and (12), according to

various assumptions imposed on the (perhaps more natural) Itô representation (7).

The key to pass from one equation to the other seems to be identities in (8). A

simple way to identify this system is to assume that σ�21 ≡ 0, what gives:
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If, for instance, (11) is also imposed, this would additionally imply that
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One way of fulfilling the second condition above is to make:

 σ11([)� �σ11([�) and σ12([)� �σ12([�).                                           (15)

As it will be shown below, (14) and (15) are somewhat stringent conditions and

make the procedure more useful for testing rather than estimation purposes.

Another idea would be to solve system (13) for the σ’s, obtaining:
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Now, again, (8) may be imposed but clearly, in principle, both )(11 [σ  and )(12 [σ

will depend on the two components of vector [.

All the above assumptions are not sufficient to obtain an analytical solution for

either (10) or (12). As a consequence, compared to the univariate case, one needs additional

parametric assumptions. One interesting parametrization, which has also an intuitive

appeal, consists in imposing functional forms on the Itô variances, i.e. on the diagonal

terms of the instantaneous covariance matrix of the Itô representation. In particular,

consider those variances taking the form of the volatilities in the Vasicek and Cox-

Ingersoll-Ross (CIR) models; this will allow to write explicitly the covariance of the Itô

representation as a function of the drifts and variances of both univariate components, and

of the joint and marginal densities of the process. We shall now explore these

specifications.
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Consider the Itô volatilities and assume that, besides the identification condition σ�21 = 0,

they are parametrized as constants, such as in the Vasicek (univariate) model:

           1111 )( &[ =σ  ,        2222 )( &[ =σ                              .                     (17)

These assumptions, together with (14), transform (13) into
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Inserting (18) in (12), one obtains a nonlinear ordinary differential equation (NODE) with

variable coefficients
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In spite that the equation above shows that - once obtained the vector parameter θ, and

constants C1 and C2 - it is possible to identify the covariance between the processes from

the joint density π(., .) and the marginal densities π1(.) and π2(.), by hypothesis, the solution

to (19) should be a function of [1 only. Nevertheless, inspection of (20) shows that $1 and

$4 are functions of the whole vector [, nothing a priori guaranteeing that the solution, in a

given case, will be independent of the [� values. This fact makes the “double Vasicek

specification”, within the context of our proposal, more suitable for a testing procedure

rather than for estimation purposes.
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As known, the Vasicek model has some undesirable features, like the occurrence of

processes with negative interest rates. The CIR model overcomes this problem by the

convenient specification of the volatility function. Consider then once again equations (13)

and assume that the volatilities are parametrized as in the CIR model:

 11111 )( [&[ =σ               ,        22222 )( [&[ =σ                        .           (21)

Using again (14), (13) now becomes
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Inserting (22) into (12), one obtains a NODE with variable coefficients formally similar to

(19):
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The equations above bear the same attributes and the same problem of those from

the previous specification, so that the same comment applies.
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We explore now the combination of (16) with (11). The diffusion coefficients ELL(�), i=1,2,

could, for instance, be specified in a “CIR fashion” as:

LLLLL
\N\E =)( , i = 1,2           .                                  (25)

Alternatively, one could specify them in a “Vasicek fashion” as:

LLL
NE = , i = 1,2                       .                                 (26)

After imposing these parametrized volatilities, one may obtain a semiparametric

estimate of the FP covariance E��(.) from (12). Constants Ni, i=1,2, must then be obtained

beforehand. The fact that σ21 = 0 implies that the second process will be a true CIR or

Vasicek one, so that N2 may be obtained via standard methods. As for  N1,  it may be

obtained in an iterative way. Other ideas to obtain an estimator for N1 are discussed in the

Appendix.

�� 7+(�6(0,3$5$0(75,&�352&('85(

In order to implement the procedure developed in section 3.2, concerning parametrizations

of the diagonal terms of the Itô volatility matrix, the drift parameters θL�  � �αL�βL�, the

densities π(.,.), πL(.) and 
LL

G[Gπ , and the parameters &L, i=1,2 , should be replaced by

consistent estimators. The densities are estimated using kernel smoothers (see Silverman

(1986) for an introduction and Scott (1992) for an advanced treatment), while GMM



estimation after discretization of each component process yields θL and &L, i=1,2. The only

parameter remaining to be estimated is σ�12(.), the solution of either (19) or (23) depending

on the assumptions concerning the diagonal terms of the Itô volatility matrix.

If instead one considers the implementation of the procedure suggested in section

3.3, concerning parametrizations of the FP volatilities, we propose to estimate the drift

parameter vector θ and the parameter N2 of the FP volatility of the second process using

GMM. The densities .)|(.I , (.,.)I , (.)π  and .)|(.1I  are estimated using kernel smoothers.

The first approach suggested in Appendix 1, concerning the parameter N1 , could be

accomplished through OLS. The other alternative, based on the density (A9), deserves

more study but, as mentioned before, one possibility could be to choose a N1 which

minimises the Kullback-Leibler discrepancy measure between its associated normal density

and the one estimated nonparametrically. Once N1 is obtained, computation of E12(\) is

straightforward.

�� $1�$33/,&$7,21�72�7+(�%5$=,/,$1�$1'�$5*(17,1,$1
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To illustrate our approach, we use daily (logarithmic) returns of the Ibovespa and the

Merval, which are, respectively, the main Brazilian and Argentinian stock indexes. The

sample is from October 19, 1989 to March 16, 1999, and contains the market closure values

of the index. It was assumed that Fridays are followed by Mondays, with no adjustment for

weekend effects.



Although the series are non-stationary in levels, the returns seem to be stationary

(see Figures 1 and 2). An interesting feature of the returns is the occurrence of outliers,

especially in the Brazilian series, a characteristic of emerging markets. The stationarity

assumption was tested for both series (see Table 1), being clearly satisfied; Table 2 shows

some summary statistics. One should note that the null hypothesis of normality of the

returns is clearly rejected by the Jarque-Bera test (see Davidson and MacKinnon (1993), p.

567), mostly because of kurtosis – this feature will be mentioned again, when considering

the density estimates. As a consequence, estimation methods based on maximum likelihood

under the normality assumption are expected to be inefficient.

��� *00�HVWLPDWLRQ

The GMM estimates for univariate Vasicek models �µ�U��σ�U��� ��β�α�U��σ��were obtained

from the following four moment conditions (∆ = 1 day) (see Karlin and Taylor (1981), p.

218, and Aït-Sahalia (1996) for details):

 E I t (θ)’ ≡ E[ εt+∆ , rt εt+∆ , εt+∆
2 – E[εt+∆

2| rt] , rt (εt+∆
2 – E[εt+∆

2| rt]) ] = 0

where  rt are the observations of the process, and

 εt+∆ ≡ (rt+∆ - rt) – E[(rt+∆ - rt)| rt]

 E[(rt+∆ - rt)| rt] = (1 - e-β∆) (α - rt)

 E[εt+∆
2| rt] = (σ2/2β) (1 - e-2β∆)

One should recall that this problem does not reduce to OLS, as we have an over-

identified system; moreover, these moments correspond to transitions of length ∆, and are

not subject  to discretization bias. Notwithstanding, the moment conditions above are a first



7DEOH����Unit root tests.

ADF Test Statistics 10% Critical Value

Ibovespa Index -2.41 -3.13

Merval Index -1.93 -3.13

--------------------------------------------------------------------------------------------------------------

Insert Figures 1 and 2 by here

--------------------------------------------------------------------------------------------------------------

7DEOH����Basic statistics of the returns.

Ibovespa Returns Merval Returns

Mean 0.0067 0.0013

Median 0.0051 0.0009

Std. Dev 0.2968 0.0398

Skewness 0.2732 -1.7508

Kurtosis 540.7741 72.9395

Normality Test

Jarque – Bera 27.08 x 106 0.46 x 106

approximation to the problem. As a matter of fact, under system (18), ideally, when

estimating the parameters of the first component process, one should also consider the off-

diagonal term σ12 of the Itô volatility matrix; what, as discussed in section 3, could be done

iteratively.



7DEOH����GMM estimation for the Vasicek model.

Ibovespa Returns Merval Returns

α 3.89 x 10-3

(4.10)**

1.23 x 10-3

(1.39)*

β 2.410

(6.51)**

2.794

(3.87)**

σ 7.83 x 10-3

(10.81)**

3.917 x 10-2

(2.81)**

Notes: (i) the estimates reported are for daily sampling of the returns ; (ii) heteroskedasticity-robust t
statistics are in parentheses.
*  null rejected at 10 percent ; **  null rejected at 1 percent.

��� 'HQVLW\�HVWLPDWLRQ

The densities of both Ibovespa and Merval returns are characterised by heavy tails.

Consider first the joint Ibovespa and Merval returns density, in Figure 3, and then the non-

parametric marginal densities estimates of each return compared to the normal densities

with same mean and variance in Figures 4 and 5. As the density estimates are inputs to the

estimation procedure, it is taking into account the heavy tails which characterise the data at

stake.

��� ,W{�FRYDULDQFH�HVWLPDWLRQ��WKH�GRXEOH�9DVLFHN�DQG�&,5�PRGHOV

Given the estimates for θL, &L , i = 1,2, and the density estimates for π(.,.) and πL(.), i=1,2,

the covariance estimate 12σ̂  solves (19) and (23), respectively, for the Vasicek and CIR

assumptions about the diagonal of the Itô covariance matrix. We shall use in this exercise,



somewhat improperly,  the &L estimates obtained above. This could be avoided by

considering more complex moment conditions which take into account the off-diagonal

terms of the Itô volatility matrix, as already mentioned in section 5.2.

--------------------------------------------------------------------------------------------------------------

Insert Figures 3, 4 and 5 by here

--------------------------------------------------------------------------------------------------------------

One important question concerning the boundary conditions remains. Consider first

the Vasicek model in the case of fixed income. At the point ([1,[2) = (0,0) one may rewrite

(20) as:

 $1 = &2 π(0,0)

 $2 = π1(0)

 
2

1
3 =$

01

11

1

)(

=[

G[
[Gπ

 ∑∑
===

−=
2

10

2

1

2
4 )0(),0(

)(

2

1

1
L

LL

[L

LL

L

L G[
[G

&$ πθµπ
         ,

if we impose  π1(0) = π2(0) = π(0,0) = 0, which is the bivariate counterpart of Aït-Sahalia

(1996)’s boundary condition, the result is
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It is straightforward to see that one may get a complex-valued boundary condition.

Imposing a real σ12(0) > 0 implies that
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as  both &� and &� are assumed to be strictly positive and the derivatives are likely to have

the same (positive) sign, the assumption is invalid.   

Consider next the Vasicek model in the case of variable income. Making π1([1
min) =

π2([2
min) = π([1

min,[2
min) = 0, one gets, at ([1,[2) = ([1

min,[2
min), for (20):

 $1 = 0

 $2 = 0
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leading to:
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Once again one may get a complex-valued boundary condition, what in fact

happened with the data at stake. Of course, there are other boundary conditions to be



considered; given the results above, several were tried, and those actually used were

obtained as follows.

For the Vasicek model, assume that [1
min is such that $1=0 and $4=0, a reasonable

assumption for our data set. The differential equation (19), related to the Vasicek model,

may then be written, at [1
min , as

 0)(
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3
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and, by straightforward calculation, one gets:
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so that, assuming that .2 = 0:
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Alternatively, one may set σ12([1
min) = σ12’([1

min) = Z and $1 = 0. This allows to

rewrite (19), at [1
min , as:

 ($2 + $3) Z
2 + $4 = 0                           .                   (31)

The solutions are given by:
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The solution of (19) subject to the boundary conditions (30) and (32) is rather

computer intensive. The negative root in (32) did not produce a sensible surface and, in all

cases, the numerical iterations did not converge for values of [1 (Ibovespa resturns) less

than –0.05. Moreover, for similar reasons, the range of [2 (Merval resturns) was restricted

to (-0.2 , 0.2 ).



Although each boundary condition may originate a completely different behaviour

for the covariance estimate, the shape in each of the two cases considered does not vary too

much along the range of [2, the returns of the Merval index. In fact, the two solutions

shown are flat for a considerably large range of [2 (say between –0.10 and 0.10). This may

indicate that there is independence between the covariance estimates and the variable [2, a

question that deserves more study in the future.

�� &21&/86,216

We developed an exploratory procedure to estimate and test two-dimensional diffusions

used in finance. The extension of Aït-Sahalia’s univariate idea to the bivariate case is not

immediate, since the solution of the corresponding Fokker-Planck equation can easily

become very difficult, if not impossible in analytical terms. By parametrizing the drifts of

both processes and imposing restrictions on the terms of the Itô and Fokker-Planck

covariance matrices, it is sometimes possible to obtain a nonparametric estimate of the

covariance between the processes. However, a delicate issue might still remain, regarding

the definition of the boundary conditions for the partial differential equations to be actually

solved.

Our main message is that extending in a general way Aït-Sahalia (1996)’s

framework to a multivariate setting is by no means straightforward. The basic reason is

perhaps because the correspondence between the Itô and Fokker-Planck representations in

higher dimensions is not the same as in the univariate case. For the methods developed

here, the Fokker-Planck is more tractable than the Itô representation, suggesting that

parametrizations should be made on the former. Notwithstanding, even when imposing



sensible assumptions on the drift and volatility functions, one cannot obtain a direct

generalisation of the univariate method.

Questions for improvement and further research include (i) the development of the

testing procedure concerning the differential equations resulting from the parametrizations

on the Itô volatilities in 3.2; (ii) the implementation of the estimation and testing procedure

sketched in section 3.3 and Appendix 1; (iii) the improvement of the GMM estimation

procedure used in section 5.2; (iv) alternative boundary conditions for differential equations

(19) and (22), as exemplified in 5.4; (v) the allowance of different bandwidths, taking also

into account the heavy tails of returns distributions, and the use of bivariate kernels which

would exploit better the dependence structure of the bivariate data. Moreover, by imposing

suitable regularity conditions on (a) the time series dependence in the data, (b) the kernels

actually used and (c) the bandwidths, asymptotic results must be developed for the various

estimators proposed.

Finally, a particular case that seems promising is that of “causal bivariate models” in

which one of the diffusions contributes to the volatility of the other. The appeal of this idea

is immediate – investors could improve their hedging strategies when considering a flexible

estimator of the covariance between two (groups of) assets of a given portfolio, instead of

assuming independence among processes and estimating separately univariate diffusions.
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A natural way to obtain an estimator of the constant in E11(.), either in (25) or (26), is to

consider the kernel estimator of the conditional density using its definition:
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with [ = ([�,�[�) and \ = (\�,�\�), so that the numerator of the right-hand side of (A1) is the

joint density of two observations at the time distance (t’ + ∆t) – t’ = ∆t, which is the interval

between observations, and the denominator is the corresponding marginal density. The

(product) kernel estimators of the joint and marginal densities are given by, respectively,
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where the kernel .(.) is a symmetric, finite variance, univariate density, and the parameter

K, assumed to be the same for every kernel, is the bandwidth.

The marginal )|(ˆ
11 \[I  of the bivariate conditional )|(ˆ \[I  will be:
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By defining X = ([� – [�L)/K, integrating (A4) with respect to X, and using the fact that the

kernel function is a density, one obtains
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which can be used to compute the marginal variances for selected \M = (\�M,�\�M).

By defining Y = ([� – [�L)/K, integrating with respect to Y, and using the properties of

the kernel function, one obtains for the marginal mean:
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and for the marginal variance
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Fitting a line through the points \M = (\�M,� 11Ê (\M)) plus the origin will produce an

estimate for N1.

A second idea – likely to be more demanding and dependent on approximations –

starts by recalling that, for small displacements τ = t – t’, if the derivatives of the FP drifts

and volatilities are negligible compared of those of the transition density, the equation to be

solved is approximately:
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Subject to the initial condition

                        )()’,;,( \[W\W[I −= δ                        ,

the solution to this equation will be a Gaussian distribution, with mean  \ + µ(\�W¶�θ)(W�±�W¶) ,

whose covariance matrix coincides with that of the FP E’s (see Gardiner (1997), section

3.5):
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Recalling that – under stationarity – the left hand side of (A9) is estimable using

(A1)-(A3), this opens a range of possibilities both for estimation and testing. With the

parametrizations at stake - in a “CIR or Vasicek fashion” - the parameter N1 is not known

but, if one estimates parameter N2 (e.g. by GMM) and takes (12) into account, inserting it

into (A9), E12(\) is eliminated and there is only one unknown in this equation – N1. One

might then choose a N1 which minimises the Kullback-Leibler discrepancy measure



between the associated bivariate normal density and the one estimated non-parametrically.

Again, once N1 is obtained, E12(\) follows in a straightforward manner.

Finally, if the assumptions leading to (A9) are considered reasonable, it is also

possible to test a variety of hypotheses comparing the densities )’,|,( W\W[I  resulting from

the two alternatives. For instance, one could compare different parametrizations concerning

both the drifts and volatilities of the bivariate process.
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